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Abstract: Using the source-filter model of speech production, clean speech signals can be decomposed
into an excitation component and an envelope component that is related to the phoneme being uttered.
Therefore, restoring the envelope of degraded speech during speech enhancement can improve the
intelligibility and quality of output. As the number of phonemes in spoken speech is limited, they
can be adequately represented by a correspondingly limited number of envelopes. This can be
exploited to improve the estimation of speech envelopes from a degraded signal in a data-driven
manner. The improved envelopes are then used in a second stage to refine the final speech estimate.
Envelopes are typically derived from the linear prediction coefficients (LPCs) or from the cepstral
coefficients (CCs). The improved envelope is obtained either by mapping the degraded envelope
onto pre-trained codebooks (classification approach) or by directly estimating it from the degraded
envelope (regression approach). In this work, we first investigate the optimal features for envelope
representation and codebook generation by a series of oracle tests. We demonstrate that CCs provide
better envelope representation compared to using the LPCs. Further, we demonstrate that a unified
speech codebook is advantageous compared to the typical codebook that manually splits speech
and silence as separate entries. Next, we investigate low-complexity neural network architectures to
map degraded envelopes to the optimal codebook entry in practical systems. We confirm that simple
recurrent neural networks yield good performance with a low complexity and number of parameters.
We also demonstrate that with a careful choice of the feature and architecture, a regression approach
can further improve the performance at a lower computational cost. However, as also seen from the
oracle tests, the benefit of the two-stage framework is now chiefly limited by the statistical noise floor
estimate, leading to only a limited improvement in extremely adverse conditions. This highlights the
need for further research on joint estimation of speech and noise for optimum enhancement.

Keywords: speech enhancement; speech envelope estimation; GRU; CRNN

1. Introduction

Speech captured by microphone in the real-world environment is prone to being
corrupted by background noise. In order to reduce listener fatigue and the loss of intelligi-
bility, speech enhancement which aims at removing the background noise and improving
intelligibility has been an important and active field for many years.

The established statistical speech enhancement methods, the minimum mean-square
error (MMSE), short-time spectral amplitude (STSA) estimator [1], and the MMSE-log
spectral amplitude (MMSE-LSA) [2], require an initial estimate of a priori SNR and a
posteriori SNR derived from the spectral density power estimates of the clean speech and
the background noise. On top of that, the decision-directed (DD) approach—a recursive
smoothing procedure for the a priori SNR—is proposed in combination with these esti-
mators to reduce the residual musical tones and improve the naturalness of the processed
audio. However, this technique also introduces an estimation bias in the SNRs and leads to
an annoying reverberation effect [3]. Therefore, a two-stage framework has been proposed
in Reference [3] to avoid the speech distortion from this bias. In the two-stage framework,
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a better speech estimate is refined from the initial one so that a priori SNR can be calculated
without recursive smoothing. Additional prior knowledge on speech can also be introduced
during the procedure.

In our recent work [4], for example, we improve the speech harmonic recovery method
termed cepstral excitation manipulation (CEM) [5] using the source-filter model of speech
production to highlight its periodic structure. In this model, the speech signal is decom-
posed into an excitation and an envelope component in order to represent the excitation
source and the vocal tract filter, respectively. It is proposed to amplify the quefrency related
to the fundamental frequency and its harmonics in order to highlight the periodic structure
of the voiced speech in the cepstral domain. To maintain the fine structure of the speech,
the excitation signal in high quefrencies is smoothed with a quefrency-dependent window.
In this work, we investigate the contribution of enhancing the other component of the
source-filter decomposition result, the spectral envelope, for speech enhancement.

It has been shown that there is a strong correlation between the speech envelope and
its intelligibility [6]. Consequently, the short-time spectral envelope of speech has been
widely exploited in many areas such as automatic speech recognition (ASR) [7], artificial
bandwidth extension [8], and speech intelligibility prediction [6,7]. The well-known and
widely used short-time objective intelligibility (STOI) [9] is based on the linear correlation
between the envelopes of the processed noisy speech signal and those of the clean reference.
One well-known problem of speech enhancement is that many methods hardly improve
(and, sometimes, even degrade) speech intelligibility, although they perform well on noise
reduction. Given the relationship between the speech envelope and intelligibility, it is
possible to improve speech quality as well as its intelligibility by refining the spectral
envelope of the clean speech estimate.

For a given language, the possible patterns of speech spectral envelope are limited
because the number of phonemes is limited, which makes the codebook technique an
efficient solution to capture a priori information about speech envelopes. Thereby, a good
estimate of the codebook entries integrates this prior knowledge into the following tasks.
For example, [10] trained two sets of codebooks for speech and noise, respectively. Then,
the gain function was estimated by the codebook-constrained Wiener filter, with optimal
codebook entries being searched for in a maximum likelihood framework.

As speech has temporal dependency, a combination of the Gaussian mixture model
(GMM) and hidden Markov model (HMM), GMM-HMM, was widely used in classical
ASR systems as the back-end to recognise phonemes [7]. This statistical approach models
the distribution of phonemes and their temporal dependency through two individual
components: the GMMs, which learn the feature distribution, and the HMM, which
imposes temporal dependencies on the hidden state sequences inferred from the GMMs.
A similar pre-trained codebook with a GMM-HMM back-end also serves as the baseline
in the speech envelope enhancement research of Reference [11] using the aforementioned
two-stage framework. Therein, only the speech envelope codebook is generated, and the
speech envelope is estimated from it in an MMSE manner. This envelope is introduced to
update the a priori SNR for a second-stage estimate of the clean speech. In Reference [12],
noisy signals are enhanced by resynthesising the clean speech from the inferred acoustic
cues (e.g., pitch and spectral envelope). The underlying clean speech envelope is, again,
estimated with a codebook-aided Kalman filter, the codebook having been designed to
capture not only the envelope shapes, but also the evolution of the envelopes in a given
number of consecutive frames.

The classifier for such codebook-based methods can, of course, be replaced by deep
learning models. In Reference [13], using two separate sets of codebooks for speech
and noise, the codebook entries corresponding to the envelopes of both components are
estimated by a feedforward deep neural network (DNN). These codebook entries are used
to update the time-smoothed Wiener filter which performs the final speech enhancement.
The work in Reference [11] also investigates the utilisation of DNN-based classifiers for
codebook-based speech envelope estimation. Compared to the GMM-HMM baseline, the
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trained DNN classifier, with a similar computational cost, shows an advantage in both the
classification accuracy and the instrumental metrics for speech enhancement. Compared
to its regression counterpart, in which the network architecture is kept but the model is
repurposed to predict the envelope coefficients directly from the initial estimation, it is
shown that this architecture benefits from the codebook.

There are different ways to extract and represent speech envelope. Subband repre-
sentation is a popular approach. For example, in STOI, the spectro-temporal envelope
is calculated as the average of one-third octave decomposition results of 30 consecutive
frames [9]. The STOI loss function to optimise speech enhancement DNN adopts, naturally,
the same features [14]. Analogously, Reference [15] uses equivalent rectangular bandwidth
(ERB) to compress the spectrum and Reference [16] uses the auditory filterbank. It should
be noted there is no direct inverse from these subband presentations to spectra. Applying
the subband gain directly to the spectrum yields a ‘rougher’ signal, as the processed signal
is less harmonic [15]. Therefore, the subband gain function is combined with a comb filter
to restore the distorted harmonics in Reference [15].

The envelope can also be obtained from the auto-regressive (AR) filter applied, e.g.,
in linear predictive coding (LPC). For stability reasons, instead of directly using the AR
filter coefficients, the equivalent line spectral frequencies (LSF) are adopted for speech
enhancement in References [12,13]. Another equivalent representation of the AR filter
coefficients is given by linear prediction cepstral coefficients (LPCCs). These are employed
in Reference [11] to define the spectral codebook and to estimate the enhanced envelope
within the two-stage framework. However, LPCCs can suffer from quantisation issues [17],
which can cause degradation in codebook-based approaches. Another alternative envelope
representation is based on the cepstral representation of the signal, which also implicitly
describes the spectral envelope. Based on the relationship between the spectrum and the
cepstrum, the first few cepstral coefficients (CCs) of a signal frame can be regarded as the
description of its spectral shape. This is exploited in cepstral smoothing approaches [18–20]
in order to remove musical noise. By preserving the first few cepstral coefficients, and
strongly smoothing the rest, instantaneous temporal spectral fluctuations in the signal
are suppressed while the principal structure (i.e., the spectral envelope) of the processed
speech is maintained. Of the aforementioned envelope representations, we focus on the
LPCCs and CCs in this work due to the convenience of their transformations between the
domains and the easy fitting of the decomposition results to the source-filter model.

While data-driven, deep-learning-based end-to-end speech enhancement offers a pow-
erful solution, the computational cost of such a system is still relatively high. Furthermore,
a drawback of such systems is the black-box nature of the enhancement, which makes
interpretability and control difficult. Data-driven envelope estimation, incorporated into
classical speech enhancement, can provide us a compromise, and at a low computational
complexity. This work is developed from the idea of cepstral envelope estimation (CEE)
using the pre-trained codebook in [11]. We further explore its potential and investigate
the achievable results of this method. Specifically, the following questions will be an-
swered by our investigation: what is the maximum benefit of such data-driven two-stage
enhancement? How (much) does the quantisation of the envelopes affect the quality of
the enhanced audio quality? What is the optimal cepstral speech envelope representation
for the purpose of speech enhancement? Will the speech envelope classifier benefit from
temporal modeling?

Below, we start from a series of oracle tests to investigate the potential and the limita-
tion of the codebook method, in which different envelope representations are compared
and benchmarked against each other in the two-stage framework. Then, several practical
systems are trained and evaluated.

The temporal dependency of speech is usually taken into consideration in the afore-
mentioned envelope enhancement methods via explicit temporal models or components
such as Kalman filters and HMMs in the frameworks. For the DNN structure, however,
including an HMM is counterproductive, as reported in Reference [11]. Therefore, we
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will investigate other possibilities to enable temporal modeling within the neural network.
Literature shows that recurrent layers are powerful to this end. For instance, the long-short
term memory (LSTM) layer is widely used in end-to-end speech enhancement systems
due to its effective usage of long-term information granted by the gate mechanism. Recent
research [21] shows that gated recurrent units (GRU) can achieve comparable performance
with less complexity, which is also verified in the speech enhancement tasks [22]. Therefore,
in this contribution, we will investigate the performance of the GRU-based classifier for the
speech envelope estimation using codebooks.

Furthermore, we will explore the usage of the more recent network architecture, convo-
lutional recurrent neural network (CRNN), as the regression estimator. It is hypothesised in
Reference [11] that the repurposed feedforward DNN is too small for the regression problem.
Yet, fully connected neural networks have been gradually replaced by the convolutional
layers and convolutional neural networks (CNN) have been reported to yield high perfor-
mance on many tasks and to do so with fewer parameters than feedforward DNNs. For a
deep or complex network, CNNs can be easily trained in an end-to-end style. By inserting
the recurrent layers into CNN, the network benefits from both the strong feature extraction
ability of convolutional layers and the temporal modeling ability of the recurrent layers.
Therefore, we propose to make use of the CRNN architecture for the regression problem.

The remainder of this paper is organised as follows. We provide an overview of the two-
stage speech enhancement framework in Section 2, so that the purpose and the target of CEE are
clear. Section 3 introduces the cepstral envelope estimation in a systematic manner, followed by
its use in the two-stage enhancement framework. We report and discuss the evaluation results
of the oracle tests and the practical systems in Section 4 and answer the core questions raised
above. The paper is summarised and concluded in Section 5.

2. Speech Enhancement Framework

We consider the noisy observation y(k), which consists of the target speech s(k)
corrupted by noise v(k) in an additive way: y(k) = s(k) + v(k), with k being the discrete
time sample index. The microphone signal can then be transformed using the short-time
Fourier transformation (STFT) with an M-point windowed discrete Fourier transform
(DFT). This yields Yl(m) = Sl(m) + Vl(m), where m is the frequency bin index and l is the
frame index.

As summarised in Figure 1, we adopt the same two-stage speech enhancement frame-
work in Reference [11]. A preliminary denoising is performed in the first stage. The
MMSE-LSA gain function is employed to obtain the initial speech estimate Ŝl(m). As with
the majority of the gain functions, this estimator Ĝl(m) is expressed as a function of two
crucial parameters: a priori SNR ξl(m) and a posteriori SNR γl(m). They are defined as:

ξl(m) =
λs,l(m)

λv,l(m)
, (1)

and

γl(m) =
|Yl(m)|2
λv,l(m)

, (2)

where λs,l(m) and λv,l(m) are the power spectral densities (PSDs) of the speech and noise
signals, respectively. Since the true values of these PSDs cannot be obtained in practice,
γ̂l(m) is approximated using the estimated noise PSD λ̂v,l(m) from the noise floor estima-
tor, and ξ̂l(m) is obtained from the decision-directed (DD) approach. The clean speech
amplitude estimate is then obtained by applying the gain function to the amplitude of the
noisy observation:

|Ŝl(m)| = |Yl(m)| · Ĝl(m). (3)

Then, according to the source-filter model, the enhanced signal is decomposed into
the excitation signal R̂l(m) and the envelope Ĥl(m), and each component can be enhanced
individually. The enhancement of the speech excitation signal has been discussed in
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References [4,5,23], showing that the idealised excitation signal Rl(m) brings the benefit of
recovering the weak or lost harmonics in the initial speech estimate.

Noisy spectrum Y(m)

Noise power
estimator

Noise estimation
λ̂v(m)

- ξ̂(m), γ̂(m) estimate
from (1), (2)
- Gain estimate Ĝ(m)
- Preliminary de-
noised signal |Ŝ(m)|
by (3)

Source-filter
decomposition

Envelope Ĥ(m)
Envelope

Estimation
Estimated En-
velope H(m)

Residual R̂(m)
Excitation

Manipulation
Enhanced

residual R(m)

New speech
estimate |S(m)|

New a priori SNR es-
timate ξ̃(m) using (4)

Final gain function
estimation G̃(m)

Figure 1. Block diagram of the gain function calculation in two-stage noise reduction. Dashed boxes
represent manipulation blocks whereas solid rectangular boxes indicate data contained. Please note
that all terms are in the STFT domain, where the frame index l has been dropped for conciseness.

While the excitation signal can be modeled by straightforward mathematical equa-
tions due to its periodic nature in the voiced frames with the largest energy [4,5,23],
data-driven methods are more common in the estimation of the speech envelopes as in
References [10–13]. If the underlying clean-speech envelope can be accurately estimated
from the distorted or noisy signal envelope, it should improve the final speech estimate.
One option to introduce prior knowledge of speech envelopes is to use codebooks. Thereby,
the envelope estimation problem is converted into a classification problem. First, we
create a codebook representing the different speech envelope patterns. Next, we train
a suitable classifier to estimate the correct codebook entry for each frame, conditioned
on the initial estimate Ĥl(m). The other perspective is to regard the envelope estimation
problem as a regression, which predicts the underlying clean-speech envelope from the
noisy observation.

The improved speech envelope Hl(m) is subsequently combined with the refined
speech excitation signal Rl(m), yielding an improved speech estimate Sl(m). However,
this synthetic speech estimate sounds less natural than the initial speech estimate, as the
excitation signal and the envelope are artificially imposed. Thus, instead of using Sl(m) to
recover the speech, we use Sl(m) to update the a priori SNR:

ξ̃l =
|Sl(m)|2

λ̂v,l(m)
. (4)

This is then used to compute a new gain function: G̃l(m) = gLSA(ξ̃l(m), γ̂l(m)). The
final speech estimate S̃l(m) is given by applying this new gain G̃l(m) to the microphone
signal Yl(m):

S̃l(m) = Yl(m) · G̃l(m) . (5)

The enhanced time-domain signal can be obtained from S̃l by over-lap add.

3. Cepstral Envelope Estimation

Since the envelope can be compactly represented in the cepstral domain, this estima-
tion is named cepstral envelope estimation (CEE) in Reference [11]. It has been shown that
the classification DNN (C-DNN) is the optimal system in their framework in comparison
with the GMM-HMM baseline, DNN-HMM pipeline, and the regression DNN. Thus, we
take C-DNN as the baseline of our research.

In this baseline system, the envelope is extracted by LPC analysis and represented by
LPCCs. The codebook is generated in two steps. First, using the energy level criterion, the
windowed frames of clean signals are divided into two categories, namely speech active
frames and speech inactive frames. Then, the zero-mean speech active frames are clustered
into C classes by the Linde–Buzo–Gray (LBG) algorithm [24]. To complete the codebook
generation, one spectrally flat envelope is added as the template for silent frames. Once
this codebook is generated, the speech active frames of the training data are labelled by
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assigning them to the closest template (codebook vector). A classifier can be trained using
these labels and appropriate multi-condition data. During inference, the output of the
classifier is interpreted as the posterior distribution of the codebook entries conditioned
on the observation. The final envelope estimate cl is then obtained either by maximum a
posteriori considerations, or by a weighted sum of the different templates (i.e., the optimal
estimate in the MMSE sense):

cl =
C−1

∑
i=0

pi
l · h

i , (6)

where hi is the ith template in the codebook, and pi
l is the posterior probability of the ith

template for frame l, conditioned on the noisy observation.
In this section, we will take a closer look at each individual step of this baseline to

further optimise it for speech enhancement.

3.1. Feature Extraction
3.1.1. LPCC

The LPC coefficients ({al(1), al(2), . . . , al(N)}) of the AR model, for frame l, can be
derived from the auto-correlation function [25] of the preliminary speech estimate. The
coefficients are then converted to the cepstrum in the following recursive manner:

cl(0) = ln N

cl(p) = al(p) +
p−1

∑
i=1

i
p

cl(i)al(p− i) , for 1 ≤ p ≤ N .
(7)

These coefficients cl = {cl(1), cl(2), . . . , cl(N)} derived from LPC are taken as speech
envelope representations.

3.1.2. Cepstral Coefficients (CC)

Cepstral coefficients are straightforward to calculate from the preliminary speech
spectrum Ŝl(m) by a M-point iDFT as:

dl(q) = iDFT{log |Ŝl(m)|} , (8)

with q being the quefrency bin. Given the symmetric nature of the cepstrum (property of
the (i) DFT on real-valued symmetric spectra), only the first half of the cepstrum (from
bin 0 to bin M/2) needs to be preserved for further investigation. Then, the coefficients
can be divided into three parts according to the source-filter model: first, the energy
term dl(0); next, the initial few coefficients representing the speech envelope, namely
dl = {dl(1), dl(2), . . . , dl(N)}; and, lastly, the remaining coefficients encoding the speech
fine structure.

3.2. Codebook

It is proposed to create the codebook from speech active frames in Reference [11].
The partition is reasonable given the purpose of the codebook, but it should be noted
that the energy criterion is not perfect to generate speech activity detection labels. The
short-time Fourier representation is computed on overlapped, windowed frames. Thus,
some frames that are classified as speech inactive actually possess very weak speech (due
to the leakage of speech into the adjacent silent frames), and thus, their envelopes move
away from a flat shape. This indicates potentially more variance even in the low-energy
frames. In CEE, this error can degrade the system performance in two possible ways.
First, according to this procedure, the idealised flat envelope is assigned to all low-energy
frames, although some of them are closer to one of the speech templates. If the classifier
is perfectly accurate, this would introduce speech distortion to the speech estimate when
updating the a priori SNRs according to (4). In addition, this assignment error increases the
difficulty of classifier training. The codebook assignment can be regarded as a quantisation
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of the clean speech signal envelope, and the classifier is trained to learn the mapping
from the distorted coefficients to these quantised templates. This is the standard setting
of the classification problem. However, the frames are assigned based on different rules,
which makes the learning target ambiguous: it can be either a mapping to the most-likely
speech envelope template for a speech active frame, or a replacement by a complete flat
envelope for a low-energy frame. Moreover, the major indication of this speech/non-speech
mapping, the frame energy level, is not available to the classifier. From the point of view
of network training, this manually separated ‘silent’ codebook entry actually introduces
noise into the training set. Consequently, the network training could be deteriorated by this
elaborate division.

In order to investigate the influence of this assignment error, we followed the proce-
dure to create the LPCC codebook from the speech-active frames of the TIMIT training
set. After including the ideal flat envelope for silence, we reassigned all the ‘non-speech’
frames to entries of this codebook based on the cepstral distance. Figure 2 depicts the
codebook entry distribution for the two types of frames, where it is seen that, in fact, a large
portion of the ‘non-speech’ frames have envelopes similar to templates corresponding to
speech-active frames and, therefore, should not be quantised as a single idealised entry
with a flat envelope. Another interesting observation from this figure is that the envelopes
of these low-energy frames concentrate on a few entries.

Figure 2. Distribution of speech/non-speech frames where the speech codebook entries are obtained
from the speech active frames and the non-speech frames are idealised by a single entry with a
flat envelope. We term this the separate codebook. Note, however, that when assigning non-speech
frames on this codebook using the cepstral distance, they often correspond to codebook entries of
speech-active frames.

In order to take a closer look at those wrongly assigned frames, we plot all the envelope
templates in Figure 3 and arrange them in a descending order of the posterior distribution
of the codebook entries on non-speech frames (p(i|H0)). In other words, the low-energy
frames are more likely to take the envelopes on the left side of the figure. Two points are
now obvious: (1) despite manually removing the low-energy (‘silence’) frames, the speech
codebook can still contain spectrally flat templates; (2) low-energy frames have, more often
than not, non-flat spectral envelope shapes.

Figure 3. Envelope templates in the separate codebook, arranged by the posterior distribution of the
codebook entries on non-speech frames (p(i|H0)). The envelope with the highest possibility of being
non-speech is on the left.
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With this observation on the existing codebook generating method, we propose to
create the codebook from the envelopes of all frames in the clean-speech data. Figure 2
has shown that the clustering generates clearly distinct templates. Thus, separating the
frames in advance by the energy criterion is not necessary. Using zero-mean LPCCs of all
frames, now, we create a new unified codebook for the same speech corpus and plot the
entry distribution in Figure 4. It can now be observed that, in contrast to using the separate
codebook, the two types of frames are relatively mutually exclusive with regard to their
distribution among the unified codebook entries. Therefore, the unified codebook could be
a better choice for the speech envelope enhancement task. It should be noted that although
we only demonstrate the comparison between the separate and the unified codebook for
LPCC, an identical trend can also be observed in the CC-based codebooks.

Figure 4. Entry distribution of speech/non-speech frames on the unified codebook. Here, the
distributions of the speech and non-speech frames across the codebook entries seem relatively
mutually exclusive—speech-active frames rarely correspond to codebook entries where non-speech
frames show a high probability of association.

3.3. Envelope Estimator
3.3.1. Feedforward DNN Classifier

In Reference [11], it was shown that using a feedforward DNN for the classifier
outperformed the GMM-HMM approach. This network has a stack of fully connected layers
as hidden layers, and the output is normalised by the softmax layer for the classification.
The investigation showed that when the size of the network is fixed, the number of hidden
layers and the choice of activation functions both have very limited influence on the
network classification accuracy. We take the network composed of four hidden layers as
our baseline, because this network achieves the highest accuracy on both the development
set and the test set. We choose the activation functions of the network as follows: Leaky
ReLU for the input and hidden layers, and the sigmoid function for the output layer,
followed by a softmax layer to normalise the output.

3.3.2. Recurrent Neural Network-Based Classifier

Although the aforementioned DNN shows superiority to the GMM-HMM back-end
baseline in terms of classification accuracy, the temporal modeling ability provided by
HMM is missing in this DNN architecture. As a remedy, the DNN was complemented
by an HMM. However, the HMM results in a performance bottleneck [11]. In this regard,
recurrent neural networks could be a more suitable comparison to the GMM-HMM baseline.
In order to examine the function of the recurrent layers in the envelope estimation, we
investigate the GRU-based classifier in this work. We adopt the simplest architecture
here: one or several GRU layers in cascade with one FC layer to compress the output
feature dimension. The final output is normalised by the softmax function, allowing for its
interpretation as the a posteriori probability distribution across the codebook entries.

3.3.3. CRNN-Based Envelope Estimation by Regression

The envelope estimation problem can also be formulated as a regression problem from
the distorted envelope coefficients to the clean ones. Yet, according to Reference [11], the
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performance of a regression feedforward DNN is imbalanced at different SNRs. We propose
to use an alternative architecture, the convolutional neural network, for the regression
problem. CNN is popular because of its self-learning feature extraction ability. In order
to fully exploit this feature, we reformulate the original coefficient-to-coefficient envelope
estimation problem into a regression from the noisy spectrum with the initial gain function
estimate to the clean speech envelope coefficients. The two available features, the logarithm
of the zero-mean noisy magnitude spectrum and the logarithm of the LSA gain function,
are taken as two separate channels of the network input. After several convolutional layers
with the leaky ReLU activation function, the feature map is flattened and combined by the
FC layer. One GRU layer is employed as the final output layer of this regression network in
order to combine the past states with the current prediction and obtain a final estimate of
the envelope coefficients.

4. Evaluations

We will now evaluate the proposed speech envelope enhancement method in two
settings: (a) the oracle tests that assume the classifier is perfectly accurate—this provides
us with the basis for feature selection and demonstrates the full potential of the current
framework—and (b) the practical system tests that evaluate and compare the different
envelope estimation approaches in realistic settings.

4.1. Experimental Setup

All of the networks were trained and tested with the same synthesised data set; 90%
of the TIMIT training set and 21 files from ETSI noise set were mixed at 6 SNRs: {−5 dB,
0 dB, 5 dB, 10 dB, 15 dB, 20 dB}. The remaining 10% of the TIMIT training set was reserved
for the validation set. For the evaluation, the test set was created from the TIMIT test
set and the unseen noise signals from the ETSI database (Car, Traffic) and QUT database
(Cafe, Kitchen, and City) at the same 6 SNR levels. All of the speech and noise signals
were down-sampled to 16 kHz and high-pass filtered by a second-order Butterworth filter
with a cutoff frequency at 100 Hz before mixing. The SNRs for the mixing were calculated
according to Reference [26] in which, for speech, the speech active level is used, and the
noise level is computed using the long-term root-mean-square.

For all tests, the input noisy signal was first processed as follows in the preliminary
denoising stage. A pre-emphasis filter with a coefficient of −0.97 was first applied. The
signal was then segmented with 50% overlap and windowed by the square-root von Hann
window of M = 512 prior to computing its spectrum. For the LSA gain function, the
smoothing factor of the DD approach was α = 0.97. Further, the a priori SNR and a
posteriori SNR were bounded between −40 and 40 dB in order to avoid numerical issues.
The gain function was, finally, lower-bounded to −15 dB. The noise floor was estimated by
the speech presence probability minimum mean-square error (SPP-MMSE) approach with
fixed priors [27]. Without prior knowledge, we assumed an equal a priori probability for
speech presence and absence as suggested, and the optimal a priori SPP was set to 15 dB.

We kept the length of both feature vectors (LPCCs and CCs) set to N = 20 for a fair
comparison. The sizes of the networks and the computational costs are indicated by the
total number of their parameters and MACs per frame. It should, however, be noted that
there is a small difference of these values when using the unified or the separate codebooks:
in the latter case, there is one additional entry, so the output layer of the classification
networks needs to be modified accordingly. However, the difference caused by the choice
of the codebook is negligible compared to the total size and complexity of the networks.
Therefore, we report here the network size and MACs taking the unified codebook as
example. As with the baseline system summarised in Table 1, the C-DNN with four FC
hidden layers with 73 units in each layer has 29,820 parameters and performs 27,448 MACs
per frame.
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Table 1. Parameters of the Feedforward DNN classifier.

Input Size #Hidden Layers #Unit in the Hidden Layer

N = 20 4 73

Default activation functions Leaky ReLU, slope= 0.03
Activation functions of the last layer Sigmoid

Output normalisation Softmax

Number of parameters 29,820

MACs per frame 27,448

For the GRU classifier, we took one single layer of GRU with 62 nodes, which yielded
a network with 19,656 parameters and 19,220 MACs per frame, as shown in Table 2.

Table 2. Parameters of the GRU classifier.

Input Size #GRU Layers #Unit in the GRU Layer

N = 20 1 62

Activation functions Sigmoid

Output normalisation Softmax

Number of parameters 19,656

MACs per frame 19,220

These two classification networks were trained on the negative log-likelihood (NLL)
loss function. Since the training set was imbalanced, the NLL loss was further weighted
by the inverse of the normalised distribution of the codebook entries on the training set.
The learning rate was 0.001 for all networks. It was shown in Reference [11] that envelopes
estimated in an MMSE manner have an advantage over their MAP counterparts. Thus, we
adopted the MMSE approach for all classifiers.

Detailed parameters of the CRNN that predicts envelope coefficients from noisy LPS
and the LSA gain are listed in Table 3. The regression network was trained by the MSE loss
between the network prediction and the clean reference envelope coefficients.

Table 3. Parameters of the CRNN regression net.

Channels 4,8,8,1
Kernel size (Time = 1, Frequency) 3,3,3,1

Stride (Time = 1, Frequency) 2,2,1,1

Default activation functions Leaky ReLU, slope = 0.03

Number of parameters 4101

MACs per frame 11,044

4.2. Quality Measures

We evaluated the quality of the processed signal through four metrics from different
perspectives. The speech quality was measured based on the wide-band perceptual evalua-
tion of speech quality (WB-PESQ) [28]. We used the mean opinion score–listening quality
objective (MOS-LQO) scores whose range fell between 1.04 and 4.64 for the evaluation. In
the following text, we denote WB-PESQ MOS-LQO as PESQ in shorthand. The second
metric was short-time objective intelligibility (STOI) [9]. STOI indicates the speech intelligi-
bility as a value between 0 (incomprehensible) and 1 (perfect intelligibility). A higher score
is preferred on both metrics.
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Apart from these two widely used metrics, we also employed the white-box ap-
proach [5] to separately benchmark noise suppression and signal distortion. To this end,
the final gain function estimation G̃l(l) was applied to the speech and noise component of
the noisy input in order to obtain the filtered components, respectively:

s′ = iSTFT{G̃l(l) · Sl(l)} , (9)

and
v′ = iSTFT{G̃l(l) ·Vl(l)} . (10)

then, noise attenuation (NA)—the metric that measures the noise reduction ability—was
given by:

NA = 10 log10
[ 1

L

L−1

∑
l=0

∑T−1
k=0 v(k + lT)2

∑T−1
k=0 v′(k + lT)2

]
, (11)

where T is the frame length.
Similarly, the introduced signal distortion was measured by the segmental speech-to-

speech-distortion ratio (SSDR) as:

SSDR =
1
||L1|| ∑

l∈L1

10 log10
{ ∑T−1

k=0 s(k + lT)2

∑T−1
k=0 [s(k + lT)− s′(k + lT)]2

}
, (12)

where L1 is the set of speech active frames, and || · || is the cardinality of the set.

4.3. Oracle Test Results

First of all, we investigated the optimal speech envelope representations by using the
oracle tests. In these tests, the ground truth of the envelope codebook entries are available
while the two-stage framework is maintained. In other words, the oracle tests demonstrate
the upper bound of the envelope enhancement method in the given two-stage framework.
The performance difference among these systems depends, then, purely on the adequacy
of representations and the codebook generation methods in this task. Therefore, we can
choose the optimal feature based on the oracle test results. The features were examined in
the following aspects: (a) the original codebook whose corpus was manually separated into
two categories (dubbed ‘separate codebook’) vs. the proposed codebook that was created
from all available materials (‘unified codebook’); (b) LPCC vs. CC as the speech envelope
representation. Apart from the preliminary denoised results (LSA), one extra baseline
used was the oracle regression method, which utilizes the unquantised clean envelope
coefficients in the two-stage framework. Comparison of this oracle regression and the
oracle codebook systems measures the distortion introduced by envelope quantisation. The
evaluation results of these oracle tests are shown in Figure 5.

4.3.1. Codebook Optimisation: Findings from Oracle Tests

In terms of the speech quality, the unified codebook has a clear advantage, and the gap
between two codebooks increases with the input SNR. When the SNR exceeds 5 dB, the
separate codebook quantisation even degrades compared to the output from preliminary
denoising. The separate codebook has a marginal advantage on STOI when the input
SNR is low (≤0 dB). Yet, it is still questionable how much of this advantage can be
replicated by a trained classifier under such low SNRs and in realistic settings. As the
input SNR increases, the unified codebook begins to gain a small advantage. However, no
method shows a significant improvement on STOI compared to the noisy input signal when
SNR > 5 dB. This is somewhat expected, as the intelligibility of the noisy input signal also
increases at higher SNR and, especially above 5 dB, the intelligibility is quite high (close to
0.9, signifying almost perfect intelligibility). With the white-box decomposition of different
methods on the noise and speech component, it is clear that the unified codebook mainly
improves the noise reduction ability of the system. Given the fact that the major difference
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between the two codebooks lies in the envelopes of low-energy frames, it is understandable
that its influence on the speech distortion metric is small.

(a) ∆PESQ compared to the noisy signals

(b) STOI metrics for the oracle tests (c) NA−SSDR

Figure 5. The oracle system evaluated by ∆PESQ, STOI, and NA−SSDR, and grouped by input
SNRs. For the bar−plots, the 95% confidence interval is given by the error bars. LSA: the preliminary
denoising output; _sep: using separate codebook; _uni: using unified codebook; _Reg: the regression
method.

In general, the evaluation results of the oracle tests indicate that the unified codebook
is more suitable for envelope enhancement than the baseline separate codebook. This
improvement from the baseline is in line with our analysis of the distribution of the
codebook entries of clean speech: a direct clustering of all frames is enough to create the
codebook, because the envelope patterns of speech-inactive frames show low overlap with
their speech-active counterparts. It is also beneficial to have a finer quantisation of the
speech-inactive frames, even though their energy levels are low.

4.3.2. Feature Representation

No matter which codebook is chosen (unified or separate), CC has a consistent advan-
tage over LPCC in terms of both metrics most of the time. LPCCs only provide a marginally
higher boost to STOI when the input SNR is −5 dB. It is clear that CC is more appropriate
than LPCC for this task. When the input SNR is high, the choice of codebook actually plays
a more important role in the final speech quality. The NA-SSDR decomposition indicates
that both features perform similarly in terms of noise reduction when the input SNR is
low. CCs show a clear advantage in both components over LPCCs when using the separate
codebook. When the codebook is generated in a unified way and the input SNR is higher
than 0 dB, there is a trade-off between noise reduction and signal distortion: CCs introduce
less speech distortion while LPCCs suppress more noise. This divergence grows as the
input SNR increases. Yet, it should be noted that the difference in noise reduction is smaller
than the difference in signal distortion.

Based on the observations on the oracle tests, we can conclude that cepstral coefficients
quantised by the unified codebook demonstrate the greatest potential for application in
two-stage speech enhancement. Consequently, this is the feature set we shall use in the
subsequent evaluations.

4.3.3. Quantisation Error

Comparing the best oracle classification system (the CC-based unified codebook) with
the oracle regression system, the major difference comes up at high SNRs on PESQ. It is
interesting to note that a better envelope restoration provides more benefit if the input
signal itself is of higher quality, which presumably comes from a clearer excitation signal.
When the excitation signal is poorly structured, applying an improved envelope to it
introduces vocoding noise. On the contrary, if the excitation signal is of good quality,
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a good envelope estimation can restore the underlying speech to a better degree. The
quantisation makes basically no difference on STOI scores. From the PESQ and STOI scores,
it is clear that even with perfect envelope estimation, there is still room for improvement
in the two-stage framework with oracle envelope information, especially under low SNR
conditions. Generally speaking, envelope enhancement only provides us with a substantial
improvement in speech quality when the input SNR is high. This indicates that our two-
stage framework is limited by other components in the system, e.g., the noise floor estimator
and the quality of the initial estimate.

4.4. Practical System Evaluation Results

Next, we evaluate the trained speech envelope estimators on the same test set. Apart
from the optimal feature set decided in Section 4.3—the unified codebook based on cepstral
coefficients (CCs)—we also evaluate the classifiers using CCs quantised by the separate
codebook to verify our conclusions from the oracle test results.

4.4.1. Impact of Separate Codebook

First, we investigated the impact of the codebook entry assignment errors on a practical
system when using the separate codebook. Figure 6 compares the GRU classifier based
on the separate and the unified codebook against three baselines: (i) the results from the
preliminary denoising; (ii) oracle assignment of codebook entry based on the separate
codebook; and (iii) oracle assignment of codebook entry based on the unified codebook.

Using envelope enhancement (with separate or unified codebooks) yielded a consistent
improvement over the preliminary denoised signals. However, an interesting observation
is that, when using the separate codebook, the GRU performs better than the corresponding
oracle system when SNR is higher than 5 dB. This is true for both metrics and is more obvi-
ous with PESQ. However, this seems somewhat unsettling given that the oracle assignment
should represent the upper bound. This peculiar phenomenon only makes sense when
taking our previous analysis on the separate codebook into account: the energy-based
partition of the clean speech signals blurs the differences among the low-energy frames and
excessively simplifies many frames into a flat envelope—both of which lead to degradation
of the subsequent enhancement stage. Our statement can be circumstantially verified by
this extra improvement from the GRU. Compared with the LSA baseline, the improvement
by the GRU classifier on both metrics indicates that the network successfully learns to map
the distorted envelopes to the pre-determined templates, although there is the noise of as-
signment errors in the training data due to the extra energy criterion. When the input SNR
is high enough, the network is able to ‘correct’ the silent ‘ground truth’ labels to a better
estimate from the speech envelope templates. It is this correcting that makes the trained
classifier a better estimator than the oracle entry assignment for the separate codebook,
which would force a flat spectrum on such frames. Note, however, that this GRU estimation
is never as good as the oracle system using the unified codebook, which assigns all of the
frames solely by their envelope coefficients. Further, the unified-codebook-based GRU
classifier is never better than this oracle system, either. This further provides empirical
validation of our analysis regarding the benefit of the unified codebook vs. the separate
codebook, and the selection of the oracle assignment as the upper bound.

In order to further verify our hypothesis, we plot the envelope estimation cepstral
MSE error of the three systems in Figure 6c. When using the separate codebook, the GRU-
classifier gains an advantage over the oracle system from 5 dB onward, which is in line
with other objective metrics. This, again, provides us with a reason to choose the unified
codebook over the separate one in the practical system.
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(a) ∆PESQ compared to the noisy signals

(b) STOI

(c) Cepstral MSE

Figure 6. Comparison of the oracle systems and the GRU−classifier based on PESQ, STOI, and
cepstral coefficient prediction MSE, grouped by input SNRs.

4.4.2. Comparative Benchmark against DNN Baseline

Having established the superiority of the CC-based feature representation and the use
of a unified codebook, we now focus on benchmarking the performance of this envelope
estimator against the DNN classifier baseline [11] and the CRNN-based regression approach
described in Section 3.3.3 which directly predicts the envelope coefficients. The evaluation
results are shown in Figure 7, where the results of the preliminary denoising are also
included in order to better interpret the additional benefit provided by enhancing the
envelope in the two-stage framework.

(a) ∆PESQ compared to the noisy signals

(b) STOI (c) NA-SSDR

Figure 7. Comprehensive benchmark of the proposed systems against the DNN baseline in realistic
settings. Performance is evaluated by ∆PESQ, STOI and NA−SSDR, grouped by input SNRs. The
95% confidence interval is given by the error bars in the bar−plots.

Generally speaking, all three methods show consistent improvement from the prelimi-
nary denoised signals. In terms of the speech quality, two classifier networks (DNN and
GRU) perform similarly. GRU has a minor advantage when the input SNR is low, while
DNN scores slightly higher when SNR is high. The CRNN regression network, however,
shows a consistent improvement over the two classifiers at even lower computational cost.

If we take a closer look at the NA-SSDR decomposition, it can be observed that, at
low SNRs, the GRU and the CRNN architectures better preserve the target signal (SSDR is
1–2 dB more) compared to the DNN architecture, whereas the DNN architecture has better
noise attenuation (up to ∼1.5 dB more) here. The better signal preservation could be due to
the temporal modeling capability introduced by the recurrent layers, which is absent in
the DNN architecture. In most cases, the regression network has better signal preservation
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than the codebook methods, the reason for which could be the inherent limitation due to
quantisation in the latter methods. The choice between the GRU codebook approach and
the CRNN regression approach is a trade-off between noise reduction and speech distortion.

All of the trained networks demonstrate only minor differences on STOI compared
to the noisy signals. Nevertheless, compared with the preliminary denoising results, the
boost to STOI is consistent. When SNR is at 0 dB or 5 dB, the networks marginally benefit
the speech intelligibility.

In Figure 8, we provide two sets of samples to illustrate the performance of the
proposed envelope estimators. Compared to the clean reference envelopes, it is clear that
the CRNN better preserves the speech details, which gives us an intuitive impression of
the performance difference of the two networks: when the speech is better estimated in
the initial stage, the regression network provides a more detailed structure of the envelope,
whereas the classifier constrained by the codebook seems more beneficial when the speech
is unclear. This trade-off can also be observed from the audio samples: https://aspireugent.
github.io/speech-envelope-estimation/ (accessed on: 16 April 2023).

(a) Speech envelope estimate for speech with cafe noise at SNR = 0 dB

(b) Speech envelope estimate for speech with street noise at SNR = 0 dB

Figure 8. Comparison of the speech envelope estimate by different estimators. We highlight the re-
gions where the CRNN-regression network estimates a more refined structure with dashed rectangles
and the regions where the GRU-classifier shows an advantage with solid rectangles.

Envelope estimation can affect the excitation signal generated by CEM. Therefore, the
optimal combination of two methods requires further investigation.

5. Conclusions

In this paper, we investigated and optimised the cepstral envelope estimation for
speech enhancement using the two-stage framework. Through oracle tests, we conclu-
sively demonstrated that cepstral coefficients provide a better envelope representation
compared to linear prediction cepstral coefficients. Furthermore, the manual division of
the speech/non-speech frames for codebook creation was shown to be unnecessary and
even detrimental to the system performance. Using the optimal envelope feature representa-
tion, the GRU-based classifier achieved better performance than the baseline feedforward
DNN-based classifier. This performance improvement was, additionally, obtained with
fewer parameters and lower computational cost. Envelope estimation could be further
improved by performing a regression onto the envelope coefficients instead of utilising a
codebook-based template. The CRNN network designed for the regression took the noisy
input spectrum and initial gain function estimate as input and performed better with a
lower computational cost in comparison with the codebook-based estimator. Compared to

https://aspireugent.github.io/speech-envelope-estimation/
https://aspireugent.github.io/speech-envelope-estimation/
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the initial speech estimate (preliminary denoising), all of the evaluated methods brought
benefits to the quality of the enhanced signal without reducing the intelligibility.

More importantly, the oracle tests revealed that the fundamental shortcoming of the
two-stage framework lay not in the envelope estimation, but in limitations resulting from
other components, such as the noise floor estimate and the statistical-model-based gain
function, which performed poorly in very dynamic noise conditions.

Given a better initial estimate of the underlying speech signal, the proposed envelope
estimators could be integrated into the signal processing pipeline in post-processing or as a
second neural network focusing on the envelope estimation.

In summary, if the goal is to have improved single-microphone noise suppression
within an interpretable, controllable, low-cost framework, then the work presented in this
paper may be a good option. On the other hand, end-to-end enhancement can yield better
noise suppression and speech quality, but at the cost of higher computational expense,
poorer interpretability, and lack of control possibilities.
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