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Improved Node and Arc Multiplicity Estimation in
de Bruijn Graphs using Approximate Inference in

Conditional Random Fields
Aranka Steyaert, Pieter Audenaert, and Jan Fostier

Abstract—In de novo genome assembly using short Illumina reads, the accurate determination of node and arc multiplicities in a de
Bruijn graph has a large impact on the quality and contiguity of the assembly. The multiplicity estimates of nodes and arcs guide the
cleaning of the de Bruijn graph by identifying spurious nodes and arcs that correspond to sequencing errors. Additionally, they can be
used to guide repeat resolution. Here, we model the entire de Bruijn graph and the accompanying read coverage information with a
single Conditional Random Field (CRF) model. We show that approximate inference using Loopy Belief Propagation (LBP) on our
model improves multiplicity assignment accuracy within feasible runtimes. The order in which messages are passed has a large
influence on the speed of LBP convergence. Little theoretical guarantees exist and the conditions for convergence are not easily
checked as our CRF model contains higher-order interactions. Therefore, we also present an empirical evaluation of several message
passing schemes that may guide future users of LBP on CRFs with higher-order interactions in their choice of message passing
scheme.

Index Terms—Belief Propagation, Message Passing Order, Conditional Random Fields, de Bruijn Graphs.

✦

1 INTRODUCTION

WHEN analysing microbial genomes, for example in a
clinical setting or for surveillance reasons, Illumina

sequencing platforms are widely used because of their low
cost and high throughput. Illumina reads are characterised
by their short length (50-300 nucleotides) and low error rate.
When analysing a genome based on Illumina data, the first
step is often obtaining a whole genome assembly.

In de novo genome assembly, de Bruijn graphs play an
important role as a data structure to efficiently reveal over-
lap between reads. We briefly revise the most important
concepts and refer to [1], [2], [3] for a more detailed de-
scription. Fig. 1 illustrates all concepts introduced here. Each
node of a de Bruijn graph corresponds to a unique length-k
subsequence of a read, called a k-mer. Two nodes u and v
are connected by a directed arc if a read contains a k + 1-
mer such that its first k characters correspond to the source
node u and the last k characters correspond to the target
node v. Consequently, each individual read corresponds to
a walk in the de Bruijn graph across overlapping k-mers.
Two reads that share at least one k-mer will also share at
least one node in their respective walks and hence, overlap
between reads is established. For computational efficiency,
each linear path over nodes (n1, . . . , nl) with l ≥ 2 for
which the out-degree of nodes ni for all 1 ≤ i < l is
1 and the in-degree of nodes ni for all 1 < i ≤ l is 1
are contracted into a single node whose sequence of length
k+l−1 represents the l overlapping k-mers. In other words,
all non-branching paths are maximally contracted and the
resulting nodes are referred to as unitigs. The graph in which
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all k-mers are contracted into unitigs as much as possible
is called a compacted de Bruijn graph. In practice, de Bruijn
graphs prove more efficient in terms of construction and
storage than other methods [2].

If all k-mers and k + 1-mers of the sequenced genome
are present in at least one read (i.e., if there are no coverage
gaps), then the genome sequence corresponds to a walk in
the de Bruijn graph. The number of times a node (resp. arc)
is visited by that walk is called the multiplicity of this node
(resp. arc). Repeats (i.e., subsequences that occur multiple
times in the genome) that are longer than the k-mer (resp.
k + 1-mer) length will cause nodes (resp. arcs) to have a
multiplicity > 1 as they will be visited by the walk multiple
times (e.g. node ATT in Fig. 1). Sequencing errors can result
in spurious nodes and arcs in the de Bruijn graph that are
not visited by the walk: such nodes and arcs have multi-
plicity 0 (e.g. node TGTC in Fig. 1). The walk, and hence,
also the node and arc multiplicities are a priori unknown.
However, multiplicities of nodes can be estimated from the
observed k-mer coverage, i.e., the number of times a k-mer
occurs in the reads. Similarly, the multiplicities of edges can
be estimated from the observed k + 1-mer coverage. The
coverage of a node/arc depends on its multiplicity and on
the sequencing depth of the dataset. The sequencing depth
is the average number of times a nucleotide of the genome
is covered by a read. Note how, in Fig. 1 the coverage of
each node/arc with multiplicity 1 varies around 8.5, while
the coverage of nodes/arcs with multiplicity 2 lies closer
to 2 × 8.5. The stochastic relationship between the cover-
age and multiplicity is usually expressed with a mixture
model where each distribution in the mixture corresponds
to a certain multiplicity value (0, 1, 2, . . . ) (see the top left
of Fig. 1). In theory, if reads are uniformly distributed
over the genome, then the k-mer coverage is Poisson dis-
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Fig. 1. Illustration of a compacted de Bruijn graph using k-mer size 3 (not all reads are shown). The k-mers are extracted from the reads and form
the nodes of the de Bruijn graph. Arcs connect nodes for which the corresponding k-mers are adjacent in a read. Linear paths of connected nodes
are contracted into a single node. The number at each node (resp. arc) denotes the k-mer (resp. k + 1-mer) coverage. For contracted nodes, the
average k-mer coverage is used. The original genome is represented as a walk in the graph starting in node GGA. Nodes TTTGA and TGTC, their
adjacent arcs and the arc between TTC and TCA will not be used by the walk as they arose from the highlighted sequencing errors in the reads, while
ATT, GAT and ATG will be visited twice as these k-mers occur twice in the genome. Nodes and arcs are coloured according to their multiplicity in
the genome sequence: sequencing errors (red), unique sequence (blue) and two-fold repeated sequence (yellow). The mixture model representing
the relationship between k-mer coverage and multiplicity is shown on the left. The model fit here would assign multiplicity 0 to k-mers with coverage
∈ [1, 3], multiplicity 1 to k-mers with coverage ∈ [4, 12] and multiplicity 2 to k-mers with coverage ≥ 13.

tributed [4]. However, sequencing error bias and coverage
bias are sources for overdispersion, which we model with
the negative binomial distribution. Additionally, we know
that, when all multiplicities are correctly assigned and when
there are no coverage gaps, the multiplicity of a node must
equal both the sum of the multiplicities of its incoming arcs
and the sum of multiplicities of its outgoing arcs. We refer to
this property as conservation of flow of multiplicity. Note that
this property also holds in the presence of sequencing errors,
assuming that the corresponding spurious nodes/arcs are
correctly assigned multiplicity 0.

Genome assembly tools try to infer (parts of) the walk
corresponding to the genome sequence using read and
paired-end read information. The accuracy with which node
and arc multiplicities are estimated impacts the accuracy
and contiguity of the assembly: inferring which nodes and
arcs have multiplicity 0 reveals sequencing errors and al-
lows us to remove these nodes and arcs from the graph,
while inferring the higher multiplicities (≥ 2) helps us to
characterise and resolve the repeats present in the genome
sequence. Most existing methods for multiplicity estimation

are based on the mixture model fitted to the k-mer spectrum.
They use the mixture model as follows: given a node/arc
with its observed coverage, the distribution in the mixture
with the highest probability of generating that coverage is
identified. The node/arc is then assigned the multiplicity
that corresponds to that distribution. In practice, this baseline
method leads to fixed, non-overlapping intervals of cover-
age values that each correspond to a distinct multiplicity:
the lowest coverage values are assumed to correspond to
sequencing errors whereas higher coverage value ranges
are increasingly assigned higher multiplicity values (see
Fig. 1 underneath the coverage histogram). However, biases
and errors in the sequencing process can cause a large
variability in coverage. Because of this, the distributions
in the mixture model often show significant overlap, and
therefore, multiplicities cannot be unambiguously assigned
using only the observed coverage. This results in many
nodes/arcs with erroneous multiplicity assignments. For
example, in Fig. 1 node GAT and its outgoing arc would
be erroneously assigned multiplicity 1. Similarly, node GGA
and its outgoing arc would be assigned multiplicity 0 and
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thus be labelled as a sequencing error. Nonetheless, this
baseline method is often the only information used to de-
termine multiplicities in a variety of methods for de novo
genome analysis. This is done for example when estimating
genome size and repeat content by tools such as kmer-
spectrumanalyser [5], CovEst [6], Genomescope 2 [7] and
RESPECT [8], that estimate of the number of k-mers with a
certain multiplicity in the genome based on a mixture model
fit to the k-mer spectrum. Similarly, read error correction
methods use the k-mer spectrum to determine a cut-off
value between erroneous and true k-mers, although this
information is sometimes supplemented by graph topolog-
ical information from the de Bruijn graph (see [9] for a
discussion on error correction methods and their use of the
k-mer spectrum and [10] for a discussion on how the errors
made by these correctors influence downstream assembly
quality). Several genome assemblers such as SGA [11] or
ALLPATHS [12] also rely on multiplicity determination us-
ing coverage information alone. Some de Bruijn graph based
assemblers such as SPAdes [13] and LJA [14] determine
multiplicities based on a methodology first described for
the EULER-DB assembler [15]: coverage information is used
to initially determine multiplicities, but can be combined
with network flows on small subgraphs of the de Bruijn
graph to propagate estimates with more certainty to lower
certainty regions. The hybrid assembler Unicycler [16] uses
a de Bruijn graph produced by SPAdes, greedily determines
node multiplicities based on coverage and local propagation
of multiplicity estimates = 1 and combines this information
with long reads to improve repeat resolution and assembly.

In [9] we proposed a Conditional Random Field (CRF)
model that supplements the coverage mixture model with
information provided by the conservation of flow property.
Rather than using only the coverage locally observed at a
node/arc, coverage information of all nodes and arcs in a
small subgraph centered around that node/arc of interest is
also taken into account. By imposing conservation of flow
at each node, and computing the marginal probability of the
node/arc of interest, the assigned multiplicity now depends
on the observed coverage of all nodes/arcs within the
subgraph. We demonstrated that the CRF model improved
multiplicity estimation: it can often correctly assign mul-
tiplicity values also to nodes/arcs whose coverage values
fall outside of their expected interval [9]. In a subsequent
comparison of sequencing error detection accuracy between
our method and existing methods, we achieved the highest
F1-score on datasets of varying complexity. The results
from [9] highlight the importance of incorporating contex-
tual information (e.g. from neighbouring nodes/arcs) when
determining multiplicities of k-mers. A similar conclusion
was recently drawn by Suzuki and Myers [17], who analyse
data from diploid organisms and assign a ploidy-label to
each k-mer in a read using coverage information supple-
mented with contextual information contained in the whole
read. While requiring a different k-mer coverage mixture
model, the notions of ploidy labels for polyploid organisms
and multiplicity in haploid organisms are closely related. To
the best of our knowledge Detox [9] and ClassPro [17] are
the only methods that incorporate contextual information
for each node (resp. k-mer) multiplicity assignment and de-
termine multiplicity 0 together with the other multiplicities.

The methods of SPAdes, LJA and Unicycler use heuristics
to incorporate some context locally and only do this for a
subset of the nodes in the de Bruijn graph. Additionally,
they require that a distinction between multiplicity 0 and
multiplicity > 0 has already been made by an error correc-
tion method.

In [9] we relied on exact inference algorithms to compute
the marginal probability that a node or arc has a certain
multiplicity. However, it is well-known that runtime in-
creases rapidly with increasing number of random variables
in the CRF, i.e., with increasing size of the subgraph that is
selected. Yet, we also observed that the accuracy of assigned
multiplicities increases with increasing size of the subgraph.
In this paper, we therefore explore the use of approximate
inference techniques to determine the multiplicities of nodes
and arcs based on one global CRF model for the entire
de Bruijn graph. By no longer using subgraphs, coverage
information of all nodes and all arcs in the de Bruijn graph
are taken into account when assigning multiplicities. We
investigated to which extent such a holistic approach can
further boost accuracy.

In order to be widely applicable to many different
datasets, we believe it is most beneficial to use Loopy
Belief Propagation (LBP) algorithms. Even though little
convergence guarantees exist for LBP algorithms, conver-
gence and good estimations of the marginals are often
observed even in the cases for which no theoretical guar-
antees exist [18]. Another popular method of approximate
inference in probabilistic graphical models is a sampling
based (MCMC) method such as the Metropolis-Hastings
algorithm. Sampling-based methods have asymptotic ac-
curacy guarantees for all types of probabilistic graphical
models. However, successful sampling-based inference of-
ten requires careful design choices for each model and
many computations might be needed to obtain a good
approximation of the marginals [19]. We believe this makes
sampling-based methods less optimal for our application.
The successful convergence of an LBP algorithm can depend
greatly on the specific order in which messages are propa-
gated. Our CRF model contains higher order interactions
(i.e. interactions between more than two variables), and the
existing theoretical guarantees are thus not easily translated
or applied to our model. Therefore, we analyse different LBP
message-passing orders. We show empirically under which
conditions convergence to a good approximation of the
marginals is obtained.

The scope of this paper is thus twofold. On the one hand,
we show that modelling the whole de Bruijn graph with a
single CRF improves multiplicity assignment accuracy for
a range of clinically relevant bacterial datasets, while the
use of approximate inference keeps computations feasible.
On the other hand, we provide an empirical evaluation of
different message passing schemes and their influence on
the convergence of approximate inference in the Conditional
Random Field models we encounter, and we implement the
best performing scheme.

2 CRF MODEL FOR MULTIPLICITY ESTIMATION

A Conditional Random Field (CRF) is a probabilistic graphical
model often used for classification tasks where a predic-
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Fig. 2. Top: de Bruijn graph with highlighted subgraphs of size s = 0, 1, 2
centered around node A. Bottom: factor graph representation of the
CRF for the subgraph of size s = 1 around A. Squares represent factor
nodes, while circles represent variable nodes. Each variable i has a
singleton factor (φi) and from each variable corresponding with a de
Bruijn graph node arise two conservation of flow factors (φfl): one with
the incoming arcs and one with the outgoing arcs. Observed variables
for each node and arc in the de Bruijn graph are not visualised.

tion can be influenced by contextual (i.e., ‘neighbouring’)
information. It is a popular method for Named Entity
Recognition and Image Segmentation tasks [20]. In the first
instance, one tries to assign a label (e.g. location, person,
time expression or organisation or in the biomedical do-
main: gene, protein, drug or disease) to each named entity
in a text. The probability that one named entity gets a
certain label can be influenced by the other parts of the
phrase it is contained in and by the labels of other named
entities nearby. Moreover, named entities themselves might
not be included in a dictionary or reference database and
one has to use context alone to determine their label [21]. In
Image Segmentation tasks, groups of pixels called segments
have to be assigned a label of what they represent in an
image. Neighbouring segments are more likely to have
the same label, this knowledge is easily translated into a
CRF model [19]. Similar to these tasks, we believe it is
beneficial to combine the probabilities that each node/arc
in the de Bruijn graph has a certain multiplicity based on
its coverage (compare with knowledge of a single word or
segment) within one probabilistic model such that the final
marginal probabilities are based on knowledge about the
context of the node/arc (compare with a whole phrase or
neighbouring pixel segments).

The CRF model is expressed as a joint (conditional)
probability over all unknown variables Y given observed

variables X:

P (Y|X) =
1

Z(X)

M∏
i=1

φi(Di). (1)

Here, Z(X) is the partition function, a normalisation con-
stant. Because a CRF is formulated as a conditional proba-
bility distribution, we do not have to define dependencies
between the observed variables, nor do we have to assume
independence between observations. The joint probability
distribution P (Y|X) factorises into M factors φi that quan-
tify the dependencies between the variables in the model.
Each factor φi has a scope Di that is a subset of X ∪Y, but
always contains at least one variable from Y [19]. The fac-
torisation of the CRF (1) can be uniquely represented with a
factor graph [18]. This is a bipartite graph that represents the
factorised product of (1) as follows [22]: one type of nodes
represents the variables in the CRF, while the other type of
nodes represents the factors φi in the product. Each factor-
node is connected with all variable-nodes corresponding to
the variables in its scope (see Fig. 2). This graph is not to be
confused with the de Bruijn graph itself.

We use the CRF model to predict node/arc multiplicities
in a de Bruijn graph as follows. Each node/arc is assigned
a variable Yi that represents its (unknown) multiplicity and
variable Xi that represents its (observed) coverage. There
are two types of factors. The first type, the singleton factors
φi(Yi|Xi) model the relationship between the coverage Xi

observed at a specific node/arc and its unknown multi-
plicity Yi. This relationship is modeled using the mixture
model of negative binomial distributions described earlier.
E.g. the mixture model in Fig. 1 is a combination of three
Negative Binomials, the one representing multiplicity 0 has
mean 1.0 and variance 1.1, while the ones representing the
other multiplicities m have mean mλ (λ = 7.5) and variance
1.1mλ, the weights in the mixture are 200, 300 and 140 for
multiplicities 0, 1 and 2 respectively. Given this model, if
node A in Fig. 2 has a coverage XA = 13, then φA(YA =
1, XA) = 6.99, while φA(YA = 2, XA) = 12.99. Note that
our singleton factors are no probability distribution yet, the
normalisation happens at the level of the joint probability.
The second type of factors impose conservation of flow of
multiplicity at each node of the de Bruijn graph, i.e., the
multiplicity Yn of a node should equal the sum of the mul-
tiplicities of its incoming (resp. outgoing) arcs Ya1

, Ya2
, . . .

The conservation of flow factors φfl(Yn, Ya1
, Ya2

, . . .) assign a
low probability when conservation of flow is violated and
a high probability when it holds. These probabilities are
determined by a parameter we call the conservation of flow
strength ϵ >> 1. The CRF contains two conservation of
flow factors for each node in the de Bruijn graph: one for
its incoming arcs and one for its outgoing arcs. In Fig. 2
φfl(YA = 1, Yb = 1, Ye = 0) = φfl(YA = 2, Yb = 1, Ye =
1) = ϵ because for these values of YA, Yb, Ye YA = Yb + Ye

such as is required by the conservation of flow property. In
contrast φfl(YA = 1, Yb = 1, Ye = 1) = 1 because these
multiplicity assignments violate the conservation of flow
property. Based on the conservation of flow factors alone,
multiple multiplicity combinations are possible. The final
assignments will be influenced by a combination of the prior
beliefs in the multiplicity of a single node/arc, quantified

This article has been accepted for publication in IEEE/ACM Transactions on Computational Biology and Bioinformatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2022.3229085

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. XX, NO. X, XXX 5

by the singleton factors, and the likely combinations of
multiplicities, quantified by the conservation of flow factors.
In this way, the CRF uses the context of a node/arc when
determining its multiplicity. We refer the interested reader
to [9] which contains a more elaborate description of the
factors used in our model as well as a worked out example
of a CRF model for a subgraph of the de Bruijn graph and
its improvement of multiplicity assignment accuracy.

2.1 Exact inference: variable elimination
To infer the multiplicity Yi of a node/arc, we com-
pute the marginal probability distribution P (Yi|X) =
ΣY\Yi

P (Y|X). We thus obtain a categorical distribution of
the probabilities of multiplicities for that node/arc. We then
simply assign the multiplicity with the highest probability.
Note that in order to compute the marginal distribution,
the partition function Z(X) does not need to be known, as
P (Yi|X) can simply be normalised afterwards.

For a larger number of variables, the computation of
the marginal quickly becomes intractable, as all possible
multiplicity combinations of Y \ Yi need to be enumerated.
To reduce the required computations, we consider only a
subgraph with size s centered around the node/arc under
consideration. This subgraph includes all nodes that are
reachable within a distance of at most s nodes from the
central node/arc as well as their adjacent arcs (see Fig. 2).
For s = 0, only the central node/arc itself is taken into
consideration and the CRF method degenerates into the
baseline method that relies only on the coverage mixture
model. Additionally, rather than exhaustively enumerating
all possible multiplicity combinations of Y \ Yi, we use
the computationally more efficient variable elimination al-
gorithm (VE) [19] to compute the marginal distribution.
Nevertheless, for larger values of s (i.e., a large number of
variables in the CRF), the use of exact inference techniques
becomes computationally impractical.

2.2 Approximate inference: belief propagation
In order to do inference computations on a CRF for the
entire de Bruijn graph, one has to resort to approximate in-
ference techniques. We run a belief propagation (BP) scheme
until convergence once, after which marginal probabilities
for the multiplicities of all nodes and arcs are easily ex-
tracted.

The BP algorithm extends exact inference methods to
approximate inference methods. Given the factor graph rep-
resentation of the CRF, the BP algorithm can be understood
as follows. Based on the notation of [23], we denote the
variable nodes with small letters i, while the factor nodes
are denoted with capital letters I . Given a variable node i, its
neighbours Nb(i) represent all factors whose scope contains
i. Given a factor node I , its neighbours Nb(I) represent all
variable nodes corresponding to the variables in the scope
of the factor corresponding to I . Messages between nodes in
the factor graph are then defined by:

mi→I(xi) =
∏

J∈Nb(i)\I

mJ→i(xi), (2)

mI→i(xi) =
∑

xI∈Nb(I)\i

φI(Nb(I))
∏

j∈Nb(I)\i

mj→I(xj). (3)

The summation over xI ∈ Nb(I)\i denotes that we sum
over all different assignments to the variables in Nb(I)\i,
while the assignment to i is fixed to xi.

Inference in a CRF can now be viewed as the passing
of messages through its factor graph [24]. Messages are
first initialised to 1. After initialisation, messages are passed
along edges in the factor graph (i.e. calculated according
to (2) and (3)) until convergence. Upon convergence we
can calculate beliefs bi(yi) as approximations to the exact
marginals P (yi|X) as follows:

bi(yi) =
1

Z

∏
I∈Nb(i)

mI→i(yi),

where Z denotes a normalisation constant such that all
entries in bi sum to one. Additionally, the factor beliefs can
be calculated by:

bI(yI) =
1

Z
φI(yI)

∏
j∈Nb(I)

∏
J∈Nb(j)\{I}

mJ→j(yj).

Factor beliefs can be used to determine joint probabilities
of the variables in the set yI , optionally still summing out
some of the variables.

Whenever the factor graph corresponding to a CRF is a
tree, the BP algorithm still results in an exact computation of
the marginals. However, the factor graphs corresponding to
de Bruijn graph based CRFs almost always contain cycles. In
the presence of cycles, messages can still be passed through
the loopy graph, and the resulting algorithm is thus called
Loopy Belief Propagation (LBP). Messages are passed until
convergence is reached, or, if non-convergence occurs, until
an alternative criterion is reached. A loopy factor graph
can also be transformed into a tree-structured graph such
that the BP algorithm is exact. However, a tree-structured
transformation of the factor graph requires computations
with the same order of complexity as the VE algorithm. The
transformation into a tree thus comes at a, possibly very
large, computational cost [24].

2.3 Implementation

Our software (called Detox) is implemented in C++11. For
this reason, we chose to build on an existing C++ library for
Probabilistic Graphical Model inference, libDAI [23]. libDAI
only explicitly computes and saves the messages mI→i(xi),
i.e., those that are passed from factors I to variables i.
Combining equations (2) and (3) we obtain the following
update equation:

mI→i(xi) ∝
∑

xI∈Nb(I)\i

φI(Nb(I))
∏

j∈Nb(I)\i

∏
J∈Nb(j)\I

mJ→j .

(4)
In all experiments presented here we use the following

convergence criterion for LBP:

maxxi
∥b(t)i (xi)− b

(t−1)
i (xi)∥ < ε

&

maxxI
∥b(t)I (xI)− b

(t−1)
I (xI)∥ < ε,

(5)

where (t) denotes the t’th iteration of LBP and bi and bI are
the variable and factor beliefs respectively. Our implemen-
tation is available at https://github.com/biointec/detox.
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TABLE 1
Six bacterial datasets used for benchmarking. The number of nodes and node multiplicity information refers to the de Bruijn graph with k = 21 of

the genome itself (i.e., without sequencing errors).

organism assembly dataset number node multiplicity
accession no. accession no. of nodes mean sd max

P. aeruginosa GCF 000006765 ERR1294862 10863 1.52 0.99 19
E. faecalis GCF 002208945 SRR5448651 1808 2.05 2.22 25
S. enterica GCF 004224885 SRR8548649 3541 1.91 2.22 44
M. tuberculosis GCF 009762675 SRR8186769 9715 2.12 2.71 65
S. aureus GCF 001018845 SRR1955629 3072 2.44 2.74 24
E. coli GCA 005037805 SRR7896256 7127 2.38 3.78 49
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Fig. 3. Histograms of true node multiplicities of error-free compacted de
Bruijn graphs from the bacterial datasets used here.

3 MULTIPLICITY DETERMINATION IN DE BRUIJN
GRAPHS: RESULTS AND ANALYSIS

3.1 Datasets

We use six publicly available Illumina datasets (see Table 1)
for clinically relevant bacteria to assess the performance of
exact and approximate inference algorithms. In all cases,
a high-quality assembly is available that matches the read
data. All datasets were randomly downsampled to sequenc-
ing depths of 10×, 15×, 20×, 25×, 30× and 50×. This pro-
cedure was repeated five times. In total, we thus obtain 180
different read datasets (6 organisms × 6 sequencing depths
× 5 repeats). Analogously, we generated 180 simulated read
datasets using ART [25].

Table 1 provides, for the six organisms, the size of the
compacted de Bruijn graph (k = 21) in the absence of
sequencing errors and coverage gaps and summarizes the
true node multiplicities. Even though most of the DNA of
microbial organisms is unique (i.e., non-repeated), almost
half of the nodes of the de Bruijn graph represent repeated
sequences (see Fig. 3). Whereas nodes with multiplicity 1
often contain large sequences, nodes with multiplicity ≥ 2
typically represent relatively short sequences. The associ-
ated multiplicities can be as high as 65.

3.2 Workflow

A schematic overview of the workflow of Detox is given in
Suppl. Fig. S1. First, a compacted de Bruijn graph (k = 21)
is constructed from the input reads using BCalm [26]. Our
tool consists of three stages. In stage 1, the k-mer (resp.
k + 1-mer) coverage is counted for all nodes (resp. arcs)

in the de Bruijn graph. For unitigs, that consist of multiple
k-mers, the average coverage of their constituent k-mers is
computed. In stage 2, the model parameters of the mixture
model are learned using an expectation-maximization (EM)
algorithm. In the E-step, the node and arc multiplicities are
inferred (exact inference, subgraph s = 5) using the current
model parameters. In the M-step, the model parameters
are updated based on those multiplicity assignments using
the method of moments. Typically, only few (i.e., 10 to 20)
iterations are required for the EM algorithm to converge.
For computational efficiency, only a subset of nodes and arcs
(default: 10 000 each) is used to train the model. In stage 3,
spurious nodes and arcs that arise due to sequencing errors
are removed from the de Bruijn graph using a procedure
described in Suppl. Section S2. After graph cleaning and
maximally compacting linear paths into unitigs, the result-
ing de Bruijn graph typically contains a few thousands of
nodes and arcs. Most nodes and arcs now correspond to
subsequences of the underlying genome. In other words,
there are typically only a few sequencing errors left and
the graph is a good approximation of the true underlying
genome.

3.3 Exact versus approximate inference
Given the cleaned, compacted de Bruijn graph and the fitted
mixture model, we determine all multiplicities of nodes and
arcs with 1) exact inference (variable elimination algorithm)
for different subgraph sizes s (i.e., s = 0, 1, 3, 5, 7) and 2)
approximate inference (loopy belief propagation) using a
single CRF for the entire de Bruijn graph. Based on the
results of Section 4.1 we choose ‘maximum residual updates
with lookahead 0’ with weight decay as message passing
scheme. Fig. 4 (simulated data) and Fig. 5 (real data) show
the percentage of erroneous multiplicity assignments and
the average runtime, as a function of sequencing depth.
Each box in the box plot summarizes the results across all
six organisms and repeated runs.

The accuracy with which node multiplicities are esti-
mated increases with increasing size s of the subgraph for
exact algorithms and becomes maximal when approximate
inference is used, for all sequencing depths and for both
simulated and real data (see Fig. 4a and 5a). This confirms
the usefulness of the CRF model to infer a node/arc mul-
tiplicity not only based on its locally observed coverage,
but also on its context, i.e., its surrounding graph topology
and the observed coverage of those nodes/arcs. In a certain
way, one can think of the approximate inference technique
as an asymptotic case where s = ∞, i.e., the entire de Bruijn
graph is taken into consideration when assigning individual
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Fig. 4. Comparison of accuracy (left) and runtime (right) of exact and approximate inference methods for different sequencing depths and simulated
data. Each result is averaged over 30 datasets (5 simulation runs for 6 different bacterial organisms).
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Fig. 5. Comparison of accuracy (left) and runtime (right) of exact and approximate inference methods for different sequencing depths and real data.
Each result is averaged over 30 datasets (5 downsampling runs for 6 different bacterial organisms).

node/arc multiplicities. Moreover, approximate inference
techniques overcome the exponential time complexity of
exact inference techniques, which inherently prohibits the
use of large subgraph sizes s. This can be observed in Fig. 4b
and 5b: approximate inference is faster than exact inference
for s = 5 and much faster than s = 7. Approximate
inference successfully allows us to exploit the advantage of
a single CRF model for the entire de Bruijn graph within
feasible runtime.

With increasing sequencing depth, accuracy increases for
all inference techniques. This is because with increasing se-
quencing depth, the coverage distributions associated with
distinct multiplicities overlap less. Therefore, the observed
coverage at each node/arc carries more information related
to the multiplicity of that node or arc. Nevertheless, the
use of the CRF model proves useful even at a sequencing
depth of 50×. Interestingly, the runtime of the approximate
inference technique decreases with increasing sequencing
depth. This is due to the fact that a higher sequencing depth
is associated with fewer nodes/arcs that have ambiguous

coverage, and hence fewer iterations of message passing are
required to obtain convergence. Additionally, with higher
sequencing depth, there are fewer sequencing errors left in
the graph, and fewer coverage gaps (see also Suppl. Ta-
ble S1).

Even when all available information is combined within
a single CRF model, certain multiplicity assignments turn
out incorrect, especially at low sequencing depth. One class
of errors is related to spurious nodes and arcs in the graph
with relatively high coverage: even though these nodes/arcs
represent sequencing errors, due to biases in Illumina se-
quencing technology, their coverage is much higher than
expected. This in turn, results in a very low a priori belief
that the node/arc represents a sequencing error, which is
not reversed by the CRF model. More generally, erroneous
assignments may occur for nodes/arcs whose coverage
deviates significantly from what is expected by the model.
Another class of incorrect assignments relates to nodes/arcs
with high multiplicity values. Because the variance of the
coverage distribution is proportional to the mean, the neg-
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ative binomial distributions related to multiplicities m and
m + 1 will increasingly overlap when m becomes larger.
Therefore, it is difficult to infer the exact multiplicity. This
can also be observed in Suppl. Fig. S7 and S8: more repet-
itive genomes (i.e., with a larger average node multiplicity,
see Table 1) are more difficult to handle.

Often, difficult nodes/arcs with very low or high cov-
erage and/or with high multiplicity values are spatially
correlated in the de Bruijn graph. For example, a GC-
rich region of the genome may have very low coverage,
which manifests itself as a path of connected nodes with
low coverage in the de Bruijn graph. In such cases, the
multiplicities may not be correctly inferred for this entire
subgraph, even when the conservation of flow property
holds for most nodes.

The results on real data show a larger percentage of
erroneous assignments than simulated data. This is caused
by a higher coverage variability and biases that are not
reflected well in the simulator used. Additionally, plasmid
DNA in real data typically has a much higher abundance
than bacterial DNA and hence, its associated node/arc
multiplicities will be poorly estimated. Nonetheless, we
obtain the highest accuracy within feasible runtime using
approximate inference.

Overall, we conclude that the use of a single CRF model
and approximate inference techniques for the entire de
Bruijn graph is beneficial: significant gains in accuracy are
achieved within an acceptable runtime.

3.4 Comparison to other methods

In [9], we compared our multiplicity 0 assignment accuracy
to that of state-of-the-art error correction tools that make
use of k-mer coverage. We found that we significantly
improve error detection. As we further improve multiplicity
assignment accuracy in this work, error detection accuracy
will also further improve. For this reason we will focus on
evaluating multiplicity assignments ≥ 1 here.

To the best of our knowledge, there is no dedicated
method for higher order multiplicity determination in de
Bruijn graphs, as this remains an internal computation of
the assembly pipeline. As developing a complete assembly
pipeline is outside the scope of this paper, we compare our
multiplicity assignments with those used by several meth-
ods for genome size and repeat content estimation. All these
methods use what we refer to as the baseline method to de-
termine multiplicity assignments: they fit a mixture model
to the k-mer spectrum and determine coverage intervals
for each multiplicity. The differences between the methods
lie in the probability distributions used in the mixture and
in how the erroneous (multiplicity 0) k-mers are modelled.
Kmerspectrumanalyzer [5] fits a negative binomial mixture
model to the k-mer spectrum, assuming all k-mers with
coverage less than µ/2 are erroneous, where µ is the average
coverage of the k-mers with multiplicity 1. CovEst [6] fits
a Poisson mixture model to the k-mer spectrum combined
with a model for the probability that a given k-mer arose
from a true k-mer with s point-mutations. Genomescope
2 [7] uses a negative binomial mixture model with only two
components (one for the unique k-mers and one for the re-
peated k-mers). They assign multiplicity 0 to the proportion

of low-coverage nodes not explained by the fitted model.
Additionally, we compare our multiplicity assignments to
those given by Unicycler [16] as intermediary output. Uni-
cycler uses k-mer coverage to estimate multiplicities = 1
and propagates these estimates to other nodes. In this way
it greedily assigns higher order multiplicity based on the
topology of the de Bruijn graph. When no estimate was
available for a node we used Unicycler’s coverage based
method (as used to estimate multiplicity = 1) to provide
estimates for all remaining nodes.

We consider 6 different multiplicity bins: one for each
multiplicity ∈ [0, 4] and a final bin for multiplicities ≥ 5.
Detox and Unicycler output multiplicity estimates for each
unitig in the de Bruijn graph. We bin unitigs based on these
multiplicity estimates and count all the k-mers for each
multiplicity bin using KMC3 [27] (k = 21). For the other
tools, we determine coverage intervals for each multiplicity
bin based on their k-mer spectrum model and count the k-
mers with coverage in these intervals with KMC3 (k = 21)
(see also Suppl. Section S4). We evaluate the performance
of each method using the Jaccard index of the true bins
determined by counting k-mers in the reference genome
compared with the estimated bins:

Jac(m) =
|True(m) ∩ Estimate(m)|
|True(m) ∪ Estimate(m)|

, m ∈ {0, 1, 2, 3, 4, 5+}

Jac =
∑
m

Jac(m)

6
.

On several 10× sequencing depth datasets, kmerspectru-
manalyzer did not provide a model fit, in these cases the
Jaccard index was set to 0.

Overall (Fig. 6) we see that Detox performs much better
than the other methods. The Jaccard index averages are
spread out for all methods, this is because the total number
of k-mers in the multiplicity bins for m > 2 is small and
a single missed k-mer or erroneously added k-mer in the
estimated bins thus has a larger influence on the Jaccard
index. Suppl. Fig. S14 shows the Jaccard index per bin (still
averaged over all datasets): Detox outperforms all methods
in all multiplicity bins, although we see a lower Jaccard
index in all methods in the higher multiplicity bins. All
methods perform slightly worse at low sequencing depths
similar to the results in Section 3.3. However, the gain
obtained by Detox over the other methods is higher at low
sequencing depth. As expected, Unicycler performs better
than the other k-mer spectrum based methods because it
attempts to use some contextual information, albeit in a
very localised heuristic manner. Unicycler improves the
classification of k-mers with multiplicity 0, 1 and 2 (see
Suppl. Fig. S14), but Detox performs even better.

4 MESSAGE PASSING SCHEMES

The order in which messages are passed can greatly in-
fluence the rate of convergence of loopy belief propaga-
tion. Here we compare several different message passing
schemes (see Supplementary Material for pseudo-code) to
determine which one provides the best convergence and
speed guarantees for our CRFs.

Message passing schemes can be divided into two big
categories. Messages can either be passed with synchronous
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Fig. 6. Average Jaccard index (over 6 multiplicity bins) for different multiplicity estimation methods averaged over 180 datasets (5 simula-
tion/subsampling runs for 6 different bacterial organisms for 6 different sequencing depths) for both simulated data (left) and real data (right).

(parallel) updates or with asynchronous (sequential) up-
dates. In the first case there is one pass over all nodes in
the factor graph to compute new messages based on the
previous iteration and a second pass to update all stored
messages. In the second case, each message is updated as
soon as it is computed. One message computation according
to (4) can thus be based on some messages from the previous
iteration and some messages that were already updated dur-
ing the current iteration. The two most basic asynchronous
update schemes are (1) following a fixed order looping over
all edges in the factor graph or (2) following a randomised
scheme such that the order of updates changes at each
iteration.

Sequential updates tend to converge much faster than
parallel updates because information is propagated fur-
ther in the factor graph within fewer iterations. To ensure
that computations that propagate more information are
performed first, Elidan et al. [28] introduced an informed
order of asynchronous message updates called ‘maximum
residual updates’ (MRU). MRU selects which message to
send based how much it changes compared to its previous
value. This amount of change is estimated based on message
residuals:

r(mI→i)

=

∥∥∥∥∥∥
∑

xI∈Nb(I)\i

φI(Nb(I))
∏

j∈Nb(I)\i

∏
J∈Nb(j)\I

mJ→j − mI→i

∥∥∥∥∥∥ ,
under some norm ∥ · ∥. Although there are no theoretical
guarantees for the convergence of this scheme, Elidan et
al. [28] empirically showed the MRU scheme to converge
far more often than parallel or random order sequential
updates.

While the maximum residual update scheme has much
better convergence properties in terms of number of iter-
ations, the cost of one iteration is significantly larger than
for random sequential or parallel belief updates. Sutton et
al. [29] showed that the calculations of messages that are
only used to update residuals without actually updating
messages significantly increase the cost of one message up-
date step. Sutton et al. [29] propose to guide scheduling with
an upper bound on the message residuals that is more easily
computed, thus significantly reducing the compute time of

the maximum residual scheduling, without much influence
on the final reached accuracy and convergence properties.
The resulting algorithm is called ‘Maximum Residual Up-
dates with lookahead 0’ (MRU0l). Whereas MRU computes
an initial pass over all messages to determine residual
initialisation, [29] also provide a different initialisation to
the residuals:

r(mI→i) ≤ ∥φI(I)− Uniform(I)∥∞. (6)

This initialisation is derived as the upper bound to the
residual of messages initialised to a uniform distribution
and updated with the actual factors from the factor graph.
We will consider both initialisations in combination with
MRU0l.

One frequently observed non-convergent behaviour is
oscillating messages, i.e., a message seems to have multiple
steady states and with each update this message gets pulled
towards the other state, thus causing oscillations. To avoid
such behaviour it is possible to use dampened belief updates
[30]:

m
(t)
I→i = (1− µ)m̂

(t)
I→i + µm

(t−1)
I→i , 0 ≤ µ ≤ 1, (7)

with m̂
(t)
I→i calculated as in formula (3). Using such damp-

ened updates might result in a successfully converged LBP,
whereas normal updates did not. However, in such cases
the resulting belief-approximations are often much further
away from the true marginals than in the cases where LBP
converges without needing dampening.

When oscillating behaviour occurs, this causes only a
handful of beliefs to have the largest residual and stay on
top of the priority queue. Because of this, messages that
have not converged yet, but are lower in the priority queue
might never be sent again. Knoll et al. [31] developed two
slight alterations to the update schemes to avoid oscillatory
behaviour by ensuring that messages that have already been
sent often, get a lower priority. We only consider their weight
decay belief propagation scheme here. This scheme dampens
the residuals based on how many times a message has
already been selected and sent.

The parallel update, sequential update with random
or fixed order and MRU message passing scheme were
already implemented in libDAI. Additionally, we imple-
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Fig. 7. Total runtime of the inference computations for different message passing schemes. Each observation is the average over 5 different
simulations with the same parameter settings. X’s are used whenever one of the five runs did not converge (in which case the run used 500
iterations). Results for simulated data at 10×, 25× and 50× coverage. MRU: Maximum Residual Updates, MRU0l: Maximum Residual Updates
with lookahead 0, u: uniform distribution-based initialisation of residuals and wd: weight decay.

mented MRU with lookahead 0 and the possibility to add
weight decay into the libDAI framework.

4.1 Results and Analysis
We use the simulated datasets from Section 3.3 to compare
the convergence properties of different message passing
schemes (see Fig. 7). The coverage model is trained using
exact inference (subgraphs, s = 5). We then use approximate
inference with different message passing schemes to de-
termine multiplicity assignments and compare their speed
and convergence. Preliminary tests showed that the differ-
ent MRU-based schemes clearly have better convergence
properties than sequential updates with random ordering
schemes (results not shown), so we will not show the
results for random sequential updates here. Whenever we
use dampened updates the dampening factor µ in (7) was
set to 0.2. The convergence parameter ε from (5) was set
to 10−3 in all cases. A stronger convergence criterion was
investigated (results not shown), but this had no influence
on the final reached accuracy. A maximum of 500 iterations
or a maximum runtime of 1800 seconds was allowed before
terminating computations.

When they converge, MRU(0l) schemes without weight
decay are slightly faster. However, there are several low
read support datasets where the MRU(0l) schemes fail to
converge within the allotted time. From their final states
it is clear that message passing got stuck in oscillating
behaviour. Weight decay leads to successful convergence in
these datasets. Dampened update schemes also converge,
but many more iterations are needed, leading to much larger
overall runtimes. While both dampened updates and weight
decay scheduling on their own aid in convergence, we do
observe that a weight decay scheme combined with damp-
ened updates often leads to many more needed iterations
before convergence. On higher read support datasets, the
advantage of MRU0l over MRU becomes clear: MRU often
needs slightly less iterations than MRU0l, but as the CRFs

contain more variables, the faster speed per iteration of
MRU0l becomes more advantageous (see Suppl. Fig. S6).
Finally, we see that using the uniform distribution upper
bound (6) or an initial message computation pass lead to
different convergence behaviour. However, there is no clear
advantage of one over the other initialisation as one is
faster on certain datasets, while the other is faster on other
datasets. All message passing schemes showed the same
multiplicity accuracy (results not shown). The only time
large drops in accuracy are seen is when an approximate
inference algorithm did not converge.

We see that the convergence rate improves with higher
sequencing depth. At low sequencing depth there is a larger
overlap between the distributions that represent the cover-
age - multiplicity relationship, making several different mul-
tiplicities almost equally probable. This can cause regions
in the factor graph where convergence is harder. Difficult
convergence is often seen in variables that are on a boundary
between a region where expected and observed coverage
are concordant and a region with many neighbouring nodes
and arcs that show a large discrepancy between the expected
coverage and the actual observed coverage.

Based on the results observed here, we decide to use
MRU0l with weight decay as the default message passing
scheme in the Detox pipeline.

5 DISCUSSION

On both real and simulated datasets, we showed that using
a single CRF for the entire de Bruijn graph leads to more
accurately assigned multiplicities, within a feasible runtime.
We observed an increase in accuracy compared to a CRF
model for subgraphs, and we outperformed several meth-
ods for multiplicity estimation. Additionally, we provided
an overview of the most commonly used message pass-
ing schemes for Loopy Belief Propagation and empirically
showed which ones had good convergence properties for
de Bruijn graph based CRFs. Detox was developed for the
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analysis of short Illumina sequencing reads, which are still
most frequently used to analyse smaller genomes. For this
reason, the results presented here only analyse bacterial
datasets. In Supplementary Material we provide some re-
sults on simulated data for larger genomes. These results
show the potential and limitations for our method to be
used on larger de Bruijn graphs as well, such as those that
might arise from metagenomics datasets or long (HiFi) read
based de Bruijn graphs. In the remainder of this section,
we discuss the use of approximate inference in Detox, in
Supplementary Material we discuss possible extensions or
adaptations to the inference method.

5.1 When to use approximate inference in the Detox
pipeline
The Detox pipeline makes use of the CRF model in three
different places (see also Suppl. Fig. 1). In Stage 2 we train
the model on a subset of the nodes and arcs. Approximate
inference computes a single CRF for the entire de Bruijn
graph, thus computing all probabilities for all nodes and
arcs and having no benefit from only retrieving a subset
of the probabilities for training. We observe only a small
improvement in accuracy when using a model trained on
all nodes and arcs with approximate inference, leading us to
believe that the parameter estimation is mostly guided by
easy to determine multiplicities that are characterised well
by exact inference on a subgraph. Additionally, preliminary
tests on the use of approximate inference in this stage
showed that convergence issues could arise more easily in
the first EM-step due to a less than optimal initialisation.
Therefore, we choose not to implement approximate infer-
ence in Stage 2. During Stage 3 graph cleaning we also
determine multiplicities for a subset of the variables, i.e.,
those nodes and arcs that have low coverage. We noticed
more convergence issues on low coverage datasets when
sequencing errors are still present. We choose to use sub-
graphs of a reasonable size to determine the multiplicity
estimates on which node and arc removal is based. In the
final pass of Stage 3 it is most useful to use approximate
inference. Due to all the previous cleaning steps, a smaller
number of nodes and arcs remains (see Suppl.Table S1),
and we observe very good convergence properties of the
approximate inference algorithms. Moreover, the remaining
high multiplicity nodes are often more connected with each
other and more connections between nodes result in an
exponential increase in runtime by a higher factor. The
potential speedup by replacing exact by approximate in-
ference is thus much larger. Additionally, high multiplicity
nodes are harder to characterise correctly with inference on
subgraphs. We, therefore, believe the use of approximate
inference is most valuable in the final step of Stage 3 to
compute all multiplicities of remaining nodes and arcs.

5.2 The impact of non-convergence on the accuracy of
multiplicity assignments
Note how the convergence criterion (5) is formulated as a
maximum over the change in belief of all variables. Non-
convergence almost always means that the beliefs of a
small proportion of variables keep oscillating causing the
convergence criterion not to be fulfilled. However, the bulk

of the variable beliefs have converged already at this point.
Especially using the weight decay criterion, all parts of the
factor graph are successfully explored before the stopping
criterion is reached. Even in cases of non-convergence a
good accuracy can thus be reached. This is observed in our
results as well. In Section 3.3 approximate inference in the
Detox pipeline converged on 355 of 360 datasets. In datasets
with low sequencing depth, because of coverage gaps, the
de Bruijn graph can contain one main connected component
representing the bulk of the genome and additional small
connected components, disconnected from the main graph.
In these cases we build a CRF model for each connected
component. In 4 out of the 5 cases, non-convergence oc-
curred in a CRF model for such a small component, 500 iter-
ations were reached, but runtime remained short. The CRF
model for the main bulk of the de Bruijn graph did converge
successfully. As a result, only the beliefs for < 10 variables
did not converge, while all other beliefs did converge and
the total influence on the accuracy is thus minimal. In the
fifth case, non-convergence did occur in the CRF model
for the main component of the de Bruijn graph, but here
again this meant only the beliefs of around 20 variables kept
oscillating until 500 iterations were reached (total runtime
remained less than 1 minute), while all other beliefs had
converged. In all 5 non-convergence cases we, therefore, saw
no significant difference in accuracy in comparison with the
other 4 runs on datasets with the same parameters.

6 CONCLUSION

We presented a comparison of different Loopy Belief Prop-
agation message passing schemes for inference on CRFs
with higher order interactions that model a de Bruijn graph.
From this empirical evaluation we could conclude that the
Maximum Residual Update scheme with lookahead 0 sup-
plemented by weight decay ordering converges successfully
on CRF models for de Bruijn graphs of a broad range of
complexity. Besides guiding our own choice of message
passing scheme, we hope this overview can highlight the
advantages and disadvantages of using certain schemes on
CRFs with higher order interactions. We then used the best
performing message passing scheme to implement approx-
imate inference in the Detox pipeline such that we can use
a single CRF model to represent the entire de Bruijn graph.
Multiplicity estimates based on this model were more accu-
rate than the ones using inference on subgraphs. And, by
using approximate inference techniques our computations
were performed within reasonable time. The resulting de
Bruijn graph is an accurate representation of the genome
and can be used for accurate repeat resolution to obtain a
high quality assembly of the genome.
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