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Abstract—With over 16 million horses worldwide and
nearly 60 000 sport horses registered to the International Fed-
eration for Equestrian Sports database, tracking the activities
and performance of these equines is becoming an important
aspect in horse management. To perform this activity recog-
nition, inertial measurement units (IMUs) are often used in
combination with machine learning algorithms. These often
require large labeled datasets to be trained. To this end,
a data-efficient algorithm is proposed that requires only 3 min
of labeled calibration data. This is achieved by combining
supervised feature selection, using the tsfresh time-series
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feature calculation library and the Kendall rank correlation coefficient, with a distance-based clustering algorithm. The
generalizability performance of the algorithm is tested by evaluating on a dataset captured with leg-mounted IMUs and
on a dataset captured using a neck-mounted IMU. On both datasets, the algorithm achieved the accuracies of 95%,
comparable to state-of-the-art deep learning approaches, when calibrating and evaluating using the same horse. When
the algorithm was calibrated on data from multiple horses and evaluated on horses that were not in the calibration
dataset, a 15% drop in classification accuracy is observed. The proposed algorithm is compared with fully supervised
algorithms, such as convolutional neutral network, support vector machine, and random forest, in terms of accuracy
achieved with respect to the size of the labeled data using calibration. Our approach achieved accuracies that were
similar to these classical algorithms while only using 10%—-5% the amount of labeled data.

Index Terms— Classification, clustering, equine activity recognition, feature selection.

NOMENCLATURE
Xi, yi zi ith raw IMU acceleration sam-

ple along the x-, y-, or z-axis,
expressed in amount of g.

L Length of the dataset of one horse
consisting of the raw IMU samples.
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Mean vector norm of the dataset consist-
ing of the raw IMU samples.

ith normalized IMU acceleration
sample.

Number of concordant pairs in the cal-
culation of the Kendall rank correlation
coefficient.

Window length in a number of raw IMU
samples.

Number of discordant pairs in the cal-
culation of the Kendall rank correlation
coefficient.

Total number of items in the calculation
of the Kendall rank correlation coeffi-
cient.

Calibration dataset windows consisting
of all features calculated by the tsfresh
library.

Value of the kth feature of the ith win-
dow in the calibration dataset.
Calibration labels consisting of the
numerical class for every window in X.
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Y Numerical class label for the ith window
in X.

T Value of the Kendall rank correlation
coefficient for the kth feature in X.

K Total number of features calculated by
tsfresh and thus present in X.

N Number of most significant features our
algorithm will select.

F List containing the N most significant

features, selected by our algorithm.

X’ Calibration dataset X in the reduced
feature space consisting of the features
in F.

a Variable indicating a certain class label
O, 1, 2, or 3).

X! . ith window of the subset of the calibra-
tion dataset X’ that only contain win-
dows belonging to class a.

N, Total number of windows present in the
calibration dataset of class a.

C, Cluster centroid of class a.

S New, unseen, window that needs to be
classified by our algorithm.

Si Value of the kth feature of window S.

Cyux Value of the kth feature of the cluster
centroid belonging to class a.

[. INTRODUCTION

HE global equine industry consists of over 16 million

horses and employs more than 1.6 million full-time
workers, and the total yearly revenue of this growing sector is
upward of 270 billion dollars [1]. A big part of this revenue
comes from the sale of top sporting horses, with some of these
horses being sold for prices upward of 10 million dollars [2].
Next to and maybe even more important than the clear
financial aspects of the equine industry is the large emotional
value of the horses to their owners. Thus, making sure that
the horses are healthy and happy is an important aspect in
horse management. Being healthy and happy, however, is not
the only aspect of the horse that is being closely monitored,
with nearly 60000 sporting horses being registered to the
International Federation for Equestrian Sports databases each
year, and tracking the performance and training sessions of
these sporting horses plays an important part in their training
routines [3].

To perform this activity tracking for horses, just like with
human activity recognition, a variety of sensor systems can be
used. The first type of sensor that comes to mind for tracking
horses is a global position system (GPS) system; however,
these come with some drawbacks such as poor accuracy (in
the order of a few meters), high energy consumption, and
their inability to work in an indoor or covered environment.
To this end, inertial measurement units (IMUs), consisting
of accelerometers and gyroscopes, are being widely used for
health monitoring and activity recognition tasks [4]. These
work both indoors and outdoors and consume very little energy
(in the order of 1.5 mW at a sampling rate of 25 Hz versus
165 mW for GPS [5], [6]). For animal behavioral analysis, they

have already proven their worth by achieving the classification
accuracies of 94% on a dataset consisting of data from a neck-
collar-mounted IMU [7]. The dataset included data from four
different gaits (standing, walking, trotting, and canter) and
eating behavior. They also have shown to be a useful asset
in combination with unsupervised deep learning to detect the
onset of parturition in horses [8].

When using IMUs, the output of the sensors is a time-series
consisting of triaxial acceleration and rotation, so an algo-
rithm is required to interpret this data stream. While clas-
sical algorithms and statistics, such as time-series analysis
and goodness-of-fit tests, have proven to work for this task,
they lack generalization toward different species or sensor
locations, requiring lots of manual effort and tweaking to
adjust the algorithms for these different scenarios [9]. One
way to solve this is by using supervised deep learning
algorithms that make use of convolutional neural networks
(CNNs) [10], [11]. However, these require massive labeled
datasets to train, with hundreds of thousands of windows
for different species and sensor locations. To reduce the
need for this labeling effort, research is being directed
toward more data-efficient classification algorithms and tech-
niques, for supervised, semisupervised, and unsupervised
approaches.

This article proposes a supervised classification algorithm
that, given very few labeled samples, can classify the four
basic gaits of horses (stand, walk, trot, and canter) with
state-of-the-art accuracy. The algorithm requires only 3 min
of labeled data to calculate its parameters without machine
learning training while still obtaining accuracies comparable
to classical fully supervised models such as CNNs specifically
designed for equine gait detection and support vector machines
(SVMs). The algorithm is designed by combining supervised
feature selection, using the tsfresh time-series feature calcu-
lation library [12] and the Kendall rank correlation coeffi-
cient [13], with a distance-based clustering algorithm. This
library can calculate 77 different time-series features, some of
which can be tweaked using several parameters, bringing the
total amount of features to 794. A more in-depth overview of
this step is given in Section III.

The main contributions of this article are given as follows.

1) We propose a supervised classification algorithm that
does not need to be trained for detecting the gait of
horses and that requires just a couple of minutes of
labeled data to achieve 95+% classification accuracy.

2) We evaluate the generalizability of our approach in terms
of sensor location by evaluating the proposed algorithm
performance on a leg-mounted IMU dataset and on a
neck-mounted IMU dataset.

3) We discuss and compare individual and global
approaches, where the individual approach corresponds
to an approach designed specifically for an individual
subject, while the global approach works for all subjects
of the same species.

4) We discuss and compare the performance of the pro-
posed algorithm with respect to several variations of
input data, i.e,, sampling rate, classification window
length, and number of sensors used.
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5) We compare the proposed algorithm to different fully
supervised approaches, such as random forest (RF),
SVM, and CNN, in terms of accuracy achieved per
number of labeled samples used during the training and
calibration phase.

The rest of this article is structured as follows. Section II
discusses the related work and Section III describes the system
design and the used datasets. Section IV describes the details
of the algorithm in terms of: 1) feature selection; 2) cluster
mapping; and 3) classification. Section V presents the results
in terms of: 1) individual-based models; 2) impact of number
of sensors; 3) impact of window length and sampling rate;
4) impact of senor location; 5) global model; and 6) com-
parison with classical machine learning approaches. Finally,
Section VI concludes this article. In addition to concluding
this article, Section VI offers the directions for future research.

[1. RELATED WORK

Currently, two approaches exist for performing animal activ-
ity recognition using data from IMUs: 1) classical approaches
and 2) data-efficient approaches that use a different, more
compact, representation of the input data. Classical approaches
make use of end-to-end deep learning classifiers such as dense
neural networks and CNNs directly on the input data. Data-
efficient approaches combine feature extraction, either manual
or automatic, with classic machine learning algorithms such
as SVM or K-nearest neighbors.

Using deep learning for equine activity recognition has been
shown to yield an accuracy higher than 90%, by using a CNN
where the convolutional layers automatically learned relevant
features from the input data. These self-learned features were
used by a couple of dense layers to perform the actual
classification [14]. Using a cross-modality interaction network
and a class-balanced focal loss researchers also managed to
achieve 90% accuracy and an Fl-score and precision of both
79% on an unbalanced dataset of both accelerometer and
gyroscope data [15]. By using a bidirectional long short-term
memory (Bi-LSTM) the need for feature learning/extraction
is trained on data collected from the IMU of a smartphone,
researchers have managed to achieve a macro average of
94% [16]. However, while often leading to the best results
in terms of accuracy and precision, classical deep learning
requires massive labeled training datasets, with multiple hours
of data, to achieve good performance. The need for large
datasets can partly be reduced by generating pseudo labels
using a clustering algorithm such as K-means, and this has
already shown to be successful for the case of human activity
recognition based on trajectory information [17].

To reduce the need for large labeled datasets, automatic fea-
ture learning, as is done in a CNN, can be replaced by manual
feature extraction. Here, humans will look into the data and
manually select the best features to be used for classification.
By combining this approach of manual feature extraction with
a supervised classifier, researchers have managed to achieve
90+ % accuracy with only a fraction of the amount of labeled
data required to train a CNN [18]. However, this technique
requires strong domain knowledge as well as trial-and-error
to find which features and parameters work best, making it

nontrivial to transfer a model that was trained for one use
case to another.

Researchers have tried to combine the benefits of the
automatic feature extraction from CNN with the data efficiency
of manual feature extraction. By combining representation
learning with an SVM for classification, they managed to
achieve an Fl-score of 80% for equine activity recogni-
tion [19]. The input features to the SVM were the latent
variables of a sparse autoencoder that was trained using an
unlabeled dataset. The SVM was then trained using these
latent features with just 250 labeled samples. By combining
the automatic feature learning abilities of autoencoders with a
clustering objective, this approach could even be made fully
unsupervised, requiring no labeled samples at all, as is shown
by the deep embedded clustering (DEC) algorithm [20]. The
main drawback of this approach is that it can be difficult to
optimize and fine-tune, depending on the dataset and problem,
especially when the initial clustering contains overlapping
clusters or clusters have little space in between them.

There exists also a middle ground between fully automated
feature learning using autoencoders and the manual feature
selection approach. By using a feature calculation library
such as tsfresh [12], hundreds of different features can be
automatically calculated. A more recent proposal focused
on the scalability of the feature extraction process for large
amounts of long multivariate time series [21]. By using an RF
to then perform feature selection, researchers have achieved
good performance using tsfresh on human activity recognition
tasks [22]. Another study used a combination of tsfresh and
an SVM to perform the classification of human tasks based
on inertial information captured by smart glasses [23]. Outside
of activity recognition, the library has been used for the task
of handwriting recognition using wearable sensors, achieving
98% classification accuracy for the 26 characters in the Latin
alphabet [24].

Table I gives an overview of the related work in the field
of animal activity recognition in terms of model type used,
input type (raw input features or manually extracted features),
achieved accuracy, and total length of the dataset in terms of
seconds of labeled data. In contrast to classical approaches,
our work achieves similar accuracies, upward of 95%, but
only requires a fraction of the labeled data. Our proposed
approach also achieves higher accuracies than the already
existing data-efficient approaches with similar amounts of
labeled data while requiring no manual feature extraction.
The final benefit of our work is the lack of computationally
expensive machine learning and deep learning algorithms, thus
requiring fewer resources than the existing methods.

I1l. PIPELINE AND DATA DESCRIPTION
AND PROCESSING

A. Pipeline

In this section, we first present classical deep learning
pipeline and then the proposed data-efficient classification
pipeline for equine activity recognition. With classical deep
learning approaches, as shown in Fig. 1(a), the process for
creating a performant activity recognition model starts with
collecting a large representative dataset containing samples of
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TABLE |
COMPARISON WITH RELATED WORK, OUR WORK REQUIRES NO MANUAL FEATURE ENGINEERING, REQUIRES ONLY 200 s OF LABELED DATA
WHILE ACHIEVING ACCURACIES THAT ARE SIMILAR TO NON-DATA-EFFICIENT APPROACHES

Paper Species Model type Feature extrac- | Accuracy | Labeled data du-
tion ration

Classical approaches

A. Eerdekens et | Horse CNN Automatic 99.60% 633 000 seconds

al. [14]

A. Mao et al. [15] Horse CNN Automatic 93.37% 116 000 seconds

J. W. Kamminga et | Goat / sheep DNN Manual 94% 44 000 seconds

al. [7]

S. Lugian et al. [22] | Humans RF Automatic 89% 28 000 seconds

H.B. Davidsson er | Horses Bi-LSTM Automatic 94% 17 000 seconds

al. [16]

M. Raychoudhury et | Humans SVM Automatic 87% /

al. [23]

Data efficient approaches

M. Rana et al. [17] | Humans Clustering + CNN Manual 88.5% 6000 seconds

E. Casella ef al. [18] | Horse SVM Manual 91% 135 seconds

J. W. Kamminga er | Horse / goat / sheep | Autoencoder + | Automatic 80% 250 seconds

al. [19] SVM

This work Horse Feature selection + | Automatic 95 % 200 seconds
clustering

Full dataset
labeling

Large-scale
data collection

Training

Deployment Inference

(a)

Calibration =——p Deployment ——Pp Classification

(b)

Fig. 1. Comparison between a classic deep learning pipeline for activity
classification and our proposed pipeline. (a) Classic deep learning
pipeline. (b) Data-efficient classification pipeline (this work).

the classes that we want to classify. This dataset then will need
to be labeled manually, creating a sample-to-activity mapping.
This labeled dataset is used to train a deep learning model until
the required accuracy is reached. This trained model is then
deployed in the field and used for the real-time classification
of activities.

In this article, we introduce an algorithm that replaces the
large-scale data collection, full dataset labeling, and training
with one simple calibration step, and a graphical overview
of this approach is shown in Fig. 1(b). The calibration step
comprised of four steps: 1) 2—4 min of data collection for
each activity; 2) feature extraction using the tsfresh library;
3) selecting the most relevant features using the Kendall rank
correlation coefficient; and 4) cluster mapping.

B. Dataset Description

Two different datasets were used during this study: one
captured by Ghent University using leg-mounted IMUs and
one open-source dataset consisting of data from a single neck-
mounted IMU [25].

The leg dataset consists of data captured from 13 horses that
were boarded at two stables, this amount of horses exceeds or
closely matches the amount of horses used in other similar
studies, and the number of subjects used in the studies shown
in Table I ranges from 2 to 18 horses. The data consist of
a mixture of ridden and longed horses. Off-the-shelf three-
axis logging accelerometers (Axivity AX3 [26]) were used
as IMU. They were configured to capture data at a sampling
rate of 50 Hz and with a range of £16g. Each horse was
equipped with two IMUs, one for each of its front legs. The
internal clocks of both IMUs were synchronized so the data
from them could be easily combined. They were attached
using Velcro to the outside of a pair of front tendon boots.
The average length of the dataset per horse was 24 min,
bringing the total dataset size to 13 x 24 = 312 min, or just
over 6 h.

The neck dataset contains data of 18 horses, from which
11 were labeled. From these labeled horses, seven contained
more than 5 min of data for each of the four gaits. Therefore,
seven horses were used during our evaluation experiments. The
IMUs were attached to the horses using neck collars and were
configured to capture data at 100 Hz. To make the comparison
between the leg and neck data fair, we resampled the neck data
down to 50 Hz. In total, the neck dataset contained over 3 h
of data per horse on average, with a total dataset size of just
over 23 h.

Fig. 2 gives a visual indication where each sensor was
placed. In Table II, an overview is given of the total amount
of data present in both datasets for each of the four gaits of
interest.

In Fig. 3, a visualization is given of a 2-s output window
for the leg-mounted accelerometers for stand, walk, trot, and
canter.
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Fig. 2. This picture indicates all three locations on the body of the horse
of the IMUs that were used in this article.

TABLE Il
TOTAL DURATION FOR EACH GAIT PRESENT IN BOTH
THE LEGS AND NECK DATASET

Legs

Type Total duration | Average duration per horse
Stand 20.3 min 1.6 min
Walk 115.2 min 8.9 min
Trot 97.0 min 7.5 min
Canter 48.4 min 3.7 min
Neck

Type Total duration | Average duration per horse
Stand 84.5 min 12.1 min
Walk 724.1 min 103.3 min
Trot 535.8 min 76.6 min
Canter 50.4 min 7.2 min

C. Dataset Processing

To reduce the bias introduced into the datasets by differ-
ences in height and build of each horse, we applied normal-
ization to both the leg and neck datasets for each individual
horse. Because the data consisted of 3-D acceleration vectors,
we opted for vector normalization. To do this, we calculated
the mean vector norm over all data of each individual horse,
as shown in the following equation:

L
- 1
1Al =7 2 P +07+2f (1)
i=1

where x; indicates the acceleration value along the x-axis of
the ith IMU sample, the same description applies to y; and z;,
and L is the total number of IMU samples captured for each
horse. Nomenclature contains an overview and description of
all variables used in this article.

We then divided each axis of the 3-D acceleration vector
by the mean vector norm

B= e = s = S ®)
Al Al Al

In this way, the average vector norm of each horse after

normalization is 1.

8 Stand (left leg)

Stand (right leg)
— X
y

z

Acceleration (g)
o
N < X
Acceleration (g)

Time (s) Time (s)

8 Walk (left leg) Walk (right leg)

Acceleration (g)
Acceleration (g)
=

o Ak e

! o
8 Time (s) Time (s)
8 Trot (left leg)

Trot (right leg)

Acceleration (g)
& o
Acceleration (g)

Time (s)

‘ Time (s)

Canter (‘Ieft leg)
I |
| | |

|

Canter (right leg)

Acceleration (g)

Acceleration (g)
: o

| 1 N
20 00 1.0 2.0
Time (s)

10
Time (s)

Fig. 3. Example output window of the IMU for each of the four gaits,
consisting of the acceleration along all three axes for both legs.

Once we have normalized each dataset, we split it up
into windows of a fixed length W, and the length of these
windows depended on the experiment being performed and
ranged from 1 to 5 s, as this has already proven to be a
useful range for the classification of equine activities [14].
After normalizing each dataset of L samples and splitting it
into windows of length W, the total number of windows for
each dataset is L/ W where each window now consists of three
windows, each of length W, one for each axis.

With the data normalized and divided into fixed-length
windows of length W, we can calculate the time-series fea-
tures using the tsfresh library. This calculates 77 features for
each axis of every window. Many of these features are also
calculated using different parameter values and combinations,
bringing the total to 794 features for each axis of every win-
dow. This is shown in Table III. Given that each accelerometer
has three axes and we have either 1 or 2 of these sensors per
horse, depending on the dataset, the total number of calculated
features per window comes to 4764 features (3 2 x 794) for
the legs dataset with two IMUs and 2382 features (3 x 794)
for the neck dataset with just one IMU. An overview of
the calculated features with some examples can be found in
Table IV. A full overview of all extracted features and which
parameters are used can be found on the tsfresh documentation

page.!

IV. ALGORITHM

In this section, we present the proposed algorithm in
three steps: 1) feature selection; 2) cluster mapping; and
3) classification.

A. Feature Selection

Before using this high-dimensional data, consisting of
794 features per axis, as the input to our clustering and

1 https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
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TABLE IlI
GRAPHICAL REPRESENTATION OF THE TSFRESH FEATURE CALCULATORS HIERARCHY

77 feature calculators

794 features

autocorrelation

lag =0
lag =1

[fit_aggregated

aggtype = centroid
aggtype = variance

tsfresh library

range_count

min = —1, mazx =1
min = 0, maz = 10'2

TABLE IV

OVERVIEW OF THE FEATURES THAT ARE EXTRACTED BY THE TSFRESH LIBRARY
Type Features
Statistics Minimum, maximum, mean, standard deviation,. ..
Shape Length, trend, number of peaks, skewness, symmetry, ...
Frequency | CWT coefficients FFT coefficients, FFT statistics, ...
Entropy Binned entropy, FFT entropy, permutation entropy, ...
Other Autocorrelation, C3 non-linearity, Friedrich coefficients, ...

classification algorithm, we must first reduce the number of
features. This should be done to avoid the curse of dimension-
ality, in which the volume of the search space for the clustering
algorithm increases exponentially as the number of dimensions
increases [27]. To reduce the amount of dimensions, a feature
selection technique is applied that uses the Kendall rank
correlation coefficient to indicate the significance of each
feature to the classification labels [13].

The Kendall rank correlation coefficient t is calculated as
follows:

r=2_ 3)

where n. stands for the number of concordant («, 8) pairs,
ng stands for the number of discordant («, B) pairs, and n
is the total number of («, B)-tuples. We call a pair («;, 8;)
and (oj, B;) concordant if either o; > a; A B; > B; or
a < aj A B < B holds. Otherwise, we call the pair
discordant. A visualization of this concept is given in Fig. 4,
where green points and red points indicate all points that are,
respectively, concordant and discordant with («;, B;). In our
use case, this translates as follows. First, we have to translate
our labels to numbers; we use 0 for standing, 1 for walking,
2 for trotting, and 3 for cantering; and we call the vector
containing all numerical labels for the windows used during
calibration as Y. Y; is then the numerical label (0, 1, 2,
or 3) corresponding to the ith window for each axis. The
vector containing all features for every window used during
calibration is named X. Here, X;; indicates the kth feature
of the ith window. For each feature, we calculate the number
of concordant and discordant pairs as given in the following

® Concordant
® Discordant .

Fig. 4. Visualization of the concept of concordant and discordant pairs
with respect to the point (o}, 5;).

equation:

concordant; p = (X;x < X ) A (Y; <Y}))
V((Xik > Xji) N Yi > Yj)) “4)

discordant; y = ((X;x < Xj 1) A (Yi > Yj))
V(Xix>Xjo)AT <Yp). (S
Once the number of concordant and discordant pairs is
calculated for each feature, it can be used to calculate the

feature significance with respect to the labels. How close the
value of the calculated Kendall rank correlation coefficient tj
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Algorithm 1 Algorithm to Compute the Kendall Tau Coefficient

Input:

o X: list of all features calculated using tsfresh for every window of each axis in the calibration dataset

o K: Total number of features present in X.

¢ Y: list containing the numerical labels for every window in the calibration dataset.

o N: number of features to select.
Output:
o F: List containing the N most significant features.

Step 1: Calculate the Kendall Tau coefficient and corresponding p-value for every feature using the calibration

dataset
for k in 1..K do
ne=0
ng=0
fori=1..]X|do
for j=i+1.]X]|do

‘ ne+ =1
else
Lnd—i—:l
ne —nq
"= =1

2
| pr = CalculatePValue (1),

if (Xix < XjpenNYi <Y))Vv(Xir>XjrAY; >Y;) then

Step 2: Select the N features with the lowest p-value as F.

for a feature k is to zero indicates the correlation between the
feature k and the labels Y;, with a value of zero indicating
no correlation at all. The higher (lower) t; is, the more
positively (negatively) correlated the corresponding feature
is to the label. To use the value of t; for feature selection
purposes, CalculatePValue implements a normal approxima-
tion statistical test, where 7z = (0 means no correlation
between the feature and the labels and is picked as the
null hypothesis [28]. A low p-value for this test indicates
a low probability of observing the obtained results if the
null hypothesis was true. In other words, a low p-value
indicates a high probability of correlation between the fea-
ture and the labels. A simple algorithm of this approach
for feature selection can be found in Algorithm 1. For the
actual calculation of these values, we used the implementation
from the target_real_feature_real_test function in the tsfresh
library.

B. Cluster Mapping

To perform the actual classification in this reduced feature
space consisting of just the selected most significant features
F, we used a simple clustering algorithm that does not require
a training phase. Before applying this clustering algorithm,
we first standardized the selected features using the Z-score,
and this brings each feature to a mean value of 0 and a
standard deviation of 1 [29]. During calibration, the centroids
are calculated for every gait class a € {0, 1,2,3,4} in Y. The
equation for calculating these cluster centroids is given in the

following equation:

|
Ca= 72 Xai (6)

4 =1
where N, corresponds to the number of windows for the ath
class, X’ is the calibration dataset X in the reduced feature
space consisting of features F, and X;’i is the ith window
in the subset of X’ that only contains windows of class a.
Algorithm 2 shows the clustering initialization step of the

calibration phase of our algorithm.

C. Classification

When a new window S, containing W accelerometer sam-
ples of an unknown equine gait, needs to be classified,
we calculate the Euclidean distance between the window and
each cluster centroid in feature space F and assign the window
to the class of the closest cluster centroid (7). The equation to
find the numerical class a that belongs to the cluster centroid
that is closest to the window § is shown in (8). In Fig. 5,
a visualization of this approach is given. S indicates the new
window that needs to be classified, and C, indicates the
centroids of each label cluster. As C; is the closest cluster
centroid to this sample, based on the Euclidean distance, it is
assigned to the class that corresponds to Cj

|F|

D (S — Can)? (7)

k=1

d(s,Cy) =
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Algorithm 2 Algorithm to Calculate the Cluster Centroids for Every Gait Class in the Calibration Dataset

Input:
o X’: Calibration dataset in feature space F.

« Y: list containing the numerical labels for every window in the calibration dataset.

Output:

e C4: Location of the cluster centroid in feature space F for every class a that is in Y.

for a in unique (Y) do
for k in F do
1 X0kl o)

L Cak = ——2i=1 Xix

B

Y Cluster centers
a New sample

7

Feature 2

Feature 1

Fig. 5. Visualization of the classification algorithm.
a = argmin d(S, C,). ®)
a

The proposed data-efficient algorithm is less complex com-
pared to classical machine learning algorithms such as CNN,
SVM, and RF because it does not require model training and
it only requires 3 min of labeled data while still achieving the
same level of performance.

V. RESULTS

For evaluation of our approach, we used both an individual
approach and a global approach. For the individual approach,
we divided the dataset of each individual horse into a cal-
ibration dataset containing a few labeled windows and the
evaluation dataset containing the remaining data. We then used
the labeled windows from the calibration dataset to select the
most relevant features and assign the cluster centroids. Thus,
each horse has its own unique parameters derived from its own
individual calibration dataset. For this approach, we present the
results for the impact of: 1) number of labeled windows used
and number of features used (Section V-A); 2) using the full
x, y, and z signal for calculating the tsfresh features or using
an aggregated version using the vector norm (Section V-B);
3) the window length and sampling rate (Section V-C); and
4) number and location of the sensors (Section V-D). For

the global approach, we split the entire dataset into a part
containing horses used for calibration and a part containing
data from horses for evaluation. In this way, the algorithm’s
parameters are set using data from horses in the calibration
dataset and the evaluation dataset consists of data from horses
that are unseen by the algorithm. For the calibration and
evaluation, we always used 5-s windows resampled down
from the original 50 to 10 Hz unless otherwise stated. During
calibration, we used ten labeled windows per class and
selected the top 100 most relevant features unless otherwise
stated as these values have shown to be where the performance
of the algorithm is reaching a maximum (Section V-E). Finally,
we also compared this global approach with several classical
approaches such as SVMs, RFs, and CNNs (Section V-F).

A. Individual-Based Models

First, we looked at the influence of the number of selected
features and the number of labeled samples used in the
algorithm had on the accuracy of our approach. To do this,
we selected different amounts of labeled windows per class
for each horse to use during calibration. All other data for
that horse is then used as validation data and was unseen by
our algorithm.

In Fig. 6, we plotted the mean accuracy and minimum and
maximum accuracies over all 13 horses with respect to the
number of features that were selected and that thus were
used for the clustering algorithm. For this step, we set the
number of labeled windows per class that were used for each
horse fixed to ten samples. We can clearly observe that at
around 25 selected features, a peak is reached, after this the
accuracy drops off again but reaches a stable plateau of 95%
at 75 selected features. The peak at 25 with a subsequent
small drop in accuracy could be attributed to the curse of
dimensionality as the cluster becomes more sparsely populated
as the number of dimensions increases.

Fig. 7 shows how the accuracy corresponds to the number
of labeled windows per class used to find the most relevant
features and calculate the cluster centroids. For this evaluation,
we fixed the number of selected features at 100. Here, the
accuracy reaches the plateau of 95% accuracy at just five
labeled windows per class. This indicates that for the individ-
ual models, an accuracy of 95% can be achieved while only
requiring five labeled windows per class and thus 20 labeled
windows in total because of the four gait classes that are used.
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Fig. 6. Accuracy range and mean in a function of number of selected
features (one model per horse, 10-Hz sampling rate, 5-s window length,
and ten labeled windows per class).
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Fig. 7. Accuracy range and mean in a function of number of labeled
windows per class used for calibration (one model per horse, 10-Hz
sampling rate, 5-s window length, and 100 selected features).

With each window consisting of 5 s, this results in a calibration
dataset size of 100 s.

As the dataset contains a slight imbalance between the
four different gait types, we also calculated the balanced
accuracy [30]. The formula for this balanced accuracy is given
in (11). For a configuration of ten labeled windows per class
and 100 selected features, this balanced accuracy was 96.8%

TP
TPR = ———— ©)
TP 4+ FN
TN
TNR= —— (10)
TN + FP
TPR + TNR
balanced_accuracy = — (11D

B. Impact of Number of Sensors

To reduce both the equipment cost and the computational
cost, it could prove beneficial to use data from only one sensor
attached to one leg instead of one sensor attached to each of
the two front legs. Another adjustment that could prove useful
for further reducing the computational cost of the algorithm
could be using the acceleration vector norm instead of the
three separate x, y, and z acceleration values. To calculate
this vector norm, we use (1), and this reduces the amount of
data by a factor 3 as the values for each of the three axes
are now replaced with just the singular vector norm value.
In Fig. 8, a boxplot is given that compares the performance of
using data from both legs to using data from only one leg, for
both the full x, y, and z data or using the acceleration vector
norm. From this figure, it is clear that using the acceleration
vector norm instead of the full acceleration results in a wider

100%

1

80%

|

@%

70%

Accuracy (%)

60%

50%

XYZ L XYZ R XYZ both Norm L Norm R Norm both

Fig. 8. Accuracy range for models using one leg or both legs and also
for models using either the raw XYZ inputs or the acceleration vector
norm.

range of accuracy values; however, the median accuracy over
all 13 horses remained similar. For one leg versus two legs,
we can also note a small difference in range between the
different accuracies, with the one-leg approach resulting in
a larger range of values. We can thus conclude that, when
the highest achievable accuracy is required, using the full xyz
vector and a sensor on both legs is recommended. However,
when the cost of the system and battery life constraints become
an issue, it might prove beneficial to take an accuracy penalty
of 5%-10% and only use a sensor on one leg and/or use the
vector norm instead of the full xyz vector.

C. Impact of Window Length and Sampling Rate

Fig. 9 shows two confusion matrices, Fig. 9(a) shows the
results for the two legged approach, and Fig. 9(b) shows the
one results for the one-leg approach. The values for the one-leg
approach are obtained by taking the average of the accuracies
for both the left and the right leg. In these confusion matrices,
the average accuracies are given for all 13 horses, using the
individual model approach, when we vary both the sampling
rate and the sample window length. For both one and two
legs, it can be seen that when either the window length or
the sampling rate is increased, the accuracy increases as more
data become available to the model. However, this increase in
accuracy also has an impact on the computational cost of the
algorithm. Our time series will increase in size as the sampling
rate increases, as more xyz acceleration samples get added per
unit of time with a higher sampling rate. This will increase
the computational cost of the feature calculators. When we
increase the window length, we will also increase the size of
our time series, but we will also perform fewer classifications
as there will be more time between the subsequent windows.
This could be either positive for the computational cost or
negative, depending on whether the reduced cost of fewer
classifications per unit of time outweighs the added cost of
longer windows to the feature calculators. In order to achieve
the best results, we can observe that a minimum of 3-s
windows and a 10-Hz sampling rate are required.

D. Impact of Sensor Location

To evaluate the generalization ability of our proposed
algorithm, we also evaluated our approach on a publicly
available dataset containing equine activities captured by a
neck-mounted IMU. This dataset contained labeled data of
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Fig. 9. Heatmap showing the impact of the sampling rate and window
length on the accuracy for both a model using both legs and a model
using only one leg. (a) Accuracies of a model that uses both legs for
different window lengths and sampling rates. (b) Accuracies of a one-leg
model for different window lengths and sampling rates.
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Fig. 10. Boxplot of the accuracy of a neck-mounted sensor and leg-
mounted sensors.

11 horses, but only 7 were used in this study as the other
four lacked sufficient data for all four gaits. We subsampled
both the neck and leg dataset down to 10 Hz and used 5-s
windows, as Section V-C has proven that this will give us
a very high accuracy while still limiting the computational
time in comparison to using the full 50-Hz signal. In Fig. 10,
we show the boxplots for the accuracies over all horses in each
of the two datasets. It can be seen that the average performance
is similar for both datasets. However, the dataset containing
leg data has a larger range of accuracy values over all horses,
whereas on the neck dataset, our approach performs similarly
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—— Individual models
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Fig. 11. Average accuracy of a global model and the average accuracy
of one individually trained model per horse in terms of number of
selected features.
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Fig. 12. Boxplot of the accuracy of a global model and one individually
trained model per horse.
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Fig. 13.  Confusion matrix showing the mean accuracies of the global
model for the four different types of gait.

stand

over all horses. Intuitively, we would suspect that the legs
would give much better information for detecting the gait of
the horse in comparison to the neck. This unexpected result
could be attributed to the fact that there are fewer usable horses
in the neck dataset, and evaluating on this dataset thus will
correspond less to a general dataset or to the quality of the
data and the labeling itself.

E. Global Model

The drawback of using an individualized approach where
each horse has its own parameters is that these parameters
need to be recalibrated every time a different horse needs to
be tracked. A solution to this would be to find parameters that
work for all horses. To evaluate this global model approach,
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Fig. 14. Overview of the selected feature types per horse, color indicates the base 10 log of the p-value of the average feature significance.

we used threefold cross validation where we split the entire
13 horses leg dataset into threefold each containing 2/3 of
the horses for calibration and 1/3 of the horses to evaluate
our approach on. To select our subset of labeled windows
for feature selection and clustering, we shuffle all windows
from the calibration dataset and randomly select the samples
from this shuffled dataset containing data from several dif-
ferent horses. To further evaluate the stability of this global
approach we performed ten iterations for each fold, so in total,
we performed 30 calibration and evaluation runs.

In Fig. 11, we plotted the average accuracy with respect to
the number of selected features for both the individual and the
global approach. In Fig. 12, a boxplot is given showing
the spread of the accuracy values for both approaches over
all runs. From these graphs, it is clear that trying to find a
global model will result in a drop in performance, with a
lower average accuracy as well as a lot more variation in the
performance of the model over different folds and iterations.
These results indicate that no general parameters that would
work for all horses could be found by our algorithm and
thus no general model that only needs to be calibrated once
and can subsequently be used for all horses exists with our
algorithm.

When we look at the confusion matrix in Fig. 13,
we observe that almost all wrong classifications by this global
model occur for the trot and canter classes.

To investigate why this difference in performance between
an individual and a global approach occurred, we looked
at what classes of features got selected for each horse in
the individual approach. A small overlap in selected features
between different horses might indicate that the most ideal
features are highly horse dependent, making a global set of
optimal features difficult to obtain.

In Fig. 14, we plotted the average p-value of the Kendall
rank correlation coefficient for each class of features selected
for every horse when we select the 100 most relevant features.
From this, we can see that for the first seven horses, there
is a strong overlap between the selected features and all
features have very low p-values, indicating a strong correlation
between the features and the labels. However, for the other
six horses, we notice less overlap between the features and
also significantly higher p-values, indicating less correlation
between the features and the labels. As the data for the first
seven horses were captured at a different day and location as
the data from the other six horses, this difference could be
attributed to a difference in data or labeling quality. When we
look at the boxplot for a global approach in Fig. 15, we can see
that is intuition is correct as the accuracy when we calibrate
and evaluate on horses 7—12 is significantly lower than when
we calibrate and evaluate using horses 0—6. To further find
out what caused this difference in performance, we plotted the
data distribution for the trot and canter class for both groups of
horses using boxplots. This is shown in Fig. 16, and it is clear
that the distributions between both groups are significantly
different. The difference in performance between both groups
and the inability to find global parameters for all horses in
our dataset indicates that our approach is very sensitive to
small perturbations of the data. Special care should thus be
taken during data capturing to make sure that both training
and evaluation data are captured in exactly the same manner
and follows the same distribution.

F. Comparison With Classical Machine Learning

Finally, we compared our data-efficient approach with dif-
ferent classical machine learning classifiers: an SVM, an REF,
and a recent, state-of-the-art, CNN developed specifically for
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Fig. 15. Boxplot of the accuracy of a global model for horses 0-6 and
horses 7—12.
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Fig. 17.  Comparison of the accuracy of several machine learning
techniques with respect to the number of labeled samples per class
used during training and calibration.

equine gait detection [14]. For the RF 100 subtrees and the
Gini impurity, a selection criterion was used. For the SVM
classifier, the radial basis function kernel was used.

Fig. 17 plots the accuracy curve for all four approaches,
using an individual approach, with respect to the number
of labeled windows per class used during the training and
calibration. From this, it can be seen that our approach has an
edge on the other models up to around 40 labeled windows
per class when the CNN starts outperforming it. The RF and
SVM, however, do not achieve equal or higher performance
than our approach in the 1-100 labeled samples per class range
that was evaluated.

Fig. 18 shows the same type of graph but now for a global
approach instead of the individual approach. For the global
approach, it can be seen that our approach only outmatches
the other models up to five labeled samples per class. This lies
in line with what already was discovered earlier, our approach
has difficulty with finding parameters that work for all horses
in the dataset.
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Fig. 18.  Comparison of the accuracy of several machine learning
techniques with respect to the number of labeled samples per class
used during training and calibration.

VI. CONCLUSION

In this article, a data-efficient solution for equine gait
detection is proposed, which uses a combination of super-
vised feature selection and a supervised clustering approach.
By making use of the tsfresh Python library, containing close
to 800 feature calculators and combining it with the Kendall
rank correlation coefficient, a supervised feature significance
test, the need for both automated feature learning through
neural networks, or the need for manual feature engineering
was removed. This eliminated the need for domain expertise
as well as complicated parameter optimization and tuning,
as is required for feature engineering and deep learning. This
approach managed to achieve accuracies that were similar to
classical machine learning algorithms such as CNNs, SVMs,
and RFs while only requiring a fraction of the labeled data to
train/calibrate. We also proved that our approach could easily
be adjusted for different sensor locations, such as when the
sensor is placed on the neck of the horse. How the performance
of the approach changes when the dimensionality of the input
data is reduced by only using the vector norm or just one leg
instead of two legs was also investigated, and the different
average accuracies over a combination of sampling rate and
classification window sizes were also shown. However, the
drawback of this approach is that the most optimal parameters
in terms of selected features and cluster centroid locations
differ from horse to horse. To this end, these parameters should
be set for each horse individually, a potential time and labor-
intensive job. When we attempted to find global parameters
that could work for a variety of different horses, we noticed a
15% drop in average accuracy as well as a much wider range
in terms of stability over different iterations and horses. When
we further investigated this behavior, we noticed a difference
between both which feature classes got selected as well as
in the p-values of the selected feature classes between the
first six and last seven horses in the dataset. Diving deeper
into the data, we observed a significant difference in the data
distribution between the two groups of horses. As these came
from two different locations and days, it could be that this
occurred due to slight differences in the mounting procedure
of the accelerometers. This result showed that while our
approach achieves good performance, matching or surpassing
other methods, it is very sensitive to small perturbations in the
data used.

Further research should focus on finding improvements to
increase the performance and stability of the approach when
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calibrated and evaluated over multiple different horses. This
could be either done by investigating and increasing the data
quality and/or further enhancements to the algorithm, either by
replacing or improving upon the clustering algorithm using
deep learning, or by improving on the calculated features
by extending them with learned features through the use of
either autoencoders or CNNs. Another track could be to find
optimizations to the individual calibration phase, and one
possible optimization could be to calculate and select the most
relevant features using a large calibration dataset and only
using data from individual horses to find the cluster centroids
for each class.
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