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Abstract—Multiscale thermal analysis in integrated systems
is required for capturing both device-level and circuit-level
dynamics. Traditional analysis with finite element (FE) models
can be accelerated by using machine learning (ML) methods.
In this paper a performance benchmarking between three ML
methods for thermal simulation is carried out: Artificial Neural
Networks (ANNs), Proper Orthogonal Decomposition with Radial
Basis Functions (POD-RBF) and finally POD-RBF-ANN is used
as a hybrid ML method. The (dis)advantages of the different
methods are demonstrated for the thermal simulation of a
multiscale photonic chip. The ML models are trained with FE
data for both linear and non-linear dynamics and are tested for
inter- and extrapolation prediction accuracy. A computational
speed increase with factor >7500 compared to FE is obtained.
Furthermore, ANNs prove to be the best suited for the simulation
of non-linear dynamics. POD-RBF is the best method for mini-
mizing training time and combining the best of both methods in
POD-RBF-ANN creates a ML model with short training phase
and highly accurate predictions.

Index Terms—Machine Learning, Thermal Modelling, Silicon
Photonics

I. INTRODUCTION

THE increasing complexity and size scaling in today’s
nanoelectronics and -photonics comes with the need for

multiscale analysis from nanometer to centimeter scales [1]
and temporal analysis from nanosecond to second scales.
Widely used modelling tools such as finite element models for
thermal simulation [2] are lacking in this regard as the number
of required elements and hence the computational time rapidly
increases for capturing details at the smallest scales [3]. In
order to solve this problem, there have been many efforts in
recent studies to make the simulation process more efficient
[4]. Recent fast compact thermal modelling methodologies
for the temperature distribution prediction in 2D and 3D
chip packages include the Hotspot tool [5], [6] and the
Power Blurring method [7], [8]. HotSpot is a compact model
based on a discretized thermal resistor-capacitor network,
typically used for fast thermal simulation of different CPU
architectures, including the package and cooling boundary
conditions. Thermal RC-networks are lumped parameter
representation of more complex systems and leverage already
existing circuit simulators. There are two main methods of
extracting the RC equivalent circuit: firstly, there is spatial
discretization and calculation of the resistances based on
thermal conduction in the structure (e.g. HotSpot) [9], [10],

and secondly the resistances of a Foster equivalent network
can be calculated by analyzing the time constant spectrum of
the system [12], [13]. Power Blurring is a semi- analytical
method based on the Green’s function of the heat conduction
equation. The method uses convolution between the spatial
and temporal [14] temperature responses (thermal mask) to
a unit cell power dissipation and the distributed power map
to calculate the temperature distribution. This method has
been applied to 2D and 3D chip packages, power electronics
[15], and additions have been proposed to include the impact
of 3D interconnect structures and the impact of the chip
package [16]. The general idea of all aforementioned compact
models is to make a reduced-order representation where the
total number of degrees of freedom (DOFs) is reduced to
a minimum [11], which in turn speeds up the simulation
process. Machine learning (ML) methods for regression are a
popular choice as they have been proven to be very efficient
[19]. Artificial Neural Networks (ANNs) are already used
in thermal simulations, but are considered to be black box
methods [20]–[24]. The neurons in the hidden layers and
their corresponding attributes such as weights and biases are
obtained through the process of back-propagation and fitting
to a training dataset. Consequently, these hidden layers do
not necessarily represent any physical characteristics of the
system. This is an important drawback for the interpretability
of the model. On the other side of the spectrum, there
are the white box ML methods [25] that contain physical
information or governing equations about the system. These
typically contain much less trainable parameters and are
easier to interpret, making them closely related to traditional
statistics and not only ML. Finally, there exist hybrid ML
methods, that combine artificial neural networks with more
classical statistical methods [21], [24], [28], [29]. What is still
missing however, is a performance benchmarking of those
ML methods and training dataset design rules specifically for
multiscale thermal simulation. Circuit design tools could be
extended with compact ML models in order to assess thermal
performance early on in the design stage.

Proper Orthogonal Decomposition (POD) combined with
Radial Basis Functions (RBF) is one example of a ML
method that uses classical statistical tools. In this approach
the fundamental behaviour or patterns (POD modes) are
retrieved from the training dataset as a first step [25].
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Fig. 1. (A) Finite element model of SiPho die with DEMUX filter array.
(B) Zoom-in on a single device, (C,D) temperature contour plots of the full
circuit and device respectively.

TABLE I
OVERVIEW OF DIFFERENT ML METHODS. REFERENCE WITH ASTERIX (*)

IS WITH A SIMILAR WHITE BOX APPROACH POD-GP (GALERKIN
PROJECTION)

ML methods for multiscale simulation
ANN POD-RBF POD-RBF-ANN

Type Black box Black box Black box
Ref. [20], [22] [3]* [25]* [37] [21], [24], [28], [29]

Subsequently combining the POD modes allows for the
prediction of new data points. It is a black box method in
the sense that no physical information or governing equations
are used during the model training. However, it is more
interpretable compared to an ANN because the POD modes
represent fundamental patterns within the training data, which
can be useful information. As a classical black box method,
regular feedforward ANNs will be used. Lastly, combining the
benefits of the aforementioned methods, a hybrid ML method
is also investigated: POD-RBF-ANN employs the ANN
for predicting the POD mode coefficients. All previously
mentioned ML methods have already been studied extensively,
and this work focuses on benchmarking their performance
for a specific application (multiscale thermal simulation). As
a case study for a multiscale thermal modelling analysis, the
thermal behaviour of a photonic chip is used [26]. At nm-µm
scale it contains ring-based wavelength filters (channels) of
which the temperature distribution with highly localized peak
temperature and strong temperature gradient is of interest
[27] (Fig.1, right). The full chip itself is at mm scale, and at
this scale mainly the thermal coupling between the different
channels is of concern. In Section V.A the ML methods will
be applied for the thermal simulation of a mobile processor
package in order to show that the presented methods are
not exclusive for photonic ICs. Lastly, the performance of
the proposed ML methods will be compared to the readily
available compact modelling tools HotSpot [5] and Power
Blurring [7].

II. METHODOLOGY

Machine learning models always require a training dataset
to start from. For thermal simulation this can either be

Fig. 2. Flowchart of methodology used in this work, FE = finite element,
ML = machine learning.

generated through simulation by non-ML models, or from
experiments. Here we focus on the training data generation
with conventional, non-ML finite element (FE) models. The
high-level overview of information flow is depicted in Fig.2:
the FE simulation result is the input for creating a training
dataset. This is fed into the ML layer, where three different
methods will be investigated. Once these models are trained,
they can be used for predicting the 3-D temperature distribu-
tion in the photonic chip in a fast manner, making the use of
FE simulation obsolete (except for creating training datasets).

A. Finite element model

The first case study used in this work is a silicon (Si)
photonics die, containing a photonic integrated circuit (PIC)
that consists of an 8-channel wavelength filter. Each channel
has a cascaded ring resonator for wavelength filtering purposes
and is equipped with an integrated tungsten (W) heater for
thermal tuning [32], the heater is shown in Fig.1 (b). This is
a prime candidate for testing multiscale thermal models, as
both the temperature close to the channels and in between
is of interest, as well as the thermal coupling between the
channels. The training set for the ML models is generated
from a thermal finite element simulation of the photonic die
using the finite element tool MSC Marc [33]. The constructed
FE model for the photonic die test case with 8 channels, shown
in Fig.1, consists of 1.5 M nodes . Only heat conduction in
the die itself is simulated, heat transfer on either the top or
bottom face of the die is modelled with an equivalent heat
transfer coefficient. The heat source in the simulation consists
of Joule heat generated in the W-heaters in each channel. The
value of these boundary conditions will be varied (see Section
III). The sidewalls are assumed to be adiabatic. Finally, details
on the material properties used in the model can be found in
[34].

B. POD-RBF

The first ML method that is discussed, is POD-RBF. This
is a method that is often used in the context of model order
reduction. The motivation for this is that finite element models
consisting of millions of nodes can be replaced with a model
of much lower order. For thermal simulations, the shape of the
final solution is typically determined by boundary conditions
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and heat sources, which opens up the opportunity to describe
the system with less degrees of freedom than the original full
size computational mesh. The concept of this approach is that
the field under investigation (e.g. temperature) is decomposed
in fundamental modes. These mode can then in turn be used
in a (weighted) superposition to reconstruct the solution: [36],
[37]:

T (x, y, z, t) = T0(x, y, z) +

m∑
i=1

bi(t)φi(x, y, z), (1)

where T0 is the average temperature, bi are the POD coef-
ficients and φi are the POD modes. The coefficients bi are
not exclusively time-dependent, as indicated in Eq.1, they can
depend on a range of input parameters. In order to solve Eq.1,
the POD modes need to be calculated, which is achieved using
the singular value decomposition (SVD) and their coefficients
are obtained with RBF interpolation [37]. The POD modes
are orthonormal basis functions. They can be obtained by
finding a function Ψ which maximizes the inner product with
the temperature field in the training data. The function which
accomplishes this, will be the POD modes φ [30], [31]:

max
Ψ

=

〈
(
∫

Ω
T (~r, t)ΨdΩ)2∫

Ω
Ψ2dΩ

〉
=

〈
(
∫

Ω
T (~r, t)φdΩ)2∫

Ω
φ2dΩ

〉
(2)

Here Ω represents the physical domain over which is inte-
grated, ~r the spatial coordinates and the brackets 〈〉 represent
the average value. We want to find a basis Ψ which is on aver-
age most similar to the original dataset. A necessary condition
for the maximisation to hold, is that φ is an eigenfunction of
the two-point correlation tensor [30]:∫

~r′
R(~r, ~r′) · ~φ(~r′) ~dr′ = λ~φ(~r) (3)

The maximisation in Eq.2 leads to an eigenvalue problem in
Eq.3 with eigenvalues λ and eigenvectors ~φ (POD modes)
which can be solved by performing the singular value de-
composition on the snapshot matrix. Applying the SVD to the
input matrix (snapshot matrix) results in a factorization [37]:

M = UΣVT (4)

Where M is the snapshot matrix, U is the left-singular matrix,
Σ is a diagonal matrix containing the singular values and V
the right-singular matrix. The singular values are ranked in
descending order σ1 > σ2 which allows to rank the extracted
POD modes in order of importance. The shape of the matrices
in Eq.4 is shown schematically in Fig.3. The snapshot matrix
M has n column vectors representing the different training
data points, so each column is one full solution generated
by finite element simulation. The snapshot matrix also has
m rows, which contain the evolution of one specific node’s
temperature over the whole set of training data points. From
the matrix U the POD modes are extracted and because they
are ranked in order of importance, a truncation is possible
which eliminates the noise or modes which do not contain
any new information. This is the motivation for categorizing
this method as model order reduction: the solution is obtained
using a truncated set of basis functions. One objective way of
determining the cut-off point for truncation is by calculating

Fig. 3. Snapshot matrix decomposition with singular value decomposition
(SVD)

the cumulative correlation energy Ec, also called the relative
information content (RIC):

Ec =

∑m
i=1 λi∑n
i=1 λi

> 0.999 (5)

The eigenvalues λi are related to the singular values σi in
matrix Σ as λi = σ2

i . If Ec is at least 99.9%, then the
first m POD modes contain sufficient information. The next
step is determining the POD coefficients from Eq.1. One
way of doing this is, is by Galerkin projection [3], [25],
[36]. This requires solving a system of coupled ordinary
differential equations, formed by the heat equation projected
on the orthonormal basis. An alternative solution is by using
radial basis functions as an interpolation method [37], [38].
RBF is used to reconstruct a function of which a limited
number of points are known. As an example, RBF is applied
to 1-D data: s(x) is the continuous RBF interpolation function
of data known in discrete points f(xj), j = 1, 2..n [38]:

s(x) =

n∑
i=1

aiψ(||x− xi||) = fj , j = 1, 2...n, (6)

where ψ is an RBF function ai are the RBF weights. The
weights depend on the Euclidian distance between x and xi.
The RBF function ψ can take many forms and in general is
a function that is maximal for distance zero ||x − xi|| = 0
and decays for larger distances. The inverse multiquadratic
function is used here:

ψ = 1/
√

1 + (εr)2 with r = ||x− xi|| (7)

ε is a tuning parameter that determines the smoothness of the
interpolation. The RBF weights ai are calculated by setting the
interpolation function s(x) equal to the values in the known
data points, which is followed by matrix inversion in order to
solve for ai:

ψ(r1,1) ψ(r2,1) · · · ψ(rn,1)
ψ(r1,2) ψ(r2,2) · · · ψ(rn,2)

...
...

...
ψ(r1,n) ψ(r2,n) · · · ψ(rn,n)

 ·

a1

a2

...
an

 =


f1

f2

...
fn

 (8)

POD-RBF interpolation is done in similar fashion as this
1-D example: the solution is obtained by finding the best
combination of POD modes that fits the new set of input
parameters. The distance ||x − xi|| can be interpreted as the
difference between the new input parameter and the parameter
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Fig. 4. Schematic representation of ANN (left) and POD-RBF-ANN (right).

for which the solution is known ||p − pi||. The practical
implementation of the POD-RBF ML model is with the open-
source Python package EZyRB [35].

C. ANN

Artificial neural networks exist in many shapes and forms.
The focus here lies on fully-connected feedforward ANNs
implemented in Python using the Keras [39] and TensorFlow
[40] libraries. In Fig.4 (left) the general network architecture
is shown. The input layer consists of a number of neurons
equal to the amount of input parameters chosen for the FE
training dataset, which is further explained in Section III.A.
This can include power values or time steps for example.
The output layer has the same number of neurons as there
are nodes in the FE model (1.5 million). The output of the
ANN thus contains the full 3-D temperature distribution on
the photonic die. Manual hyperparameter tuning is done for
all ANNs in order to find a good trade-off between network
size and fitting accuracy. Depending on the training dataset
size, the number of hidden layers lies between 2-4 and the
number of neurons/layer between 100-1000. For all tested
cases, this produced a good fit with the training dataset. The
rectified linear activation function (ReLU) is chosen, and the
mean squared error (MSE) is the preferred loss function in this
case. The network is trained by backpropagation with adaptive
learning rate until the loss function converges to a sufficiently
small value. A regular ANN is a typical example of black box
ML, as the content of the hidden layers is mostly irrelevant and
has little physical significance in simulation problems. This
can be a disadvantage if the objective is to obtain new insights
from the models.

D. POD-RBF-ANN

In this section the proposed hybrid ML method POD-RBF-
ANN is explained (Fig.4, right) [21], [24], [28], [29]. Here
the input layer takes its original form (as the regular ANN)
and the output layer is adapted: the output is no longer a
temperature distribution but consists of the POD coefficients.
The coefficients are multiplied with the corresponding POD
modes and the superposition of all weighted POD modes

Fig. 5. Network training for ANN

results in a temperature distribution. The advantage here is
that the number of neurons in both the input and output layers
is greatly reduced compared to the other ANN architectures
(∼10 instead of ∼millions). Furthermore, this approach uses
the best of both methods as it has the capability of non-linear
function approximation and regression that is typical for
ANNs and the capability of model order reduction through
the useage of POD modes. The model training is illustrated in
Fig.5: evolution of the loss function (MSE) is shown during
the first 500 epochs. The loss function (MSE) for the ANN
reaches <0.001 after 250 epochs, indicating that a good
model fit to the training data is obtained.

III. DESIGN OF EXPERIMENTS

A. Training parameters

The machine learning models require a training dataset
which is generated by finite element simulations. The ML
models are trained for capturing effects of multiple input
parameters:

1) Power dissipation in each channel
2) Die-level boundary conditions
3) Physical channel spacing
4) Time
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Fig. 6. Matrix heatmap for training input parameters. Each matrix is a visual
representation of a training dataset: every column corresponds to a training
data point, and every row is a training parameter. color represents the value
of the parameter in the specific training data point.

Fig. 7. Temperature contour plot for a wide range of convective boundary
conditions for top and bottom side of die (FE result). Results are obtained for
a channel spacing of 100 µm, at steady state and nominal power (100%).

These input parameters are selected as they are most influential
on the final temperature field. As there are 8 channels in the
model, there are 8 degrees of freedom (DoFs) for the power
dissipation. The boundary conditions are the thermal cooling
conditions on the top and bottom face of the photonics die,
so two DoFs. This brings the total DoFs to 12: 11 static input
parameters and 1 dynamic (time). The objective is to train the
ML models with respect to those input parameters with the
smallest amount of training data points as possible. Generating
the training dataset takes a significant amount of time (due to
the large FE models), which is exactly what has to be avoided.

B. Training dataset design

Now the different input parameters are identified, the train-
ing dataset has to be constructed with FE simulations. Careful
attention to its design is needed to avoid excessive CPU time
in the offline phase. Depending on which input parameter
that is being trained, a different amount of training datapoints
will be required. Currently, there exist no general rules for
training dataset design, as this is very application specific. In
this section, it is shown that for multiscale thermal simulation a
relatively small training dataset suffices for generating accurate
results.

1) Power dissipation: For thermal simulations with con-
stant material properties, different thermal power dissipation
levels are considered to follow linear physics. Doubling the
thermal power in one channel will results in a double tem-
perature increase. This linear behaviour limits the required
amount of data points for power dissipation, as interpolation
and extrapolation is straight forward. The design of the training
datasets for the power dissipation is shown as a matrix heatmap
in Fig.6 (top). The x-axis shows the training data point and
the y-axis shows the input parameter number, the color in the
matrix represents its value for a specific training point. We
start with one training data point per channel and one point
where all channels are active simultaneously. This is further
expanded to two and three training data points per DoF.

2) Die-level boundary conditions: The maximum tempera-
ture in the die is shown in function of the boundary conditions
in Fig.7. As the channels are located in the photonic front
end of line (FEOL) near to the top side of the die, their
temperature is most sensitive to the convective cooling on
the (htop). For low cooling configurations (small htop) such
as natural convection, the temperature becomes dependent on
the boundary condition on the bottom face as well. Both
boundary conditions span a large range and are shown on a
logarithmic scale. The effect of boundary conditions is non-
linear, as shown in Fig.7, and multiple training data points are
required to properly capture this effects. For this reason, the
full design space is sampled by dividing the whole range of
values from Fig.7 in 5 categories for each BC. This results in
25 total unique combinations that are simulated and added to
the training dataset (Fig.6, center). The reason why so many
training data points are required for only two input parameters
is that the effect of one input depends on the value of the other
input.

3) Physical channel spacing: The physical channel spacing
adds another five training data points. The physical channel
spacing will be varied between 60-140 µm in steps of 20 µm.

4) Time: Finally, the time dynamics are also non-linear and
one step response is sampled in 29 smaller time steps, as
shown in the last dataset in Fig.6. Time series data is typically
used to train recurrent neural networks (RNNs), which use the
network output of one timestep as input in the next timestep.
In this work only standard ANNs are used because they are
more generally applicable: not only time as input parameter,
bus also all aforementioned input parameters.

C. Test data and accuracy metrics

The prediction or regression accuracy is measured is by
comparing the predicted ML result with the ground truth value,
which is assumed to be the FE simulation result. With this in
mind, extra test data points are generated by FE simulation
which are excluded from the training dataset. The accuracy is
measured with the mean squared error (MSE) and the relative
error (εrel) in each node of the full mesh:

MSE =
1

n

n∑
i=1

(yi − ȳi)2 (9)
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Fig. 8. Eigenvalues for boundary condition training dataset and relative
information content (RIC)

Fig. 9. First 6 POD modes, zoomed in on a single channel

εrel = 100% · 1

n

n∑
i=1

|yi − ȳi|
ȳi

(10)

IV. RESULTS

A. POD modes

After constructing the snapshot matrix (Fig.3) and calculat-
ing the SVD, the POD modes are extracted as the columns
in the left-singular matrix. From the matrix dimensions it can
be derived that the total amount of POD modes is equal to
the number of snapshots. However, typically only a few POD
modes suffice for capturing 99.9% of the information in the
training dataset. The eigenvalues of the different POD modes
are shown in Fig.8 on a logarithmic scale. By calculating
the relative information content (RIC) according to Eq.5, it
becomes clear that the first 4 POD modes already capture
approximately all information of the system. Each POD mode
is a 3-D map of the full computational mesh. In order to
inspect how the POD modes look like, a 2-D top view of the
die is made at the location of the photonic devices. Zooming
in on one channel, the resulting first 6 POD modes are shown
in Fig.9. The first remark is that mode 1,2,4 look very similar.
This does not mean that the full POD modes are identical as
this is only a zoomed-in image of one specific channel.

B. Validation with test data

The first validation of the ML models is done by comparing
the relative error for POD-RBF, ANN and POD-RBF-ANN

Fig. 10. ML prediction accuracy vs. training dataset size, for interpolation
and extrapolation

for the linear training data. The models are trained for 8
different input parameters: the power dissipation in the eight
different channels (Fig.6). First one training data point per
DoF is used, then two and finally three. The results are shown
in Fig.10 for both interpolation and extrapolation predictions.
The input power in the training dataset is normalized between
0-1, so interpolation is by definition inside this range and
extrapolation is >1. The first conclusion is that for none of the
cases there is an accuracy increase by extending the training
dataset from two trainings/DoF to three trainings/DoF. Going
for two trainings/DoF instead of one has mixed results. In
some cases this also decreases the accuracy due to overfitting.
In general, for linear dynamics, very few training points/DoF
are sufficient for accurate results. POD-RBF-ANN performed
best, followed by ANN and finally POD-RBF.

The next input parameter which is investigated is the
time. Even though this is only one degree of freedom, many
training data points are required for capturing the time
dynamics of the thermal step response as this is typically
an exponential function. The ML prediction vs. the ground
truth (FE) is shown in Fig.11 for ANN and POD-RBF-ANN.
POD-RBF failed to properly simulate the time dynamics with
the given training dataset. The different colors represent the
relative power per channel: 0-50-100% are in the training
dataset and 25-75-125-200% are not. In general, a good
match between ML and FE is obtained for all cases (training
and tests), except for the simulation at 200% there is large
error. The simulation of different channel spacings is equally
accurate for all methods. The 1-D temperature profile for five
different spacings simulated by ANN is shown in Fig.12.

As a next step the ML models are trained with respect
to the boundary conditions. A test dataset consisting of five
random combinations of boundary conditions is generated
and the accuracy of the ML models is benchmarked in Fig.13.
Both the MSE and relative error is shown. On average, for all
models the relative error lies between 1-2%. POD-RBF-ANN
performed best, followed by ANN and finally POD-RBF
which has one outlier with large error for data point 2.

The logical final step is to combine all training datasets
into one big dataset that is used to train all ML models. The
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Fig. 11. Transient simulation comparison between ANN and FE, 100% and
50% power are part of training dataset

Fig. 12. Temperature profile prediction (ANN) for different channel spacings

heatmap of the training parameters is displayed in Fig.14.
All static inputs are combined, so the time is left out. In
total there are 39 training data points for 11 different input
parameters. Furthermore, three test data points are generated
with randomized values for all input parameters. The
prediction accuracy of ANN and POD-RBF-ANN is shown
in Fig.15. POD-RBF is not included as the RBF method
was unable to produce useful results for the combination
of multiple non-linearities. Both ANN and POD-RBF-ANN
prediction accuracy is comparable, with relative error ∼2%.
The temperature profile across all eight channels for one
of the test data predictions with ANN is shown in Fig.16,
showing a good match with the FE reference data.

Fig. 13. ML accuracy verification on randomized test dataset for different
boundary conditions

Fig. 14. Combined training dataset for all static parameters

Fig. 15. ML accuracy verification on randomized test dataset for all (static)
input parameters

C. Simulation speed increase

The simulation speed increase compared to the reference
FE simulations is now discussed. More specifically, the
phases in the simulation process are compared between
the different methods (FE and ML): the online and offline
phase. The online phase is defined as the phase during which
a new simulation result is generated, given a set of input
parameters. For FE simulation, the online phase is all CPU
time required for solving the system. For the ML methods,
there is a great time requirement for training: first there is
training data generation, then processing of the dataset (e.g.
SVD) and finally model fitting. All time required for the
aforementioned training is categorized under the offline phase
of the simulation process. All calculations are performed on
a Intel(R) Core(TM) i5-10310U CPU @ 1.70GHz processor
with 16 GB RAM. In Fig.17 a cross section of the die is
shown, close to the top side. The solution is zoomed in

Fig. 16. ANN temperature profile prediction for test data point (3) vs. ground
truth (FE reference)
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TABLE II
CPU TIME BENCHMARKING OF DIFFERENT ML METHODS

Phase ML methods for multiscale simulation
FE ANN POD-RBF POD-RBF-ANN

Offline phase

Training data generation by FE [min] n.a. 472 472 472
SVD [s] n.a. n.a. 71 71
Model fitting [s] n.a. 513 n.a. 8
Total (with training) [min] 0 8.55 (480.6) 1.18 (473.2) 1.32 (473.3)

Online phase Simulation [s] 726 0.21 10.83 0.096

TABLE III
TIME COMPLEXITY AND CPU TIME SCALING (ONLINE PHASE) WITH THE

NUMBER OF NODES

Number of nodes
CPU time [s] 2.5 · 105 1.5 · 106 Increase
FE 24 726 X30.3
ANN 0.057 0.21 X3.7
POD-RBF 1.652 10.83 X6.6
POD-RBF-ANN 0.029 0.096 X3.3

on two active channels. The reference CPU time of the
online phase is 726 seconds for the FE simulation. Going
to POD-RBF this is reduced to 10.83 seconds, for ANN
this is 0.21 seconds and for POD-RBF-ANN this is 0.096
seconds. This translates into a computational speed increase
between X67-X7500. The reason for the longer CPU time of
POD-RBF is that the RBF interpolation requires solving a
system of equations by matrix inversion (see Eq.8). Here the
potential performance gain of using ML in combination with
FE becomes clear: significantly faster simulations that allow
for quicker analysis and insight into the models. In order to
obtain the very fast ML models, an extended offline phase
is required. This additional time and effort for generating
the training dataset must be considered when deciding on
whether or not the ML models are useful.

The overview of the different offline phase times is
shown in Table II. The training data generation is for taken
for the case with 39 data points. It becomes clear that for all
ML methods the offline phase is dominated by the training
data generation, highlighting the importance of minimizing
the number of data points in the training dataset. Comparing
the offline phase between the different ML methods (without
training data generation), it is concluded that POD-RBF is
the fastest as no model fitting is required for this method.
This is followed by POD-RBF-ANN where model fitting is
necessary, but extremely fast as the input and output layer
dimensions of the ANN are limited. Finally, the regular ANN
requires the longest offline phase because of the extended
model fitting time, caused by the large number of tuneable
parameters.

The time CPU time scaling with problem size is now further
investigated. In order to do this, a FE model with a smaller
number of nodes is created (see Section V.A). The finite
element solver employs a sparse, multi-frontal direct solver
which has a typical time complexity of O(n2). This scaling
is confirmed by numerical experimentation: for a mesh with

2.5·105 nodes the CPU time is 24 seconds, and for a mesh with
1.5·106 the CPU time is 726 seconds, an increase with factor
X30.25 (see Table III). This value is close to the theoretical
scaling X36. The time complexity of ANNs depends on the
network architecture: the number of layers and nodes per layer.
For a fair comparison, the network architecture is kept the
same, except the size of the output layer, which scales with
the number of nodes in the FE model. This implies a time
complexity of O(n) as the number of required operation scales
linearly with the output layer size. This is confirmed through
numerical experimentation: going from small to large mesh,
the CPU time increase from 0.057 seconds to 0.21 seconds,
an increase with factor ∼4. One side note here, is that because
of the extremely small CPU times for the ANN online phase,
it is difficult to determine the exact required time, because
there is variability in the recorded CPU time that depends
on background processes. The time complexity of POD-RBF-
ANN shows the same trends as ANN. For the POD-RBF
algorithm, the online phase consists of matrix inversion in
order to determine the POD coefficients. Matrix inversion itself
has a time complexity of O(n3), however in this case n is not
the number of nodes, but the number of POD modes. Because
this number is very small in the tested cases (n = 4), the CPU
time of the online phase for POD-RBF is mainly memory-
limited because the size of each POD modes is equal to the
number of nodes. This implies that the time complexity of
POD-RBF with respect to n the number of nodes is O(n),
and this is confirmed experimentally: the CPU time increased
from 1.652 seconds to 10.83 seconds. In conclusion, direct
solvers for finite element problems have a time complexity of
O(n2) where n is the number of nodes, while the tested ML
methods have a time complexity of O(n). This shows that the
larger the computational mesh (and hence number of nodes),
the more time saving potential there is for the ML models in
the online phase. Generating the training dataset through FE
simulation will take more time for models with a large number
of nodes, which needs to be taken into account.

V. CASE STUDIES

A. Compact model for photonic circuit design

The next aspect that is discussed is a possible application
for a fast multiscale thermal model for photonics. It has been
proven that ML models trained with FE data show great
potential for computational time reduction and are sufficiently
accurate. The integration of a compact ML model in a photonic
integrated circuit (PIC) design tool opens up the opportunity to
assess the thermal coupling or crosstalk between temperature
sensitive devices. This is a notorious problem for PICs and
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Fig. 17. Temperature simulation results, vertical cross section of die top-side
is shown. Left colorbar is for FE reference, right colorbar is for ML results.

Fig. 18. Thermal coupling in function of channel number, with channel
spacing as parameter

due to the high thermo-optic coefficient of the Si waveguide
the devices are temperature sensitive [12]. Thermal coupling
in each channel is calculated for a series of 8 channels by
activating each channel separately, followed up by activating
all channels simultaneously. The coupling is very sensitive to
boundary conditions, the spacing between the channels and
the location of the channel within the filter array. In Fig.18
the relative thermal coupling is expressed in function of the
channel number, with spacing as parameter. All data points
are calculated with ANN, using the training dataset design
rules derived in Section III.D. Because the thermal response to
changing the physical channel spacing is non-linear, 6 training
datapoints are used for training with respect to this single
input parameter. The choice for ANN is arbitrary, POD-RBF
and POD-RBF-ANN both produce similar results in this case.
Firstly, channels at the center (4-5) become hotter due to their
close proximity to all other channels. Secondly, increasing
spacing from 60 µm to 140 µm greatly reduces the overall
thermal coupling across the array. In total 45 ML simulations
were required for obtaining this result (9 simulations/spacing
and 5 spacings). By using the compact ML model, these data
are generated in a couple of seconds, compared to 544 minutes
(∼10 hours) with FE simulation.

B. Compact model for package thermal simulation

In order to compare the performance of the proposed
machine learning tools with the HotSpot and Power Blurring
method, the Bobcat mobile processor test case introduced

in [7], [17] has been used. A thermal finite element model
has been generated for this geometry, which is used as a
reference solution, and from which the training data for the
ML models has been derived. For the comparison, the results
on the HotSpot and Power Blurring simulations have been
used from [7]. The processor is modelled as a solid Si block,
flip-chipped on a heat spreader substrate. The heat spreader
is connected to a heat sink with low thermal resistance
(R = 1 K/W ). On the interfaces between the different
materials there is a thermal interface material (TIM) present.
The finite element model and schematic cross-section are
shown in Fig.19 (a,b). All details about material properties
and geometry can be found in [7]. The power map of the
processor is shown in Fig.19 (c). With the purpose of training
the ML models, the power in four active processor tiles is
used as input parameter. A fifth parameter is the background
power. In total there are five input parameters. A small
training data set is generated by activating each parameter
separately, and once all together: in total only six training
simulation are done. A temperature contour plot for the
simulation with reference power map (Fig.19 (c)) is shown
in Fig.20. A horizontal cross-section through the Si die is
taken at the location of the active processor front side. Two
test cases are defined which are not included in the training
data set. The values of the input parameters for each case are
shown in Fig.21. Test case (a) is conservative in the sense
that the values do not deviate far from the training data.
Test case (b) has a much bigger difference between training
and test. Test case (b) is mainly added with the purpose of
highlighting the limitations of the ML models, which typically
lose their accuracy outside the bounds of the training data set.

The temperature profile (A-A’ in Fig.20) for case (a)
and case (b) is shown in Fig.22. The (assumed) ground-truth,
the finite element simulation, is the reference that is used
for error calculation. In Fig.22 it can be seen that for case
(a) all ML methods perform very well. In case (b), there is
a clear discrepancy visible between the ML methods and the
FE result. POD-RBF-ANN performs best out of the three
ML methods. In Fig.22 (c) the ML results are compared
with the results of HotSpot and Power Blurring [7]. The
total performance comparison between all methods is shown
in Table IV. Here, the performance of HotSpot and Power
Blurring is added for the same test case. The data for both
these methods is obtained from [7]. The CPU time for all
methods is <1 second for the online phase. The accuracy
of the ML methods is competitive with the HotSpot and
Power Blurring result. However, a very important conclusion
here is that for the second simulated case the ML methods
perform significantly worse compared to HotSpot and Power
Blurring. Average error is ∼10% and max error is ∼50%.
The reason for this is that a very small training data set (6
data points) is used for training the ML models and any
significant extrapolation outside of the training bounds of the
input parameters will result in poor model performance. To
summarize the comparison between ML, HotSpot and Power
Blurring, the (dis)advantages of each method are highlighted
below:
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Fig. 19. Bobcat mobile processor thermal model: (a) finite element model, (b) schematic cross-section and (c) normalized processor power map

Fig. 20. Temperature contour plots for FE and POD-RBF simulation results
of the reference power map. A-A’ shows the line for temperature profile
extraction.

Fig. 21. Normalized power in five active processor tiles: training data
is obtained with the reference power values (Fig.19 (c)). Case (a) is a
conservative test data point, only a small deviaition bewtween test and training
is used. Case (b) is more aggressive.

• Machine Learning:
1) Time complexity: O(n)
2) Advantages: can be used for different boundary

conditions (if included in the training data). Based
on FE: you can include very complex 3D geometries
for the heat sources.

3) Disadvantages: the accuracy of the method depends
on the proximity between the evaluated parameter
set and the training data. Generation of training
dataset can take considerable amount of time.

• Power Blurring:
1) Time complexity: O(n · log(n))
2) Advantages: fast and efficient calculation due to

convolution in space and time. Exact solution of
heat equation in the Si die itself. Very good accuracy
for heat sources in the central area of the chip.
Method usable for variable chip sizes. Very suitable

to explore different power dissipation patterns.
3) Disadvantages: Unit cell thermal response (‘mask’)

needs to be recalculated in FE for each boundary
condition and package value. Thermal spreading
in chip package and heat spreader not included
in the model. This leads to an overestimation of
the chip temperature at the edges. Limited to a
single material property per horizontal layer in the
considered geometry (Green’s function limitation)

• HotSpot

1) Time complexity: O(n2)
2) Advantages: actual calculation of the temperature

distribution for a discretized RC network: allows
variations of power distribution as well as all mate-
rial properties and dimensions.

3) Disadvantages: Not as fast as other methods. Fur-
thermore, the accuracy depends on the resolution
of the discretization. Current version does not yet
include option to allow different materials per layer:
this is acceptable for planar heat source in Si.

VI. CONCLUSION

Multiscale thermal simulation of integrated (photonic) cir-
cuits is computationally expensive with traditional finite el-
ement models. This is the motivation for benchmarking the
performance of multiple machine learning algorithms using the
same training dataset for speeding up the simulation process.
Artificial neural networks (ANN) are useful for simulating
non-linear dynamics but are black box and their interpretability
is low. Proper orthogonal decomposition combined with radial
basis functions (POD-RBF) is a method where fundamental
behaviour and patterns are extracted from the training data.
The strength of this approach are the highly interpretable
POD modes, but the drawback is that non-linear dynamics
are poorly captured when using a minimal training dataset
design. Furthermore, a hybrid ML method is tested: POD-
RBF-ANN, where the output layer of the ANN is used for
predicting the POD mode coefficients. This greatly reduces
the ANN network size and number of tuneable parameters.
Prediction accuracy with a relative error of ∼3% is obtained
for the test data and computational speed increase between
X67-X7500 is shown. To conclude, FE-trained ML models
can potentially be integrated in circuit design tools in order to
efficiently assess the thermal performance of a layout.
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TABLE IV
BENCHMARKING OF DIFFERENT ML METHODS AGAINST STATE-OF-THE-ART METHODS FOR PACKAGE THERMAL SIMULATION. THE RESULTS MARKED

WITH ∗ ARE OBTAINED FROM [7]. ML RESULTS ARE SHOWN FOR CASE (A) AND CASE (B) BETWEEN BRACKETS.

FE POD-RBF ANN POD-RBF-ANN Hotspot* Power Blurring*
Computation time [s] 24 1.652 0.057 0.029 0.11 0.041
Error in hot-spot [%] - 5.92 (55.8) 5 (52.9) 1.8 (19.1) 12.9 0.14
Max error [%] - 5.92 (55.8) 5 (52.9) 1.8 (19.1) 25.7 13.7
Avg. Error [%] - 1.98 (11.8) 1.6 (13.1) 0.7 (4.1) 6.5 2.5
Abs. Error range [°C] - 1.13 (5.67) 0.95 (5.38) 0.3 (1.93) 4.2 0.56

Fig. 22. Simulation result: temperature profile (A-A’) through Si die. Case
(a) is similar to training data, while case (b) has a much different power
map. In (c) the ML results are compared with HotSpot and Power Blurring,
reproduced from [7]

Fig. 23. Performance scorecard for ML methods for multiscale thermal
simulation tested in this work. Dark green = best, red = worst. Numbers
shown are relative accuracy (%) and simulation, training time (s)
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