
Citation: Preuveneers, D. AutoFL:

Towards AutoML in a Federated

Learning Context. Appl. Sci. 2023, 13,

8019. https://doi.org/10.3390/

app13148019

Academic Editor: Luigi Portinale

Received: 12 May 2023

Revised: 5 July 2023

Accepted: 7 July 2023

Published: 9 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

AutoFL: Towards AutoML in a Federated Learning Context
Davy Preuveneers

imec-DistriNet, KU Leuven, Celestijnenlaan 200A, B-3001 Heverlee, Belgium; davy.preuveneers@kuleuven.be;
Tel.: +32-16-327853

Abstract: Federated learning (FL) is a decentralized machine learning (ML) technique that learns
from distributed data by moving the training process from a centralized server towards many clients
rather than centralizing the client data, as is common with classical machine learning. The recent
literature on federated learning often focuses on domain-specific use cases (e.g., IoT), investigates
various privacy concerns (e.g., membership inference), or analyzes the impact of adversarial attacks
(e.g., poisoning) and possible countermeasures. In these works, it is common for the server to have
already chosen a specific machine-learning model and predefined hyperparameters prior to initiating
the distributed training process. This decision is based on the server’s ability to accomplish the task by
either reusing well-established neural network architectures suitable for the specific task (e.g., ResNet-
50 for image classification) or evaluating the adequacy of a model using the limited data it has
access to. Additionally, the server may also assess publicly available datasets, which may or may not
accurately represent real-world data distributions. In this paper, we address the challenge where this
step—i.e., the ML model selection and hyperparameter optimization—is not possible in a centralized
manner. In such a context, the data of a single client may not be sufficient or not representative enough
to construct an ML model configuration that is effective for all clients. In real-world deployments, the
data on the different clients may be imbalanced and heterogeneously distributed, and the performance
impact of countermeasures is often unclear upfront. While various automated machine learning
(AutoML) frameworks have been proposed for classical machine learning and deep learning in a
centralized setting, we investigated the practical feasibility of AutoML in a federated learning context
while taking into account the presence of security and privacy countermeasures. We implemented
and validated our proof-of-concept framework, called AutoFL, on top of open-source libraries for
machine learning, federated learning, and hyperparameter optimization, and have demonstrated the
added value of our framework with public datasets in different scenarios.

Keywords: federated learning; AutoML; model selection; hyperparameter tuning; security; privacy

1. Introduction

Federated learning [1,2] is a distributed approach to machine learning that enables
machine learning (ML) models to be trained on decentralized data without the need to first
centralize the data. In a classical machine learning approach, the data is collected from
different clients and centralized in one location before training the model. With federated
learning, however, the data remains decentralized, and the model is trained locally on each
client. The model’s parameters or coefficients of each client are then sent back to the central
coordinating server, where they are aggregated and then used to update the global model.
This process is repeated iteratively until the model converges to a satisfactory level.

The main advantages of federated learning include better data protection [3,4], lower
communication costs [5] and greater efficiency [6,7]. It has been applied in various sectors
where privacy concerns prevent the centralized collection of data, such as health care [8–10]
and finance [11–13]. However, federated learning is not without its challenges. Beyond
the fact that convergence of the ML model is not straightforward with clients [14] having
heterogeneous data distributions, the decentralized training approach is also subject to
various security and privacy threats [4,15].

Appl. Sci. 2023, 13, 8019. https://doi.org/10.3390/app13148019 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13148019
https://doi.org/10.3390/app13148019
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-6279-4430
https://doi.org/10.3390/app13148019
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13148019?type=check_update&version=2

Appl. Sci. 2023, 13, 8019 2 of 29

One particular challenge for developing effective AI-based applications is selecting
the type of ML model and its optimal hyperparameters for use. Whenever a single client
has plenty of data to train a model, then various AutoML frameworks such as auto-
sklearn [16], TPOT [17], and H2O AutoML [18], can help with ML model selection and
optimization. For federated learning, however, the related literature typically focuses
on how to federate classical machine learning or deep learning methods, how to apply
various privacy-enhancing schemes, or how to customize the ML pipelines for specific
application areas. The actual ML model configuration is typically defined upfront. As an
example, in computer vision tasks, the centralized server might opt for popular neural
network architectures such as VGG-16 [19] (with approximately 138 million parameters),
ResNet-50 [20] (with around 25.6 million parameters), or Inception-ResNet-V2 [21] (with
roughly 56 million parameters). However, these neural networks might be excessively
deep and contain a large number of parameters, which can lead to overfitting when the
training set is limited. In centralized training scenarios, assessing the quantity and quality
of training data is a relatively straightforward process. However, in federated learning,
this becomes challenging as the training data is distributed across multiple nodes, possibly
with imbalanced classes, making it difficult to evaluate the overall dataset. Certainly, in
such scenarios, it is important to note that a model trained on one node may not perform
effectively on another node. This discrepancy can arise due to insufficient representation
of the training data of the first node, meaning that the test data on the second node falls
outside the distribution seen during training. The second node’s test data can be considered
out-of-distribution. Hence, it is essential for multiple nodes to collaborate and collectively
train a model using their respective data. This collaborative learning approach helps ensure
that the test data remains within the distribution seen during training, thereby minimizing
the occurrence of out-of-distribution scenarios. Last but not least, larger network sizes
demand increased computational resources, which may not be readily available on the
participating nodes in federated learning. In reality, model selection and optimization in a
federated learning context are not straightforward.

The challenge that we address in this work is the problem context where (a) a single
client’s data is not enough or not sufficiently representative to select a model and hyper-
parameters upfront and (b) centralizing the data is not feasible because of resource or
confidentiality constraints. In such scenarios, it is crucial to employ an approach that allows
us to choose the optimal model type and configuration without the need to centralize the
training data from participating nodes to the coordinating server. This approach should
also account for the resource availability at each node to locally train a model, ensure
the confidentiality of a node’s sensitive data during the training of different models, and
handle possible class imbalances across the nodes. We propose AutoFL, a framework that
combines AutoML and federated learning in a context with heterogeneous systems and
data, to enable the following objectives:

1. Automate the ML model selection and the model’s hyperparameters in a federated
learning context given a specific optimization criterion (e.g., the loss metric).

2. Ascertain the feasibility as well as any performance implications due to class imbal-
ances or heterogeneously distributed datasets.

3. Identify relevant trade-offs from a model performance, network overhead, and com-
putational complexity perspective.

The remainder of this paper is structured as follows. We review relevant related work
in Section 2 and analyze limitations in contemporary AutoML frameworks in Section 3.
Section 4 discusses our approach to how we implemented AutoML in a federated learning
context on top of existing open-source solutions, with or without the application of certain
privacy-enhancing techniques. We evaluate the benefits and drawbacks and elicit lessons
learned in Section 5. In Section 6, we conclude by summarizing the main insights and
opportunities for further research.

Appl. Sci. 2023, 13, 8019 3 of 29

2. Related Work

In this section, we refer to the relevant state-of-the-art in two particular areas, specif-
ically the domain of federated learning and the complementary line of research on au-
tomated machine learning. Providing a detailed overview of each of these domains is
beyond the scope of this section. The related works described below are meant to illustrate
the complexity of the federated learning ecosystem. For a more detailed analysis and
comparison of methods and application domains, we refer to the numerous surveys on
federated learning [2,6,8–10,22].

2.1. Federated Learning: Heterogeneity and Trade-Offs

System heterogeneity in federated learning is the result of unbalanced computational
resources and/or communication bandwidths across the clients, causing stragglers to
indeed increase the federated training time. This is why federated learning algorithms
typically perform multiple local iterations on a fraction of randomly sampled clients before
aggregating the local model updates via the central coordinating server [23,24]. Konečný
et al. [5] explored different methods to reduce the costs of uplink communication. These
methods include (1) structured updates, where updates are learned from a restricted space
that is parameterized with a small number of variables, and (2) sketched updates, where full
model updates are learned which are compressed with combinations of various techniques
including quantization, random rotations, and subsampling before the update is sent to
the server. The authors experiment with CIFAR-10 image data for image classification
and the Reddit post data for next-word prediction. Their experiments show that there
are trade-offs, amongst others, between the accuracy, the various communication cost
reduction techniques, the number of rounds, and clients in the network. However, the
experiments start with a predefined neural network, reusing “Model C” from [25] for the
CIFAR-10 experiment and a custom LSTM model for the Reddit data experiment.

Another concern is data distribution heterogeneity, i.e., the data is distributed across
the different clients in an unbalanced manner or non-independent and identically dis-
tributed (non-i.i.d.), causing the model not to converge during training. Sattler et al. [26] ex-
plore how to make communication more efficient for federated learning with non-i.i.d. data.
Luo et al. [14] proposed a method to address both system and data distribution heterogene-
ity based on an adaptive sampling of the clients. Rather than selecting clients uniformly at
random or proportional to their amount of training data, the authors propose an optimal
client sampling strategy that minimizes the wall clock time for training the model while
offering convergence guarantees. Their experiments show a significant reduction of wall
clock time even if their method requires more training rounds for reaching the same target
loss as that of the baseline methods.

Security and privacy are important concerns, and various threats and countermeasures
within the frame of federated learning are discussed in topic-specific surveys [1,4,15]. These
attacks vary from data and model poisoning attacks to membership and property inference
attacks, as well as generative adversarial network (GAN) attacks. Typical defenses include
differential privacy (DP), secure multi-party computation (MPC), and homomorphic en-
cryption (HE). For example, Byrd et al. [13] explore the risk of training with sensitive data
in the financial domain and the impact of privacy-enhancing techniques. More specifically,
the authors investigate differential privacy to introduce noise to a model’s parameters as a
way to mitigate the leakage of private data. A drawback of differential privacy is the fact
that it typically reduces the accuracy of the trained model. That is why the authors also
explore secure multiparty computation such that the coordinating server does not learn
private information. They investigate the impact of these techniques on a logistic regression
model trained on a real-world credit card fraud dataset. The objective of their research was
to offer a framework to an audience with a computer science background but without any
prior knowledge of security, privacy, and distributed learning. They implicitly confirm the
complexity of federated learning and its many trade-offs.

Appl. Sci. 2023, 13, 8019 4 of 29

While many of the previous works focused on federating neural networks, classical
machine learning methods can also be federated. Liu et al. [27] recently proposed a novel
model called federated forests. This is a privacy-preserving tree-based ML model based
on CART trees [28] and bagging [29]. This federated model additionally offers privacy
guarantees across regions by redesigning the tree-building algorithms and applying en-
cryption in combination with a third-party trusty server so that information exchange
is limited and each client in the federation is blinded from one another. This work il-
lustrates that not only is federated learning not limited to deep learning, but that other
non-functional requirements, such as security and privacy, can incur additional costs and
trade-offs (e.g., an extra computational cost due to encryption while minimizing communi-
cation). FedTree by Li et al. [30] is a similar tree-based approach toward federated learning.
Their method relies on gradient-boosting decision trees (GBDT), and it supports several
privacy-enhancing techniques, including homomorphic encryption, secure aggregation,
and differential privacy.

Flower [31,32] is a federated learning framework that supports both classical machine
learning and deep learning models. Compared to other frameworks, such as PySyft [33]
(https://github.com/OpenMined/PySyft, accessed on 1 May 2023) or TensorFlow Feder-
ated (https://www.tensorflow.org/federated, accessed on 1 May 2023), Flower is ideally
suited for research purposes because of its simplicity, its ability to be deployed on edge
devices, and its support for on-device training of federated learning algorithms. Our
framework leverages and extends Flower to realize AutoML in a federated learning context,
hereby exploring different trade-offs and optimization objectives.

2.2. Automated Machine Learning: From Centralized to Federated Learning

Automated machine learning (AutoML) is the process of automating time-consuming
tasks in the development of high-quality ML models for classification or regression pur-
poses. These tasks include data pre-processing, feature selection, model selection and
optimization, hyperparameter tuning, etc., and typically multiple variants are tested in
parallel. AutoML frameworks such as auto-sklearn [16], TPOT [17] and H2O AutoML [18],
can help with ML model selection and optimization. For detailed comparisons of these
and other tools, we refer to the benchmarks carried out in other works [34,35]. Even Ma-
chine Learning as a Service (MLaaS) providers—such as Azure (https://azure.microsoft.
com/en-us/products/machine-learning/automatedml/, accessed on 2 July 2023), Ama-
zon (https://aws.amazon.com/machine-learning/automl/, accessed on 2 July 2023) and
Google (https://cloud.google.com/automl, accessed on 2 July 2023)—offer automated ma-
chine learning capabilities to data scientists and ML engineers. Many of these frameworks
operate on centralized data, and some of them can parallelize and distribute the automa-
tion process across a cluster of clients. However, none of them are tailored to construct an
effective ML model within the constraints and limitations of a federated learning context.

Seng et al. [36] proposed the HANF framework that implements both hyperparameter
optimization and neural architecture search (NAS) in a federated learning context. As such,
it is an AutoML framework for data distributed across several servers without the need for
centralizing the data. Their framework uses a gradient-based approach to optimize both the
neural network architecture as well as non-architectural hyperparameters of the learning
algorithm. They validate their framework on the FashionMNIST and CIFAR-10 image classi-
fication tasks, both in independent and identically distributed (i.i.d.) and non-independent
and identically distributed (non-i.i.d.) configurations. Their framework can compete with
other NAS methods while optimizing other non-architectural hyperparameters. Their
approach is limited to neural network models and does not explore other kinds of ML
models or any other optimization trade-offs, including the impact of privacy-enhancing
techniques such as differential privacy (DP) or secure multi-party computation (MPC).

https://github.com/OpenMined/PySyft
https://www.tensorflow.org/federated
https://azure.microsoft.com/en-us/products/machine-learning/automatedml/
https://azure.microsoft.com/en-us/products/machine-learning/automatedml/
https://aws.amazon.com/machine-learning/automl/
https://cloud.google.com/automl

Appl. Sci. 2023, 13, 8019 5 of 29

2.3. Bridging the Gap

The aforementioned works have resulted in a plethora of methods to address chal-
lenges related to data distribution and system heterogeneity and to mitigate security and
privacy threats. It is obvious that trade-offs exist between the accuracy of a model, the
computational and communication cost to compute it, and the overhead of the security and
privacy guarantees to be provided to the data owners.

In this work, we research and implement AutoFL, an AutoML framework for federated
learning leveraging Bayesian optimization to account for the many optimization objectives
and trade-offs and to simplify the development of high-quality ML models in real-world
settings that are characterized by various forms of heterogeneity.

3. Analysis of a Contemporary AutoML Framework

Our framework builds upon the design principles of automated machine learning
frameworks, including auto-sklearn [16,37,38]. The different stages of this optimization
pipeline are depicted in Figure 1 for a classifier pipeline. The meta-learning typically
predefines the search space for the hyperparameters and preprocessing in the subsequent
stages. The idea behind meta-learning is that datasets with similar meta-features perform
similarly on the same set of hyperparameters. Auto-sklearn computes about 38 meta-
features [37] (e.g., number of classes, number of features, skewness, kurtosis, . . .) on
140 reference datasets from the OpenML repository (https://www.openml.org, accessed
on 15 May 2023). The hyperparameters performing the best for a reference dataset with
meta-features similar to the new dataset serve as an instantiation for the Bayesian optimizer.
After this initialization, the AutoML pipeline will then explore the search space to iteratively
start with the data and feature preprocessing before evaluating the classifier against the
test data. The results are then evaluated on a test set, and the hyperparameters are further
optimized for a given error metric (e.g., accuracy or f1) using Bayesian optimization. In
the last step, an ensemble model is constructed based on the top best base models (or only
the best model for an ensemble of size 1). Listing 1 illustrates how a classifier is built with
the auto-sklearn framework. This particular example constructs an ensemble with only
one base model that is constrained to classifiers of type Random Forest (RF). The example
also further illustrates how many models are assessed in parallel and how much time
and memory are granted to construct the ensemble. The AutoSklearnClassifier() in line 26
constructor implements the whole AutoML pipeline as depicted in Figure 1.

Xtrain, Ytrain,

Xtest

Meta-
Learning

Data
Preprocessor

Feature
Preprocessor

Classifier

Build
Ensemble Ŷtest

B
ay

es
ia

n
O

pt
im

iz
at

io
n

● Rescaling
● One-hot Encoding
● Imputation
● Balancing
● Variance Threshold
● ...

● PCA
● Fast ICA
● ...

● Random Forest
● SVC
● Logistic Regression
● K Nearest Neighbors
● SGD
● Multi-Layer Perceptron
● AdaBoost
● ...

Rescaling:
● None
● Normalize
● Standardize
● Min-Max
● …

Imputation:
● None
● Mean
● Median
● ...

Balancing:
● None
● Weighting
● …

Variance
Threshold:
● Threshold

...

SVC:
● Linear
● Poly
● RBF
● Sigmoid
● …

Random Forest:
● Max depth
● Min sample split
● Max leaf nodes
● Min samples leaf
● Num Estimators
● Max samples
● Max features
● ...

K Nearest
Neighbors
● K

...

A
ut

oM
L

P
ip

el
in

e

Figure 1. Simplified representation of auto-sklearn’s optimization pipeline.

https://www.openml.org

Appl. Sci. 2023, 13, 8019 6 of 29

Listing 1. Code example of a classifier built as an auto-sklearn ML pipeline.

1 # Example of manual feature preprocessing
2 def make_preprocessor(X_train):
3 numeric_features = [\dots]
4 categorical_features = [\dots]
5 passthrough_columns = [’timestamp’]
6

7 # Feature selection requires non-negative input
8 numeric_transformer = make_pipeline(MinMaxScaler())
9 categorical_transformer = make_pipeline(OrdinalEncoder(

10 handle_unknown=’use_encoded_value’, unknown_value=1000000))
11

12 Preprocessor = ColumnTransformer(
13 transformers=[
14 (’passthrough_transformer’, ’passthrough’, passthrough_features),
15 (’numeric_transformer’, numeric_transformer, numeric_features),
16 (’categorical_transformer’, categorical_transformer, categorical_features)
17])
18

19 return Preprocessor
20

21

22 # Manual feature engineering (if needed)
23 preprocessor = make_preprocessor(X_train)
24

25 # Configure the AutoML classifier
26 automl_model = AutoSklearnClassifier(
27 time_left_for_this_task=3600, # Max total training time (in seconds)
28 per_run_time_limit=600, # Max training time for single model (in seconds)
29 memory_limit=65536, # Max used memory (in megabytes)
30 tmp_folder="tmp",
31 metric=f1, # Metric to optimizate: accuracy, f1, recall, \dots
32 scoring_functions=[accuracy, f1, precision, recall],
33 n_jobs=20, # Max training jobs in parallel
34 ensemble_size=1, # Limit ensemble to 1 base model only
35 initial_configurations_via_metalearning=0,
36 include={
37 "classifier": ["random_forest"] # Limit classifier type in ensemble to Random Forest
38 }
39)
40

41 # Construct the pipeline with the manual preprocessor and the AutoML pipeline
42 model = make_pipeline(preprocessor, automl_model)
43

44 # Fit the model on training set
45 model.fit(X_train, Y_train)
46

47 # Evaluate on test set
48 Y_pred = model.predict(X_test)
49

50 print("Accuracy: ", accuracy_score(Y_test, Y_pred))
51 print("F1 score: ", f1_score(Y_test, Y_pred, average=’weighted’))
52 print("Precision: ", precision_score(Y_test, Y_pred, average=’weighted’))
53 print("Recall: ", recall_score(Y_test, Y_pred, average=’weighted’))

While auto-sklearn is a powerful framework, it is not immediately suitable for auto-
mated machine learning in a federated learning context. Here is an overview of some of
the more practical challenges:

1. Auto-sklearn supports parallel computation and evaluation of ML models via the
Dask.distributed framework (https://distributed.dask.org, accessed on 15 May 2023).
Furthermore, parallelizing auto-sklearn across multiple machines is technically fea-
sible (by configuring a Dask scheduler, a client, and multiple workers), though not
as straightforward as a single-machine deployment. However, the nature of the dis-
tributed computing does not correspond with a federated learning context where no
data but only model updates are shared with a centralized coordinating server.

2. Auto-sklearn leverages the scikit-learn [39] library, which specializes in classical
machine learning pipelines. It has support for simple neural networks, such as a multi-
layer perceptron (MLP) classifier, but not for the construction of more sophisticated

https://distributed.dask.org

Appl. Sci. 2023, 13, 8019 7 of 29

neural networks for which specialized libraries, such as TensorFlow and PyTorch,
exist. Whether or not to explore both classical ML models and deep learning models
is a decision to be made by the MLOps engineer or data scientist, but ideally, the
opportunity should be granted by the federated AutoML framework.

3. The scikit-learn library implements a multitude of classifiers and regressors for which
implementing a federated equivalent is not trivial. For example, the iterative approach
of federated learning works well for logistic regression (LR) and multi-layer percep-
tron (MLP) but not for support vector classification (SVC). Indeed, for LR model
updates, the internal coefficients of the model can be easily merged with those of other
model updates to construct an aggregated model, for example, through federated
averaging. For other methods, such as SVC, the implementation does not allow direct
access to these coefficients or to construct a new model via the aggregated coefficients.

4. As depicted in Figure 1, auto-sklearn not only selects ML models and optimizes
their hyperparameters, but it also implements many techniques for automated data
and feature pre-processing. In federated learning, it is not trivial to implement
these. Regarding data pre-processing, one-hot encoding only works effectively if all
clients in the federation have the same categorical values and use the same process to
compute the derived features. However, this scenario is rather unlikely. The rescaling
of numeric features may be a bit easier to compute collaboratively, but it assumes
that at least some meta-features (e.g., min and max values) are being shared by the
clients with the coordinating server. For feature pre-processing, techniques including
dimensionality reduction are far less trivial to realize without centralizing the training
data.

5. Auto-sklearn constructs an ensemble model that is optimized for a particular error
metric (e.g., f1, see line 31 in Listing 1 while computing other metrics after constructing
the ensemble (see line 32 in the same figure). However, in a federated learning context,
there are multiple trade-offs, including the resource usage (CPU, memory, network)
for the clients in the federation as well the coordinating server. While it is possible to
implement a custom error metric, the auto-sklearn framework can only be extended by
following the provided APIs, and those are only data-oriented. As such, auto-sklearn
does not support multi-objective optimization out of the box.

6. In a federated learning context, there are many more hyperparameters for collabora-
tively learning an ML model. Examples include the number of clients to involve in
each training round (all clients or only a subset), the method to select these clients
(random or adaptive), the relative impact of each model update (uniform, weighted
by the amount of data), the size of each model update (full model update or only
slices of a model update), etc. There are many more hyperparameters to explore in
federated learning. Some of them might be decided upon upfront by the MLOps
engineer, whereas others are subject to optimization in a given deployment context.

7. Security and privacy are important concerns, and various defenses have been pro-
posed to counter threats. Whether these threats are relevant to the application and
data at hand is something that cannot be decided upon automatically. If an MLOps en-
gineer or data scientist identifies a certain threat, a multitude of countermeasures may
be available that influence not only the result but also how efficiently the resulting ML
model was obtained. For example, differential privacy may be less resource intensive
during training compared to cryptographic techniques, such as MPC and HE, but
the final model may be less accurate due to the introduction of noise. Unfortunately,
these countermeasures are not part of auto-sklearn but are (partially) available in
state-of-practice federated learning frameworks, such as PySyft [33].

8. Building upon the previous challenge, in a federated learning scenario that deals with
sensitive information, it is paramount that the AutoML framework never explores
models without proper countermeasures. Otherwise, the Bayesian optimization might
pick a configuration from the search space where the data or the model updates are

Appl. Sci. 2023, 13, 8019 8 of 29

not properly protected, such that the optimization process itself might leak sensitive
information during the automated machine learning.

Addressing all the above concerns within a single framework is beyond the scope of
this work, but it clearly shows there are many more hyperparameters and trade-offs to be
considered in federated learning scenarios. In the following subsection, we will highlight
the approach behind our framework and how it can be further extended.

4. Design and Implementation of the AutoFL Framework

In this section, we will discuss the design principles of our AutoFL framework, as well
as details about how the framework was implemented.

4.1. Conceptual Overview

In Figure 2, we can observe a high-level representation of the AutoFL framework,
showcasing its key components and improvements compared to conventional AutoML
frameworks such as auto-sklearn depicted in Figure 1. We will now delve into the simi-
larities and differences between the two frameworks, emphasizing how these variances
contribute to addressing the aforementioned limitations.

Xtrain, Ytrain,

Xtest

Data
Preprocessor

Feature
Preprocessor

Classifier

Build
Ensemble Ŷtest

A
ut

oF
L

P
ip

el
in

e

Configuration
and Deployment

Constraints

Model
Selection

Hyperparameter
Tuning

Resource
Monitoring

Multi-Objective
Optimization

Configuration
Under Test

Security and
Privacy

Constraints

AutoFL

Resource metrics

Error metrics

Constraint validation

CPU, memory usage

Model initialization

Figure 2. Conceptual block diagram of AutoFL with support for multi-objective optimization and
application-specific constraints.

AutoFL has two significant components in common with auto-sklearn and other
AutoML frameworks, and those are the Model Selection and the Hyperparameter Tuning.
AutoFL supports a selection of traditional ML and deep learning models. In practice,
multiple ML models and/or different hyperparameters for these models are tested in
parallel. Where our framework differs is the search space in which the ‘best’ model needs
to be found:

• Model Selection: Not every traditional ML model has an equivalent collaborative or
federated learning implementation, and this reduces the search space for AutoFL.

• Hyperparameter Tuning: AutoFL must account for the hyperparameters of each ML
model (e.g., the max depth of a decision tree), but also the hyperparameters for the
federation itself (e.g., local training rounds per epoch). This typically increases the
search space.

These capabilities of AutoFL effectively tackle limitations 1, 2, 3, and 6. To address
limitation 5, AutoFL goes beyond optimizing machine learning models based on a single
objective and additionally considers other concurrent optimization objectives if they are
relevant to the specific application and deployment environment:

• Model Objectives: In AutoFL, these objectives commonly revolve around established
error metrics such as accuracy, F1 score, precision, recall, ROC-AUC, and others. In

Appl. Sci. 2023, 13, 8019 9 of 29

addition to these standard metrics, alternative criteria can also be considered, for
example, to compare the interpretability of different machine learning models.

• Resource Objectives: The objectives encompass efficient resource utilization, such as
CPU, memory, and network traffic, both during federated training and after model
deployment. Two trivial examples are minimizing memory usage and reducing the
time required to evaluate a single input sample during deployment.

AutoFL implements various runtime monitors and aggregates resource usage statistics
across the nodes in the federation. The model error and resource usage metrics then feed the
Multi-Objective Optimization component in Figure 2. This component of AutoFL leverages
the SMAC3 library [40]. This library, which can be found at https://automl.github.io/
SMAC3/ (accessed on 3 July 2023) and https://github.com/automl/SMAC3 (accessed
on 3 July 2023), provides, amongst others, Bayesian optimization capabilities for both
single- and multi-objective optimization. For multi-objective optimization, SMAC3 utilizes
the ParEGO algorithm [41]. This algorithm combines multiple objectives into a single
scalar objective, allowing SMAC3 to optimize it in a manner similar to single-objective
optimization. Nonetheless, it retains the ability to identify configurations that lie on the
Pareto front. Implementing these optimizations using the SMAC3 library is relatively
straightforward.

The Configuration Under Test component is responsible for ensuring that any proposed
configuration complies with pre-defined deployment, security, and privacy constraints
before the model is trained in a federated manner. Additionally, it tracks metrics and other
runtime statistics across multiple configurations. For instance, this component integrates
techniques to detect class imbalance by analyzing the sample numbers of the minority and
majority classes. It follows an approach similar to the one proposed in [42]. The component
evaluates these class imbalances at both the individual node level and the federation level
as a whole. This component addresses limitation 5.

The components responsible for Configuration and Deployment Constraints as well as
Security and Privacy Constraints play a crucial role in defining the criteria for valid models
and imposing necessary limitations. For instance, they impose limitations on the maximum
amount of memory to be used either to train the model or after putting the model in
production (e.g., physical constraints of target devices) or the average time required to
evaluate the model for a single test sample (e.g., to support real-time data analysis such
as network traffic monitoring). The latter component may introduce security and privacy
measures during the aggregation process. For instance, secure aggregation techniques are
enforced to address concerns related to an untrusted coordinating server, while differential
privacy methods are enforced to uphold data confidentiality on individual nodes. If certain
models do not support these security and privacy tactics, they will be excluded during
the process of model selection. AutoFL cannot decide on its own whether these tactics are
necessary; they have to be declared by the data scientist or MLOps engineer. These two
components help address limitations 6, 7, and 8.

The current implementation of AutoFL successfully addresses all challenges except
limitation 4. Although basic data pre-processing techniques such as min-max normalization
can be performed in a federated manner, there is currently limited support for federated
dimensionality reduction and data/feature pre-processing in a privacy-preserving manner.

4.2. Methodology

Similar to previous works, the goal of our framework is to explore the search space
and develop high-quality models through federated learning while at the same time also
considering non-trivial trade-offs and practical limitations.

4.2.1. Dataset Distribution

In our federated learning experiments, we make use of well-known datasets, such as
MNIST (http://yann.lecun.com/exdb/mnist/, accessed on 1 May 2023), Fashion-MNIST
(https://github.com/zalandoresearch/fashion-mnist, accessed on 1 May 2023) and CIFAR-

https://automl.github.io/SMAC3/
https://automl.github.io/SMAC3/
https://github.com/automl/SMAC3
http://yann.lecun.com/exdb/mnist/
https://github.com/zalandoresearch/fashion-mnist

Appl. Sci. 2023, 13, 8019 10 of 29

10 (https://www.cs.toronto.edu/~kriz/cifar.html, accessed on 1 May 2023). The way these
datasets are distributed across the different clients in the federation can be configured:

• i.i.d. or non-i.i.d.: In the non-i.i.d. configuration, the different clients only have a
specific number of labels or a variation thereof.

• balanced or unbalanced: When balanced, the data is uniformly distributed across the
different clients; otherwise, it is not. This mode is only supported for i.i.d. data.

In practice, though, the data distribution across the different clients is an aspect that can
be configured independently of the automated federated learning pipeline. For example,
in a real-world dataset, it may not be known in advance whether the data and labels are
uniformly distributed across the clients or whether there is some skewness. The reason we
also test with well-known datasets which are distributed in a reproducible manner is to
systematically compare the impact of particular configuration options and the trade-offs
along the different optimization objectives.

4.2.2. Meta-Learning

As explained before, meta-learning allows us to define and constrain the search
space of the ML models and hyperparameters by leveraging experience obtained through
learning from reference datasets. As our goal is not only to optimize a particular error metric
(e.g., accuracy or f1) but also to account for resource usage, privacy-enhancing techniques,
etc., we currently do not implement meta-learning. For example, the application of privacy-
enhancing techniques can have an impact on the error metric or the computational overhead.
Due to this multi-objective optimization, it is not possible to reduce the search space
similarly because of these trade-offs.

4.2.3. Data and Feature Pre-Processing

Data rescaling and dimensionality reduction are typical steps in a machine-learning
pipeline. However, in a federated learning scenario, these steps are far less trivial to
realize. Our framework implements a subset of the aforementioned techniques depending
on whether clients are willing to share certain meta-features (e.g., min, max, mean, and
variation of a feature value) in the same way clients in a federated learning scenario reveal
the amount of data they individually train upon for the coordinating server to implement
weighted federated averaging. Indeed, after receiving the model updates (e.g., the new
weights w of a neural network) of each client k in round t, the coordinating server computes
the aggregated model wt via the local model updates wk

t of the K clients through federated
averaging as follows:

wt ←
K

∑
k=1

nk
n

wk
t (1)

The impact of a single client depends on the amount of data nk it locally trains upon.
This means that the coordinating server knows this meta-feature nk of each client k and the
total amount of data n. The other meta-features (e.g., min, max, mean, variance of a feature
value) can be shared with the coordinating server similarly.

However, when the client model updates are privacy sensitive or when the coor-
dinating server cannot be trusted, then fortunately, state-of-practice federated learning
frameworks offer alternative schemes (e.g., secure aggregation through secret sharing
and secure multi-party computation). The question then becomes whether the additional
meta-features can be shared not only with the coordinating server but with all clients such
that, for example, each client implements the same min-max rescaling. Computing the min
and max value of a particular feature value across all clients then becomes a multi-party
variation of Yao’s Millionaires’ problem [43,44]. In the max value variation, the goal is not
to learn which party has the highest value without revealing the individual values but
rather to learn what is the maximum value across the parties without sharing the individual
values or knowing which party has the highest value (except for that particular party itself).
More generically, given K clients, we compute a meta-feature z through a deterministic

https://www.cs.toronto.edu/~kriz/cifar.html

Appl. Sci. 2023, 13, 8019 11 of 29

function f known by all clients or parties and based on private inputs xk such that each
party obtains no additional information other than z:

z = f (x1, x2, . . . , xK) (2)

In our work, we now assume that any adversarial party in the federation follows a
semi-honest or honest-but-curious threat model, i.e., all parties follow the protocol but are
curious to know more information about the private inputs xk of the other parties.

Due to their innate complexity to implement them in a distributed and privacy-
preserving manner, our framework does not support any of the various dimensionality
reduction techniques that are commonly applied in classical machine learning pipelines
with high dimensional datasets.

4.2.4. Classifier

Our framework currently supports automated federated learning for binary and
multi-class classification tasks with classical machine learning as well as deep learning
methods, but there is currently no support yet for automated and federated regression
or clustering tasks. As our framework leverages the scikit-learn [39] library for classical
machine learning, we first selected a subset of classifier methods that can be applied in a
federated setting, and we grouped them into two categories:

• Coefficient-based models: There are ML models that can easily be represented by a set of
coefficients that can be incrementally learned. Example models include logistic regres-
sion and neural networks. For example, the sklearn.linear_model.LogisticRegression im-
plementation of scikit-learn (as explained on the documentation website https://scikit-
learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html,
accessed on 4 May 2023) offers access to the internal representation via the attributes
coef_ and intercept_. Additionally, we only consider models whose attributes can both
be read and directly written to, such that a new aggregated model can be computed
by averaging the coefficients. For certain models, such as the linear SVC classifier, it is
possible to read these attributes but not to modify them. Models with these kinds of
implementation restrictions will not be considered by our framework.

• Ensemble models: These types of models typically combine a multitude of baseline
models or estimators. Example models of this type include the random forest, Ad-
aBoost, and XGBoost classifiers. For example, a random forest classifier uses decision
tree models as their underlying estimators. These decision trees can be accessed via
the estimators_ attribute (as explained at https://scikit-learn.org/stable/modules/
generated/sklearn.ensemble.RandomForestClassifier.html, accessed on 4 May 2023).
A trivial but perhaps not the best way to learn an aggregated random forest classifier
in a federation is for each client to locally train a random forest classifier, and the
coordination server to construct a new random forest based on the estimators of the
clients’ models. This way, there is no need to average model updates or to improve
the aggregated model in multiple rounds. However, there might be better ways to im-
prove the accuracy of the aggregated model at the expense of a less resource-efficient
federated training approach.

4.2.5. Bayesian Optimization

Similar to auto-sklearn, our framework also adopts a Bayesian optimization approach
to find the best model feasible through federated learning. However, contrary to the
single optimization objective approach of auto-sklearn, our automated federated learn-
ing framework considers multiple optimization objectives in parallel, as outlined earlier.
Additionally, the list of hyperparameters to be optimized is further extended with some
federated learning-specific ones, such as the number of local training rounds and the num-
ber of participating clients in each training round. Under the hood, our framework uses
the same optimization framework as auto-sklearn, namely SMAC3 [40]. This makes it

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

Appl. Sci. 2023, 13, 8019 12 of 29

fairly trivial to configure the hyperparameter search space for different kinds of ML models
and their respective hyperparameters, as illustrated in Listing 2. The code example is a
reduced version of the actual implementation that configures several more ML models
and hyperparameters, as well as hyperparameters specifically for federated learning. In
addition, the example only implements a single optimization objective.

Listing 2. Simplified code example for the configuration of the hyperparameter search space of a
subset of ML classifiers using the SMAC3 optimization framework.

1 cs = ConfigurationSpace()
2 model_type = CategoricalHyperparameter(’model’, [’logistic_regression’, ’mlp’, ’random_forest’],
3 default_value=’logistic_regression’)
4 cs.add_hyperparameter(model_type)
5

6 ##
7

8 hidden_layer_depth = UniformIntegerHyperparameter(name="hidden_layer_depth", lower=1, upper=3,
9 default_value=1)

10 num_nodes_per_layer = UniformIntegerHyperparameter(name="num_nodes_per_layer", lower=16, upper=264,
11 default_value=32, log=True)
12 activation = CategoricalHyperparameter("activation", choices=["tanh", "relu"], default_value="relu")
13 alpha = UniformFloatHyperparameter("alpha", lower=1e-7, upper=1e-1, default_value=1e-4, log=True)
14 learning_rate_init = UniformFloatHyperparameter("learning_rate_init", lower=1e-4, upper=0.5,
15 default_value=1e-3, log=True)
16 early_stopping = CategoricalHyperparameter("early_stopping", choices=[True, False], default_value=

True)
17 max_depth = UniformIntegerHyperparameter(name="max_depth", lower=5, upper=25, default_value=15,
18 log=True)
19 max_features = UniformIntegerHyperparameter(name="max_features", lower=1, upper=3, default_value=2)
20 n_estimators = UniformIntegerHyperparameter(name="n_estimators", lower=5, upper=25, default_value=15)
21

22 cs.add_hyperparameters([
23 hidden_layer_depth, num_nodes_per_layer, activation, alpha, learning_rate_init, early_stopping,
24 max_depth, max_features, n_estimators
25])
26

27 ##
28

29 cs.add_conditions([
30 InCondition(child=hidden_layer_depth, parent=model_type, values=[’mlp’]),
31 InCondition(child=num_nodes_per_layer, parent=model_type, values=[’mlp’]),
32 InCondition(child=activation, parent=model_type, values=[’mlp’]),
33 InCondition(child=alpha, parent=model_type, values=[’mlp’]),
34 InCondition(child=learning_rate_init, parent=model_type, values=[’mlp’]),
35 InCondition(child=early_stopping, parent=model_type, values=[’mlp’]),
36 InCondition(child=max_depth, parent=model_type, values=[’random_forest’]),
37 InCondition(child=max_features, parent=model_type, values=[’random_forest’]),
38 InCondition(child=n_estimators, parent=model_type, values=[’random_forest’]),
39])
40

41 # Scenario object specifying the optimization environment
42 scenario = Scenario({’run_obj’: ’quality’,
43 ’runcount-limit’: runcount,
44 ’cs’: cs,
45 ’deterministic’: ’true’
46 })
47

48 smac = SMAC4BB(scenario=scenario, tae_runner=test_model_config)
49 incumbent = smac.optimize()

Although it is also possible to configure the application of privacy-enhancing tech-
niques through hyperparameters, it is rather straightforward that excluding these tech-
niques will lead to models that are more accurate (e.g., no additional noise) and/or com-
putationally less expensive to compute (e.g., no cryptographic or secure computation
techniques) at the expense of possibly leaking sensitive information. However, the loss of
privacy or confidentiality is hard to quantify and systematically compare across different
privacy-enhancing techniques. That is why the application of these techniques is decided
upon up front and not as a trade-off in the Bayesian optimization process.

Appl. Sci. 2023, 13, 8019 13 of 29

Important to note is that SMAC3 offers two different strategies to support multi-
objective optimization. Still, they have in common that the multiple objectives are aggre-
gated into a single scalar objective, and that single objective is then optimized by SMAC3.

4.2.6. Implementation of AutoFL

AutoFL is implemented in Python and leverages various well-known frameworks and
libraries. An overview of the major building blocks is provided below:

• scikit-learn: Selection of classical ML classifiers.
• TensorFlow: Deep learning models.
• SMAC3: Bayesian optimization of hyperparameters.
• mpyc: Secure multi-party computation for federated data pre-processing.
• Flower: Federated learning framework.

In practice, it should also be possible to introduce other ML frameworks (e.g., PyTorch).
Next to that, we use different Python libraries to monitor resource usage (e.g., CPU, memory,
and network usage) on the clients and the coordinating server.

5. Evaluation

After providing more details about our experimental setup, we will evaluate our
framework in different scenarios and with different datasets.

5.1. Experimental Setup

Our experimental setup consisted of different types of computing nodes with different
resource availability.

• Laptop: An HP ZBook Power laptop with an Intel Core i7-11800H running at 2.30 GHz,
32 GB of memory, and an NVIDIA T1200 GPU for deep learning. This device is used
for small-scale centralized federation simulations and benchmark purposes.

• Pi4: A Raspberry Pi 4 with a Broadcom BCM2711, Quad-Core Cortex-A72 (ARM v8)
64-bit SoC running at 1.8 GHz, and 4 GB of memory. This device is used in a federation
with heterogeneous resources.

• JetsonTX2: An NVIDIA Jetson TX2 development board with a Dual-Core NVIDIA
Denver 2, a 64-Bit CPU Quad-Core ARM Cortex-A57, with 8 GB of memory. The
device is also equipped with a 256-core NVIDIA Pascal architecture GPU. This device
is used in a federation with heterogeneous resources.

• Server: A high-end server with an AMD EPYC 7502 32-Core processor running at
3.32 GHz, and 256 GB of memory. This machine is used for larger-scale centralized
federation simulations and in a federation with heterogeneous resources.

• Client: Twenty client machines with either an Intel Core i5-4570S CPU running at
2.90 GHz or an Intel Core i5-6500 CPU running at 3.20 GHz, and 8 GB of memory.
These machines are used for experiments in a homogeneous federation.

All machines and edge devices were connected to a wired Gigabit network and
typically run a Ubuntu 20.04 or 22.04 LTS Linux operating system with a recent Miniconda
Python 3.10 stack (https://repo.anaconda.com/miniconda/, accessed on 4 May 2023). The
Jetson TX2 board ran the latest supported operating system, i.e., Ubuntu 18.04 LTS, while
the Raspberry Pi 4 ran the Debian Bullseye 11.7 operating system. The two edge devices
both ran an Aarch64 version of Miniforge Python 3.10 (https://github.com/conda-forge/
miniforge, accessed on 4 May 2023).

5.2. Baseline Experiment

We first trained a selection of classical ML models and neural networks on the MNIST
dataset on the various systems and compared their baseline accuracy as well as their
resource usage and the time passed. The ML models were trained locally in a central-
ized manner. The initialization of the ML models and their hyperparameters are listed
in Listing 3. The full Python code to prepare the MNIST datasets and train the LogisticRe-

https://repo.anaconda.com/miniconda/
https://github.com/conda-forge/miniforge
https://github.com/conda-forge/miniforge

Appl. Sci. 2023, 13, 8019 14 of 29

gression() model is listed in Appendix A, respectively, in Listings A1 and A2. The code
examples for the other ML models are similar.

Listing 3. Classical ML models and neural networks for baseline MNIST benchmarking.

1 clf1 = RandomForestClassifier(max_depth=20, n_estimators=100, max_features=2)
2

3 clf2 = LogisticRegression(solver=’saga’, penalty=’l2’, max_iter=20, C=50, tol=0.01, verbose=0)
4

5 clf3 = MLPClassifier(hidden_layer_sizes=(50,), max_iter=20, alpha=1e-4, solver=’sgd’, verbose=0,
6 random_state=1, learning_rate_init=.1)
7

8 clf4 = tf.keras.models.Sequential([
9 tf.keras.layers.Flatten(input_shape=(28, 28)),

10 tf.keras.layers.Dense(128, activation=’relu’),
11 tf.keras.layers.Dropout(0.2),
12 tf.keras.layers.Dense(10)
13])
14

15 clf5 = tf.keras.models.Sequential([
16 tf.keras.layers.Conv2D(32, 3, activation="relu", input_shape=(28, 28, 1)),
17 tf.keras.layers.MaxPooling2D(),
18 tf.keras.layers.Flatten(),
19 tf.keras.layers.Dense(64, activation="relu"),
20 tf.keras.layers.Dense(10)
21])

Note that the hyperparameters of these models were manually selected and were
not optimal. Hence, they only served to demonstrate resource heterogeneity across the
machines. Figure 3 depicts the results of 20 runs of the LR model on the different systems.
What we can observe in these results is the fact that the results are more or less consistent
(i.e., no big deviations across the different runs). Furthermore, the accuracy and f1 score
are the same across all devices, as expected. The overall memory usage of 550 MB is very
similar too. It is also not surprising that the CPU usage and wall clock time are the same
within a particular device type due to the fact only one CPU core was used. However, there
are differences across the different device types.

0.9256

0.9258

0.9260

0.9262

0.9264
Accuracy

0.9254

0.9256

0.9258

0.9260

0.9262

F1 score

30.0

30.5

31.0

31.5

32.0

32.5

CPU time (s)

30.0

30.5

31.0

31.5

32.0

32.5

Wall clock time (s)

549.4

549.6

549.8

550.0

550.2
Memory (MB)

(a) Laptop

0.9256

0.9258

0.9260

0.9262
Accuracy

0.9254

0.9256

0.9258

0.9260

F1 score

162

164

166

168

CPU time (s)

162

164

166

168

Wall clock time (s)

551.5

551.6

551.7

551.8

551.9

552.0

Memory (MB)

(b) Raspberry Pi 4

Figure 3. Cont.

Appl. Sci. 2023, 13, 8019 15 of 29

0.9256

0.9258

0.9260

0.9262

Accuracy

0.9254

0.9256

0.9258

0.9260

F1 score

151.5

152.0

152.5

153.0
CPU time (s)

151.5

152.0

152.5

153.0

Wall clock time (s)

556

558

560

562

Memory (MB)

(c) NVIDIA Jetson TX2

0.9258

0.9260

0.9262

0.9264
Accuracy

0.9256

0.9258

0.9260

0.9262

F1 score

56.15

56.20

56.25

56.30

56.35

56.40
CPU time (s)

56.20

56.25

56.30

56.35

56.40
Wall clock time (s)

552.65

552.70

552.75

552.80

552.85
Memory (MB)

(d) Client

0.9256

0.9258

0.9260

0.9262

0.9264
Accuracy

0.9254

0.9256

0.9258

0.9260

0.9262

F1 score

41.7

41.8

41.9

42.0

42.1

CPU time (s)

41.7

41.8

41.9

42.0

42.1

Wall clock time (s)

552.0

552.2

552.4

552.6

552.8
Memory (MB)

(e) Server

Figure 3. Boxplots of benchmarks of scikit-learn’s logistic regression (LR) on different devices (the
green diamond determines the mean value; the ends of the notched box represent the lower and
upper quartiles; the orange line inside the notched box indicates the median value).

Figure 4 depicts a similar story, but now for the feed-forward neural network imple-
mented with TensorFlow (i.e., clf4). In these benchmarks, a device used its CPU even if a
GPU was available to accelerate the training. The accuracy and f1 score are on par across
the board. Memory usage is significantly higher and reasonably consistent within the same
device type, but less consistent across the devices. Since multiple CPU cores are used, the
CPU time is at least twice as high compared to the wall clock time.

0.979

0.980

0.981

0.982
Accuracy

0.979

0.980

0.981

0.982
F1 score

74

76

78
CPU time (s)

33

34

35

Wall clock time (s)

1290

1291

1292

1293

1294

1295

Memory (MB)

(a) Laptop

0.9795

0.9800

0.9805

0.9810

0.9815

0.9820
Accuracy

0.9795

0.9800

0.9805

0.9810

0.9815

0.9820
F1 score

855

860

865

870

875

CPU time (s)

380

400

420

440

Wall clock time (s)

1094

1096

1098

1100

Memory (MB)

(b) Raspberry Pi 4

Figure 4. Cont.

Appl. Sci. 2023, 13, 8019 16 of 29

0.979

0.980

0.981

0.982

Accuracy

0.979

0.980

0.981

0.982

F1 score

455

460

465

CPU time (s)

255.0

257.5

260.0

262.5

265.0
Wall clock time (s)

1095.0

1097.5

1100.0

1102.5

1105.0
Memory (MB)

(c) NVIDIA Jetson TX2

0.979

0.980

0.981

0.982

Accuracy

0.979

0.980

0.981

0.982

F1 score

119

120

121

122

CPU time (s)

58

60

62

Wall clock time (s)

1218

1220

1222

1224

1226

1228
Memory (MB)

(d) Client

0.979

0.980

0.981

0.982
Accuracy

0.979

0.980

0.981

0.982
F1 score

190

200

210

220
CPU time (s)

62

64

66

68

70

72
Wall clock time (s)

1320

1330

1340

Memory (MB)

(e) Server

Figure 4. Benchmarking TensorFlow’s feed-forward neural network (clf4) on different devices.

In Table 1, we provide a detailed metric overview of different baseline models for
MNIST classification on different devices. The reported values are the average of 20 runs.
Since the dataset is well-balanced, the accuracy is almost identical to the f1 score. All
models except random forest (RF) were trained in multiple rounds. We fixed the number
of training rounds to 20 for the logistic regression (LR), multi-layer perceptron (MLP),
and feed-forward (FF) models, and set the number of epochs for the convolutional neural
network (CNN) to 10. Table A1 in Appendix A reports the results for the same model
configurations, but now on the FashionMNIST dataset. The latter has similar characteristics
in terms of data format and size but is more challenging to classify compared to MNIST. In
Table A2, we report the results for the CIFAR-10 dataset for the same models. This dataset
is more sophisticated, and hence the performance results are subpar, as expected. For
example, the MLP model has an accuracy of 0.1, which for a dataset with 10 classes is the
same as random guessing. From these baseline experiments, it is clear from a computational
and accuracy point of view that the MNIST dataset is the least challenging, whereas the
CIFAR-10 dataset is the most challenging.

Appl. Sci. 2023, 13, 8019 17 of 29

Table 1. MNIST baseline benchmark for classical ML models and neural networks.

Pi 4 Jetson TX2 Laptop Client Server

Accuracy

Random Forest 0.953 0.953 0.953 0.953 0.953
Logistic Regression 0.926 0.926 0.926 0.926 0.926
Multi-Layer Perceptron 0.972 0.972 0.972 0.972 0.972
TensorFlow-FF 0.981 0.980 0.980 0.980 0.980
TensorFlow-CNN 0.986 0.986 0.986 0.986 0.986

F1 score

Random Forest 0.953 0.953 0.953 0.953 0.953
Logistic Regression 0.926 0.926 0.926 0.926 0.926
Multi-Layer Perceptron 0.972 0.972 0.972 0.972 0.972
TensorFlow-FF 0.981 0.980 0.980 0.980 0.980
TensorFlow-CNN 0.986 0.986 0.986 0.986 0.986

CPU time (s)

Random Forest 24.013 18.996 3.468 5.401 4.768
Logistic Regression 165.221 152.161 31.724 56.262 41.886
Multi-Layer Perceptron 308.138 161.850 162.388 43.824 996.448
TensorFlow-FF 865.530 457.998 75.678 120.031 200.849
TensorFlow-CNN 3644.037 1216.834 243.083 555.559 1441.772

Wall clock time (s)

Random Forest 24.019 19.149 3.470 5.426 4.773
Logistic Regression 165.250 152.623 31.725 56.265 41.899
Multi-Layer Perceptron 77.298 40.905 10.887 11.017 15.608
TensorFlow-FF 410.429 259.521 33.883 59.304 65.821
TensorFlow-CNN 1052.609 385.810 38.621 185.502 134.152

Memory (MB)

Random Forest 742.297 743.723 759.760 731.340 737.709
Logistic Regression 551.831 559.388 549.855 552.725 552.236
Multi-Layer Perceptron 552.848 559.618 551.349 555.092 552.052
TensorFlow-FF 1096.914 1098.737 1293.157 1217.322 1324.608
TensorFlow-CNN 1131.936 1140.021 1306.701 1252.293 1572.459

5.3. Homogeneous Federation: i.i.d. versus Non-i.i.d

The previous experiments demonstrated the computational complexity of a selection
of manually configured classical ML models and neural networks. In this particular experi-
ment, we used Flower version 1.4 [31,32] to implement and configure a federation with ten
clients and one coordinating server each having a similar resource availability and compare
that against a federation with a coordinating server and only one client. Additionally, we
apply our SMAC3-based Bayesian optimization framework to automatically find the best
model and corresponding hyperparameters.

To simplify the comparison of the results, we constrained the experimental setup with
the following settings:

• The Bayesian optimization procedure was fixed to evaluating 100 different classical
ML or deep learning model configurations, during which we not only assessed the
accuracy but also measured the CPU, memory, and network usage on the clients as
well as the coordinating server.

• We excluded all scikit-learn classifiers that could not be aggregated through feder-
ated averaging of the model’s weights or coefficients (e.g., random forest). Next to
TensorFlow-based deep learning models, our framework explored these scikit-learn
classifiers: LogisticRegression(), Perceptron(), MLPClassifier() and PassiveAggressiveClas-
sifier().

• For each model configuration, the coordinating server carried out 20 federated averag-
ing rounds, and each client locally trained their model for one epoch before sending
the model update to the coordinating server.

• All clients were involved in each round of the federated learning (instead of only a
random subset), and each client trained on its own partition of the training dataset.

Appl. Sci. 2023, 13, 8019 18 of 29

• For the i.i.d. training data, each client had about the same amount of samples for each
class (about 600 for MNIST and FashionMNIST). For the non-i.i.d. training data, each
client had about 3000 samples of two classes each and only 2 samples of the other
eight classes. In both distributions, each client has a similar amount of training data.

Figure 5 compares the distribution of the results for the 100 configurations evaluated
by the Bayesian optimization process, and this for a baseline with only one client as well
as two configurations where the MNIST or FashionMNIST training data was partitioned
across 10 clients in either an i.i.d. or non-i.i.d. manner. Based on the above observations,
the accuracy of the 100 single baseline configurations and the i.i.d. configurations are
comparable, whereas the non-i.i.d. configurations did not converge to the same accuracy
within the 20 federated training and averaging rounds.

0.4

0.6

0.8

1.0
MNIST i.i.d.

0.4

0.6

0.8

1.0
MNIST non-i.i.d.

0.4

0.6

0.8

1.0
MNIST single

0.4

0.6

0.8

1.0
FashionMNIST i.i.d.

0.4

0.6

0.8

1.0
FashionMNIST non-i.i.d.

0.4

0.6

0.8

1.0
FashionMNIST single

(a) Accuracy

20

40

60

80

100

120
MNIST i.i.d.

20

40

60

80

100

MNIST non-i.i.d.

0

100

200

300

400

500

MNIST single

20

40

60

80

100

120
FashionMNIST i.i.d.

20

40

60

80

100

120
FashionMNIST non-i.i.d.

0

100

200

300

400

500

FashionMNIST single

(b) CPU time on client (in seconds)

20

40

60

80
MNIST i.i.d.

20

40

60

80
MNIST non-i.i.d.

50

100

150
MNIST single

20

40

60

80
FashionMNIST i.i.d.

20

40

60

80
FashionMNIST non-i.i.d.

50

100

150
FashionMNIST single

(c) Wall clock time on coordinating server (in seconds)

Figure 5. Benchmarking 100 ML models in i.i.d. and non-i.i.d. dataset configurations on clients with
homogeneous resource availability.

Note though, that Figure 5 gives a statistical overview of all the 100 individual con-
figurations, including the suboptimal ones. However, we should rather compare the best
configuration after the Bayesian optimization process has been completed. Hence, the
accuracy on the test set for the best model found is shown in Table 2. The accuracy values
for the MNIST single baseline and i.i.d. configurations are comparable to the best ones
reported in Table 1. The accuracy values for the CIFAR-10 dataset are reasonably low
compared to the state-of-the-art, and we expect this outcome to be due to the limited
number of training rounds (i.e., 20 rounds) as well as the low number of configurations
(i.e., 100 configurations) for the Bayesian process to evaluate.

Table 2. Best accuracy of 100 configurations after 20 federated averaging rounds.

Dataset i.i.d. Non-i.i.d. Single

MNIST 0.9826 0.9411 0.9813
FashionMNIST 0.8766 0.7589 0.8919
CIFAR-10 0.6367 0.5020 0.6839

Appl. Sci. 2023, 13, 8019 19 of 29

When comparing the wall clock time for the coordinating server to complete the
federated learning, there is hardly any difference between the i.i.d. and non-i.i.d. dataset
configurations, neither for the MNIST dataset nor for the FashionMNIST dataset. This
is as expected as the same amount of client nodes process their part of the training data.
When compared to the single baseline configuration, the overall wall clock time on the
coordinating server is higher as now a single client has to learn from the whole training
dataset. The fact that the coordinating server now only needs to communicate with 1 client
rather than with 10 clients has no significant effect. Similarly, the CPU time on the clients is
significantly higher for the single baseline configuration, although not 10 times as high as
compared to the i.i.d. dataset configuration.

As mentioned earlier, we are exploring other optimization objectives beyond the
accuracy of the model. For example, in the case of the i.i.d. MNIST dataset, the best model
obtained an accuracy on the test set of 0.9826. However, in the 100 configurations tested,
there were 10 with an accuracy higher than 0.98, as depicted in Table 3.

Table 3. Configurations with an accuracy >= 0.98, with Pareto-optimal ones marked in bold.

Configuration Accuracy Memory (MB) CPU Time (s) Pareto-Optimal Configuration

0032 0.9824 707.252 52.782
0037 0.9826 714.510 56.720
0038 0.9810 714.653 56.625 0032, 0039
0039 0.9824 705.339 52.802
0044 0.9822 734.507 65.311 0032, 0037, 0039
0057 0.9808 708.911 51.312
0071 0.9825 744.964 76.580 0037
0093 0.9822 747.036 77.205 0032, 0037, 0039
0095 0.9804 708.087 51.691
0100 0.9807 716.832 56.687 0032, 0039, 0057

Of these ten configurations, five are Pareto-optimal (marked in bold) because they have
either (a) a higher accuracy, (b) a lower memory usage, or (c) a lower CPU usage compared
to the other configurations. Alternatively, for the non-Pareto-optimal configurations, there
exists a configuration (last column) that performs equally well or better for all the metrics.

The above result is a mere demonstration of how multiple optimization objectives can
be considered in parallel. For example, if memory is not a concern, then this trade-off can
be dropped or replaced with another one (e.g., network usage at either the coordinating
server or the individual clients). Furthermore, the Pareto-optimal configurations were
identified with relative comparisons. With a more strict condition that one configuration is
better than another in terms of resource usage, if the reduction is at least 10% (rather than
just strictly smaller), then the number of Pareto-optimal solutions would be significantly
reduced. In that scenario, configurations 0032, 0039, 0057, and 0095 would no longer be
Pareto-optimal, as their resource usage is above the threshold or more than 90% of the
memory and CPU usage of configuration 0037, while their accuracy is lower than 0.9826.

5.4. Heterogeneous Resource Availability

In the previous experiments, the clients in the federation had similar resource avail-
ability in terms of CPU, memory, and network capacity. In the following experiment, we
replaced one of the ten clients with an ARM device, specifically the NVIDIA Jetson TX2
system. The other experimental settings remain the same:

• Ten clients and one coordinating server in the federation.
• Training data is i.i.d. over all clients.
• One hundred ML model configurations to be selected through Bayesian optimization.
• Twenty federated averaging rounds by the coordinating server.
• One epoch for each local model training round.

Figure 6 depicts the results of three different experiments with the MNIST dataset
that is i.i.d. over ten clients. In the deployment setting (1), all clients have homogeneous

Appl. Sci. 2023, 13, 8019 20 of 29

resource characteristics, and all ten clients are involved in training and evaluation. In
deployment setting (2), one client is a low-end device, i.e., the Jetson TX2 development
board. Deployment settings (3) and (4) are similar to deployment setting (2), but now only
a random subset of, respectively, three and five clients are used in every federated training
and evaluation round.

0.80

0.85

0.90

0.95

1.00
Homogeneous - 10 clients

0.80

0.85

0.90

0.95

1.00
Heterogeneous - 10 clients

0.80

0.85

0.90

0.95

1.00
Heterogeneous - 3 clients

0.80

0.85

0.90

0.95

1.00
Heterogeneous - 5 clients

(a) Accuracy

20

40

60

80

100

120
Homogeneous - 10 clients

25

50

75

100

125

150
Heterogeneous - 10 clients

20

40

60
Heterogeneous - 3 clients

20

40

60

80

Heterogeneous - 5 clients

(b) CPU time on client (in seconds)

20

40

60

80
Homogeneous - 10 clients

25

50

75

100

125
Heterogeneous - 10 clients

20

40

60

Heterogeneous - 3 clients

20

40

60

80

100
Heterogeneous - 5 clients

(c) Wall clock time on coordinating server (in seconds)

Figure 6. Benchmarking MNIST in a federation with homogenous and heterogeneous resource
availability and partial client involvement.

From these results, it is clear that the single resource-constrained device is slowing
down the overall federated learning process. In the homogeneous deployment setting,
the average wall clock time of the coordinating server is 37 s, whereas, for the second
configuration, it increases to, on average, 63 s. The accuracy remains unaffected, as expected.
However, when only using three random clients in each federation round rather than all
ten, the wall clock time drops again to 40 s at the expense of the accuracy dropping from
0.92 down to 0.89. With five random clients, the wall clock time increases to about 47 s while
the accuracy increases to 0.91. By using a subset of random clients, there is a chance that the
slow client is not included in a federation round, thereby speeding up the overall federated
learning process. Additionally, involving fewer clients means that the coordinating server
needs less time to compute the federated average of the model updates, although this
impact is minimal in our experiments. These four experiments show that there is, again, a
trade-off between accuracy and wall clock time that is influenced by federation-specific
hyperparameters. In our experiments, the network was never a bottleneck. If that would
have been the case, we could have identified further trade-offs between network usage and
the number of local training rounds on each client. In practice, however, the heterogeneous
resource availability is likely to be much more diverse, even when only using a fraction
of the clients, compared to the above deployment settings with one resource-constrained
device and nine higher-end systems with similar resource availability.

Appl. Sci. 2023, 13, 8019 21 of 29

5.5. Impact of Differential Privacy

Privacy-enhancing techniques for federated learning, such as differential privacy or
secure aggregation, may impact the accuracy of the model or the computational cost. In
this experiment, we set up a federated learning configuration using MNIST and ten clients
with homogeneous resource characteristics and with both the i.i.d. and non-i.i.d. datasets.
The baseline did not have any privacy-enhancing techniques applied, and this baseline was
compared with a similar setting with differential privacy applied. This privacy-enhancing
technique bounds a client’s model update by clipping the coefficient via a cap on the
L2 norm of the update. Additionally, Gaussian noise is added to the federated average
computed by the coordinating server. For the sake of convenience, we implemented the
clipping of each client’s updates within the coordinating server, but an alternative is that
each client clipped their coefficients themselves. However, by implementing this strategy
on the coordinating server, we expected the impact of applying this step for each client
update to be more noticeable compared to a scenario where this step is carried out in
parallel on each client.

The results of this benchmark are depicted in Figure 7. While there is a difference in
accuracy between the i.i.d. and non-i.i.d. configurations of the training dataset, as discussed
earlier, there is no significant difference for the wall clock time of the coordinating server
when differential privacy is applied in this particular MNIST experiment. Hence, if the
clipping of the model updates were executed by the clients themselves in parallel, the
impact would be even less outspoken. For more complex datasets and with a higher
number of clients, the outcome may be different.

However, one must be careful with differential privacy in an automated federated
learning setting. Traditionally, the privacy budget spent is incremented with each federated
training round to compute the total privacy budget after the training process has ended.
When Bayesian optimization is used to identify and evaluate different model configura-
tions, this privacy budget must also be accounted for across these model configurations.
Furthermore, if there is a maximum privacy budget, the Bayesian optimization process
must stop if this threshold is reached; otherwise, there is a risk of information leakage.
Currently, the Bayesian optimization does not take this privacy budget into consideration
when identifying the next best model to evaluate.

0.4

0.6

0.8

1.0
i.i.d. - No PETs

0.4

0.6

0.8

1.0
i.i.d. - Differential Privacy

0.4

0.6

0.8

1.0
non-i.i.d. - No PETs

0.4

0.6

0.8

1.0
non-i.i.d. - Differential Privacy

(a) Accuracy

20

40

60

80

100

120
i.i.d. - No PETs

25

50

75

100

i.i.d. - Differential Privacy

20

40

60

80

100

non-i.i.d. - No PETs

20

40

60

80

100

non-i.i.d. - Differential Privacy

(b) CPU time on client (in seconds)

0

20

40

60

80

i.i.d. - No PETs

0

20

40

60

80

i.i.d. - Differential Privacy

0

20

40

60

80

non-i.i.d. - No PETs

0

20

40

60

80

non-i.i.d. - Differential Privacy

(c) Wall clock time on coordinating server (in seconds)

Figure 7. Benchmarking MNIST in a federation with and without differential privacy.

Appl. Sci. 2023, 13, 8019 22 of 29

5.6. Impact of Secure Aggregation

Flower v1.14 does not support secure aggregation out of the box. Fortunately, Li et al. [45]
implemented Salvia (cfr. https://hei411.github.io/projects/salvia.html, accessed on 4 May
2023) for a slightly older version of Flower v0.17, adding support for SecAgg(+) protocols
under a semi-honest threat model. In the following experiment, we used the i.i.d. MNIST
dataset in a federation with ten clients having similar resource availability and compared the
traditional federated averaging strategy and this particular secure equivalent implemented
in Salvia. For a fair baseline comparison, we used the older vanilla 0.17 version without
secure aggregation to compare against.

The results in Figure 8 indicate a difference in the baseline between Flower v1.14 and
v0.17 in terms of wall clock time at the coordinating server. The mean accuracy for the
100 ML model configurations remains on par. For example, in the case of the i.i.d. dataset
configuration, the mean accuracy is 0.918 vs. 0.907 for, respectively, without and with secure
aggregation. A slight difference in mean values is to be expected as there is no guarantee
that the Bayesian optimization process selects the same sets of 100 configurations. However,
there is now a clear difference in the wall clock time caused by the computational impact of
secure aggregation. Not only has the mean wall clock time gone up from 25 s to 121 s, but
the variation of wall clock times is also more outspoken. The other metrics are indicated in
Table 4.

0.5

0.6

0.7

0.8

0.9

1.0
i.i.d. - No PETs

0.5

0.6

0.7

0.8

0.9

1.0
i.i.d. - Secure Aggregation

0.5

0.6

0.7

0.8

0.9

1.0
non-i.i.d. - No PETs

0.5

0.6

0.7

0.8

0.9

1.0
non-i.i.d. - Secure Aggregation

(a) Accuracy

0

20

40

60
i.i.d. - No PETs

0

50

100

150
i.i.d. - Secure Aggregation

0

20

40

non-i.i.d. - No PETs

0

50

100

150
non-i.i.d. - Secure Aggregation

(b) CPU time on client (in seconds)

10

20

30

40

50
i.i.d. - No PETs

50

100

150

200

250
i.i.d. - Secure Aggregation

10

20

30

40

50
non-i.i.d. - No PETs

50

100

150

200

250
non-i.i.d. - Secure Aggregation

(c) Wall clock time on coordinating server (in seconds)

Figure 8. Benchmarking MNIST in a federation with and without secure aggregation.

Table 4. Quartile and minimum/maximum values of the coordinating server’s wall clock time for
secure aggregation configurations of MNIST i.i.d.

Metric w/o SecAgg (s) w/ SecAgg (s)

Minimum value 6.43 15.92
Lower quartile (25th percentile) 12.00 26.85
Median value (50th percentile) 27.70 125.29
Upper quartile (75th percentile) 34.30 207.99
Maximum value 50.73 250.76

https://hei411.github.io/projects/salvia.html

Appl. Sci. 2023, 13, 8019 23 of 29

As the computational impact of secure aggregation is non-negligible, the trade-offs
between accuracy on the one hand and CPU time on the client, on the other hand, may
now be more meaningful. After exploring the 100 configurations with secure aggregation,
we filtered those with an accuracy of 0.98 or higher. The accuracy, memory usage, and
CPU time of the clients of the selected eleven configurations are listed in Table 5. The
memory usage is comparable except for configuration 0010 (i.e., 914 MB vs. ±650 MB).
When comparing the different values, we end up with seven Pareto-optimal configurations
marked in bold.

Table 5. Secure aggregation configurations of MNIST i.i.d. with an accuracy >= 0.98, with Pareto-
optimal ones marked in bold.

Configuration Accuracy Memory (MB) CPU Time (s) Pareto-Optimal Configuration

0002 0.9800 647.282 64.329
0010 0.9806 914.833 113.37 0016, 0020, 0021, 022, 0096, 0100
0016 0.9811 640.106 65.076
0020 0.9826 662.110 86.150
0021 0.9834 652.775 86.362
0022 0.9821 652.513 86.751
0043 0.9823 675.852 124.59 0020, 0021, 0096
0073 0.9804 651.759 107.83 0016, 0096, 0100
0089 0.9822 660.127 106.97 0021
0096 0.9830 651.382 107.03
0100 0.9806 650.543 85.550

With a more strict condition that a Pareto-optimal configuration is at least 10% better
in terms of memory or CPU usage, the remaining Pareto-optimal solutions are 0016 (low
CPU time) and 0021 (higher accuracy). The difference in computational complexity can
be explained by the ML model configurations that performed best in terms of accuracy
(i.e., all neural networks). Here are some examples:

• 0002: Scikit-learn MLPClassifier with one hidden layer of size 286
• 0010: TensorFlow neural network with one hidden layer of size 390
• 0016: scikit-learn MLPClassifier with one hidden layer of size 291
• 0021: scikit-learn MLPClassifier with one hidden layer of size 397
• 0043: scikit-learn MLPClassifier with three hidden layers of size 397, 268, 139
• 0096: scikit-learn MLPClassifier with two hidden layers of size 397, 203

These specifications and benchmark results illustrate that a simple neural network
with fully connected layers requires less memory in scikit-learn’s MLPClassifier than in
TensorFlow. Given that the neural network architectures of model configurations 0002 and
0016 are fairly similar, their computational complexity is similar, too, as expected.

5.7. Discussion

The previous experiments highlighted the impact of different kinds of classical ML
models and neural networks, the frameworks used to implement these ML models, the
way the training data is distributed over the clients (i.e., i.i.d. or non-i.i.d.), the resource
availability of the clients, and the application of privacy-enhancing techniques. In these
experiments, we constrained the hyperparameter search space to limit the time required
while also enabling a fair comparison between different configurations. For example, we
fixed the number of federated averaging rounds to 20 and the local training rounds on each
client per federated averaging round to 1.

These hyperparameters and several others can also be optimized, possibly in terms
of other error metrics, with or without data pre-processing. Additionally, there are op-
portunities to (a) experiment with other datasets, (b) identify more trade-offs with mixed
hardware-accelerated federated learning, (c) try different variations of imbalanced datasets,
(d) compare adaptive client sampling, and (e) sophisticated strategies for federated averag-
ing, (f) support more types of classical ML models as well as neural network architectures,
(g) analyze the impact of adversarial training, etc.

Appl. Sci. 2023, 13, 8019 24 of 29

The search space of hyperparameters—those of the ML models as well as those for
federated learning—is so large that a Bayesian optimization process limited to 100 con-
figuration evaluations will leave further room to identify ML models that may perform
better in terms of either accuracy or resource usage or both. Indeed, due to the limited
exploration time, the model configurations selected through Bayesian optimization and
trained on the i.i.d. MNIST training dataset on 10 clients only achieved an accuracy of up
to 0.983. However, the manually crafted neural network depicted in Listing 4 achieves
an accuracy of 0.9945 on the test set. We would need to grant the Bayesian optimization
process more time to obtain similar results.

Listing 4. Federal learned neural network for MNIST achieving an accuracy of 0.9945.

1 model = tf.keras.models.Sequential([
2 tf.keras.layers.Conv2D(32, kernel_size=(3, 3), activation=’relu’, padding=’same’,
3 input_shape=(28, 28, 1)),
4 tf.keras.layers.Conv2D(32, kernel_size=(3, 3), activation=’relu’, padding=’same’),
5 tf.keras.layers.BatchNormalization(),
6 tf.keras.layers.MaxPool2D(pool_size=(2, 2)),
7 tf.keras.layers.Dropout(0.25),
8

9 tf.keras.layers.Conv2D(64, kernel_size=(3, 3), activation=’relu’, padding=’same’),
10 tf.keras.layers.Conv2D(64, kernel_size=(3, 3), activation=’relu’, padding=’same’),
11 tf.keras.layers.BatchNormalization(),
12 tf.keras.layers.MaxPool2D(pool_size=(2, 2)),
13 tf.keras.layers.Dropout(0.25),
14

15 tf.keras.layers.Conv2D(128, kernel_size=(3, 3), activation=’relu’, padding=’same’),
16 tf.keras.layers.Conv2D(128, kernel_size=(3, 3), activation=’relu’, padding=’same’),
17 tf.keras.layers.BatchNormalization(),
18 tf.keras.layers.MaxPool2D(pool_size=(2, 2)),
19 tf.keras.layers.Dropout(0.25),
20

21 tf.keras.layers.Flatten(),
22

23 tf.keras.layers.Dense(512, activation=’relu’),
24 tf.keras.layers.BatchNormalization(),
25 tf.keras.layers.Dropout(0.5),
26

27 tf.keras.layers.Dense(256, activation=’relu’),
28 tf.keras.layers.BatchNormalization(),
29 tf.keras.layers.Dropout(0.4),
30

31 tf.keras.layers.Dense(64, activation=’relu’),
32 tf.keras.layers.BatchNormalization(),
33 tf.keras.layers.Dropout(0.3),
34

35 tf.keras.layers.Dense(n_classes, activation="softmax")
36])
37

38 loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
39 model.compile(optimizer=’adam’, loss=loss_fn, metrics=[’accuracy’])

The previous experiments have demonstrated the practical feasibility of optimizing
for multiple objectives while adhering to various constraints. However, it is important to
note that these experiments were conducted using well-known datasets and may not fully
represent real-world case studies.

One of the main objectives of AutoFL is to uncover significant trade-offs in terms of
model performance and resource utilization, considering factors such as memory usage
and computational complexity. However, AutoFL itself does not determine the metrics
to optimize for. This responsibility lies with the MLOps engineer, who has to define the
optimization objectives and set deployment, configuration, security as well as privacy
constraints based on the specific application requirements.

It is crucial to understand that AutoFL can assist in identifying trade-offs, but the final
model selection remains the responsibility of the MLOps engineer. AutoFL provides a range
of model configurations that lie on the Pareto front, which represents the trade-off between

Appl. Sci. 2023, 13, 8019 25 of 29

the predefined optimization objectives. It is up to the MLOps engineer to choose the ’best’
model from the Pareto front that aligns most effectively with the application’s requirements.

6. Conclusions

In this paper, we designed, implemented, and evaluated AutoFL, our AutoML frame-
work for federated learning that aims to optimize the ML model selection and hyperparam-
eter optimization for scenarios where the training data cannot be centralized and where
the data of a single client is not sufficient or not representative enough to construct an ML
model configuration that is effective for all clients.

We evaluated AutoFL in different federated learning scenarios to explore trade-offs
across both classical ML scikit-learn-based classifiers and TensorFlow-based neural net-
works. These scenarios differ in terms of the clients having different resource availabilities,
the way the data is distributed across the clients, and whether privacy-enhancing tech-
niques are implemented. Our research and experiments on well-known public datasets
demonstrate the practical feasibility of our framework, allowing data scientists or ML
engineers to identify trade-offs between error metrics and resource usage.

As part of future work, we will validate our framework on datasets outside the com-
puter vision domain, and we will investigate the computational impact of exploring addi-
tional model-specific and federated learning-specific hyperparameters, privacy-enhancing
techniques, and their trade-offs.

Funding: This research is partially funded by the Research Fund KU Leuven, and by the Flemish
Research Programme Cybersecurity. This paper was also partially supported by the AIDE project
funded by the Belgian SPF BOSA under the program “Financing of projects for the development of
artificial intelligence in Belgium” with reference number 06.40.32.33.00.10.

Institutional Review Board Statement: Not applicable

Informed Consent Statement: Not applicable

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can
be found at aforementioned urls.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Listing A1. Decode and save the MNIST training and test datasets to binary files in NumPy format.

1 import numpy as np
2 import gzip
3 import struct
4
5 def load_dataset(path_dataset):
6 with gzip.open(path_dataset, ’rb’) as f:
7 magic, size = struct.unpack(">II", f.read(8))
8 nrows, ncols = struct.unpack(">II", f.read(8))
9 data = np.frombuffer(f.read(), dtype=np.dtype(np.uint8).newbyteorder(’>’))

10 data = data.reshape((size, nrows * ncols))
11 return data
12
13 def load_label(path_label):
14 with gzip.open(path_label, ’rb’) as f:
15 magic, size = struct.unpack(’>II’, f.read(8))
16 label = np.frombuffer(f.read(), dtype=np.dtype(np.uint8).newbyteorder(’>’))
17 return label
18
19 X_train = load_dataset(’data/train-images-idx3-ubyte.gz’)
20 y_train = load_label(’data/train-labels-idx1-ubyte.gz’)
21 X_test = load_dataset(’data/t10k-images-idx3-ubyte.gz’)
22 y_test = load_label(’data/t10k-labels-idx1-ubyte.gz’)
23
24 X_train = X_train / 255.
25 X_test = X_test / 255.
26
27 np.save(’X_train.npy’, X_train)
28 np.save(’y_train.npy’, y_train)
29 np.save(’X_test.npy’, X_test)
30 np.save(’y_test.npy’, y_test)

Appl. Sci. 2023, 13, 8019 26 of 29

Listing A2. Benchmarking logistic regression: accuracy, f1 score, CPU time, wall clock time, memory.

1 import time
2 import psutil
3 import numpy as np
4 from sklearn.linear_model import LogisticRegression
5 from sklearn import metrics
6

7 X_train = np.load("X_train.npy")
8 y_train = np.load("y_train.npy")
9 X_test = np.load("X_test.npy")

10 y_test = np.load("y_test.npy")
11

12 process = psutil.Process()
13

14 start_time_ns = time.process_time_ns()
15 start_counter_ns = time.perf_counter_ns()
16 clf = LogisticRegression(solver=’saga’, penalty=’l2’, max_iter=20, C=50, tol=0.01, verbose=0)
17 clf.fit(X_train, y_train)
18 end_time_ns = time.process_time_ns()
19 end_counter_ns = time.perf_counter_ns()
20

21 Y_pred = clf.predict(X_test)
22

23 accuracy = metrics.accuracy_score(y_test, Y_pred)
24 f1 = metrics.f1_score(y_test, Y_pred, average=’weighted’)
25 cpu_time = (end_time_ns - start_time_ns) / 1000000
26 wall_clock_time = (end_counter_ns - start_counter_ns) / 1000000
27 memory = process.memory_info().rss / 1000000
28

29 print(accuracy, ",", f1, ",", cpu_time, ",", wall_clock_time, ",", memory)

Table A1. FashionMNIST baseline benchmark for classical ML models and neural networks.

Pi 4 Jetson TX2 Laptop Client Server

Accuracy

Random Forest 0.850 0.850 0.849 0.850 0.849
Logistic Regression 0.847 0.847 0.847 0.847 0.847
Multi-Layer Perceptron 0.869 0.869 0.869 0.869 0.869
TensorFlow-FF 0.885 0.885 0.887 0.886 0.886
TensorFlow-CNN 0.911 0.913 0.913 0.913 0.913

F1 score

Random Forest 0.847 0.846 0.845 0.847 0.846
Logistic Regression 0.846 0.846 0.846 0.846 0.846
Multi-Layer Perceptron 0.869 0.869 0.869 0.869 0.869
TensorFlow-FF 0.884 0.885 0.887 0.885 0.886
TensorFlow-CNN 0.911 0.913 0.913 0.913 0.913

CPU time (s)

Random Forest 29.410 23.557 4.757 7.779 6.979
Logistic Regression 182.476 183.250 30.482 60.991 41.556
Multi-Layer Perceptron 297.405 158.070 123.099 42.404 966.927
TensorFlow-FF 840.535 455.269 74.562 122.200 187.498
TensorFlow-CNN 3550.677 1231.090 241.700 560.821 1466.845

Wall clock time (s)

Random Forest 29.417 23.741 4.757 7.796 6.984
Logistic Regression 182.495 183.790 30.530 60.997 41.567
Multi-Layer Perceptron 74.555 39.965 7.791 10.675 15.146
TensorFlow-FF 409.170 257.432 33.184 58.599 61.631
TensorFlow-CNN 1031.345 390.357 38.865 186.812 133.312

Memory (MB)

Random Forest 732.901 735.800 754.356 721.377 728.786
Logistic Regression 551.607 559.243 549.812 552.248 552.479
Multi-Layer Perceptron 552.424 560.461 551.177 554.729 551.650
TensorFlow-FF 1095.873 1100.167 1292.974 1220.498 1325.968
TensorFlow-CNN 1132.218 1139.928 1306.494 1256.246 1583.449

Appl. Sci. 2023, 13, 8019 27 of 29

Table A2. CIFAR-10 baseline benchmark for classical ML models and neural networks.

Pi 4 Jetson TX2 Laptop Client Server

Accuracy

Random Forest 0.435 0.439 0.437 0.438 0.438
Logistic Regression 0.408 0.408 0.408 0.408 0.408
Multi-Layer Perceptron 0.100 0.100 0.100 0.100 0.100
TensorFlow-FF 0.355 0.362 0.361 0.346 0.368
TensorFlow-CNN 0.605 0.603 0.602 0.606 0.609

F1 score

Random Forest 0.429 0.433 0.431 0.432 0.431
Logistic Regression 0.406 0.406 0.406 0.406 0.406
Multi-Layer Perceptron 0.018 0.018 0.018 0.018 0.018
TensorFlow-FF 0.336 0.348 0.344 0.328 0.352
TensorFlow-CNN 0.602 0.599 0.598 0.605 0.606

CPU time (s)

Random Forest 36.854 30.244 6.681 9.345 10.229
Logistic Regression 1235.646 1761.439 251.896 423.916 324.770
Multi-Layer Perceptron 310.884 158.127 138.585 47.509 882.467
TensorFlow-FF 2966.710 972.642 233.662 293.732 1019.983
TensorFlow-CNN 4574.359 1557.796 243.585 520.132 2441.152

Wall clock time (s)

Random Forest 36.861 30.435 6.681 9.359 10.234
Logistic Regression 1235.711 1765.620 252.234 424.183 324.862
Multi-Layer Perceptron 78.086 40.185 8.770 12.191 13.888
TensorFlow-FF 942.335 372.020 43.544 108.560 85.231
TensorFlow-CNN 1265.737 453.673 37.621 156.305 80.470

Memory (MB)

Random Forest 1221.639 1224.502 1260.681 1208.017 1215.606
Logistic Regression 853.261 860.812 841.360 841.119 833.300
Multi-Layer Perceptron 856.884 865.985 841.692 841.385 845.087
TensorFlow-FF 1928.634 1946.936 2114.177 2068.620 2430.885
TensorFlow-CNN 1981.774 2013.309 2137.812 2115.784 2726.141

References
1. Yang, Q.; Liu, Y.; Chen, T.; Tong, Y. Federated Machine Learning: Concept and Applications. ACM Trans. Intell. Syst. Technol.

2019, 10, 1–19. [CrossRef]
2. Li, T.; Sahu, A.K.; Talwalkar, A.; Smith, V. Federated Learning: Challenges, Methods, and Future Directions. IEEE Signal Process.

Mag. 2020, 37, 50–60. [CrossRef]
3. Li, Z.; Sharma, V.; Mohanty, S.P. Preserving Data Privacy via Federated Learning: Challenges and Solutions. IEEE Consum.

Electron. Mag. 2020, 9, 8–16. [CrossRef]
4. Lyu, L.; Yu, H.; Yang, Q. Threats to Federated Learning: A Survey. arXiv 2020. [CrossRef]
5. Konečný, J.; McMahan, H.B.; Yu, F.X.; Richtárik, P.; Suresh, A.T.; Bacon, D. Federated Learning: Strategies for Improving

Communication Efficiency. arXiv 2016, arXiv:1610.05492.
6. Nguyen, D.C.; Ding, M.; Pathirana, P.N.; Seneviratne, A.; Li, J.; Vincent Poor, H. Federated Learning for Internet of Things: A

Comprehensive Survey. IEEE Commun. Surv. Tutor. 2021, 23, 1622–1658. [CrossRef]
7. Mills, J.; Hu, J.; Min, G. Communication-Efficient Federated Learning for Wireless Edge Intelligence in IoT. IEEE Internet Things J.

2020, 7, 5986–5994. [CrossRef]
8. Xu, J.; Glicksberg, B.S.; Su, C.; Walker, P.; Bian, J.; Wang, F. Federated learning for healthcare informatics. J. Healthc. Inform. Res.

2021, 5, 1–19. [CrossRef]
9. Antunes, R.S.; André da Costa, C.; Küderle, A.; Yari, I.A.; Eskofier, B. Federated Learning for Healthcare: Systematic Review and

Architecture Proposal. ACM Trans. Intell. Syst. Technol. 2022, 13, 1–23. [CrossRef]
10. Nguyen, D.C.; Pham, Q.V.; Pathirana, P.N.; Ding, M.; Seneviratne, A.; Lin, Z.; Dobre, O.; Hwang, W.J. Federated Learning for

Smart Healthcare: A Survey. ACM Comput. Surv. 2022, 55, 1–37. [CrossRef]
11. Yang, W.; Zhang, Y.; Ye, K.; Li, L.; Xu, C.Z. FFD: A Federated Learning Based Method for Credit Card Fraud Detection. In

Proceedings of the Big Data–BigData 2019, San Diego, CA, USA, 25–30 June 2019; Chen, K., Seshadri, S., Zhang, L.J., Eds.;
Springer: Cham, Switzerland, 2019; pp. 18–32.

12. Long, G.; Tan, Y.; Jiang, J.; Zhang, C. Federated Learning for Open Banking. In Federated Learning: Privacy and Incentive; Yang, Q.,
Fan, L., Yu, H., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 240–254. [CrossRef]

http://doi.org/10.1145/3298981
http://dx.doi.org/10.1109/MSP.2020.2975749
http://dx.doi.org/10.1109/MCE.2019.2959108
http://dx.doi.org/10.48550/ARXIV.2003.02133
http://dx.doi.org/10.1109/COMST.2021.3075439
http://dx.doi.org/10.1109/JIOT.2019.2956615
http://dx.doi.org/10.1007/s41666-020-00082-4
http://dx.doi.org/10.1145/3501813
http://dx.doi.org/10.1145/3453476
http://dx.doi.org/10.1007/978-3-030-63076-8_17

Appl. Sci. 2023, 13, 8019 28 of 29

13. Byrd, D.; Polychroniadou, A. Differentially Private Secure Multi-Party Computation for Federated Learning in Financial
Applications. In Proceedings of the ICAIF ’2: First ACM International Conference on AI in Finance, New York, NY, USA, 15–16
October 2020. [CrossRef]

14. Luo, B.; Xiao, W.; Wang, S.; Huang, J.; Tassiulas, L. Tackling System and Statistical Heterogeneity for Federated Learning with
Adaptive Client Sampling. In Proceedings of the IEEE INFOCOM 2022-IEEE Conference on Computer Communications, Virtual,
2–5 May 2022; pp. 1739–1748. [CrossRef]

15. Zhang, J.; Li, M.; Zeng, S.; Xie, B.; Zhao, D. A survey on security and privacy threats to federated learning. In Proceedings of the
2021 International Conference on Networking and Network Applications (NaNA), Lijiang, China, 29 October–1 November 2021;
pp. 319–326. [CrossRef]

16. Feurer, M.; Klein, A.; Eggensperger, K.; Springenberg, J.; Blum, M.; Hutter, F. Efficient and Robust Automated Machine Learning.
In Proceedings of the Advances in Neural Information Processing Systems 28 (2015), Montreal, Canada, 7–12 December 2015;
pp. 2962–2970.

17. Olson, R.S.; Moore, J.H. TPOT: A tree-based pipeline optimization tool for automating machine learning. In Proceedings of the
Workshop on Automatic Machine Learning. PMLR, New York, NY, USA, 24 June 2016; pp. 66–74.

18. LeDell, E.; Poirier, S. H2O AutoML: Scalable automatic machine learning. In Proceedings of the AutoML Workshop at ICML,
Online, 18 July 2020; Volume 2020.

19. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceedings of the
International Conference on Learning Representations (ICLR), San Diego, CA, USA, 7–9 May 2015.

20. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016.

21. Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A.A. Inception-v4, inception-resnet and the impact of residual connections on
learning. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February
2017.

22. Zhang, J.; Zhu, H.; Wang, F.; Zhao, J.; Xu, Q.; Li, H. Security and Privacy Threats to Federated Learning: Issues, Methods, and
Challenges. Secur. Commun. Netw. 2022, 2022, 2886795. [CrossRef]

23. McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; y Arcas, B.A. Communication-efficient learning of deep networks from
decentralized data. In Proceedings of the Artificial Intelligence and Statistics. PMLR, Ft. Lauderdale, FL, USA, 20–22 April 2017;
pp. 1273–1282.

24. Bonawitz, K.; Eichner, H.; Grieskamp, W.; Huba, D.; Ingerman, A.; Ivanov, V.; Kiddon, C.; Konečnỳ, J.; Mazzocchi, S.; McMahan,
B.; et al. Towards federated learning at scale: System design. Proc. Mach. Learn. Syst. 2019, 1, 374–388.

25. Springenberg, J.T.; Dosovitskiy, A.; Brox, T.; Riedmiller, M. Striving for Simplicity: The All Convolutional Net. arXiv 2015,
arXiv:1412.6806.

26. Sattler, F.; Wiedemann, S.; Müller, K.R.; Samek, W. Robust and communication-efficient federated learning from non-iid data.
IEEE Trans. Neural Netw. Learn. Syst. 2019, 31, 3400–3413. [CrossRef]

27. Liu, Y.; Liu, Y.; Liu, Z.; Liang, Y.; Meng, C.; Zhang, J.; Zheng, Y. Federated Forest. IEEE Trans. Big Data 2022, 8, 843–854. [CrossRef]
28. Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; Routledge: New York, NY, USA, 1984.
29. Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [CrossRef]
30. Li, Q.; Cai, Y.; Han, Y.; Yung, C.; Fu, T.; He, B. Fedtree: A fast, effective, and secure tree-based federated learning system. arXiv

2022, arXiv:2210.00060.
31. Beutel, D.J.; Topal, T.; Mathur, A.; Qiu, X.; Fernandez-Marques, J.; Gao, Y.; Sani, L.; Li, K.H.; Parcollet, T.; de Gusmão, P.P.B.; et al.

Flower: A Friendly Federated Learning Research Framework. arXiv 2020. [CrossRef]
32. Mathur, A.; Beutel, D.J.; de Gusmão, P.P.B.; Fernández-Marqués, J.; Topal, T.; Qiu, X.; Parcollet, T.; Gao, Y.; Lane, N.D. On-device

Federated Learning with Flower. arXiv 2021, arXiv:2104.03042.
33. Ziller, A.; Trask, A.; Lopardo, A.; Szymkow, B.; Wagner, B.; Bluemke, E.; Nounahon, J.M.; Passerat-Palmbach, J.; Prakash, K.;

Rose, N.; et al. Pysyft: A library for easy federated learning. In Federated Learning Systems: Towards Next-Generation AI; Springer
International Publishing: Cham, Switzerland, 2021; pp. 111–139.

34. Truong, A.; Walters, A.; Goodsitt, J.; Hines, K.; Bruss, C.B.; Farivar, R. Towards Automated Machine Learning: Evaluation and
Comparison of AutoML Approaches and Tools. In Proceedings of the 2019 IEEE 31st International Conference on Tools with
Artificial Intelligence (ICTAI), Portland, OR, USA, 4–6 November 2019; pp. 1471–1479. [CrossRef]

35. Ferreira, L.; Pilastri, A.; Martins, C.M.; Pires, P.M.; Cortez, P. A comparison of AutoML tools for machine learning, deep learning
and XGBoost. In Proceedings of the 2021 International Joint Conference on Neural Networks (IJCNN), Virtual, 18–22 July 2021;
IEEE: Piscataway, NJ, USA, 2021; pp. 1–8.

36. Seng, J.; Prasad, P.; Dhami, D.S.; Kersting, K. HANF: Hyperparameter And Neural Architecture Search in Federated Learning.
arXiv 2022, arXiv:2206.12342.

37. Feurer, M.; Klein, A.; Eggensperger, K.; Springenberg, J.T.; Blum, M.; Hutter, F., Auto-sklearn: Efficient and Robust Automated
Machine Learning. In Automated Machine Learning: Methods, Systems, Challenges; Hutter, F., Kotthoff, L., Vanschoren, J., Eds.;
Springer International Publishing: Cham, Switzerland, 2019; pp. 113–134. [CrossRef]

38. Feurer, M.; Eggensperger, K.; Falkner, S.; Lindauer, M.; Hutter, F. Auto-sklearn 2.0: Hands-free automl via meta-learning. J. Mach.
Learn. Res. 2022, 23, 11936–11996.

http://dx.doi.org/10.1145/3383455.3422562
http://dx.doi.org/10.1109/INFOCOM48880.2022.9796935
http://dx.doi.org/10.1109/NaNA53684.2021.00062
http://dx.doi.org/10.1155/2022/2886795
http://dx.doi.org/10.1109/TNNLS.2019.2944481
http://dx.doi.org/10.1109/TBDATA.2020.2992755
http://dx.doi.org/10.1007/BF00058655
http://dx.doi.org/10.48550/ARXIV.2007.14390
http://dx.doi.org/10.1109/ICTAI.2019.00209
http://dx.doi.org/10.1007/978-3-030-05318-5_6

Appl. Sci. 2023, 13, 8019 29 of 29

39. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;
et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

40. Lindauer, M.; Eggensperger, K.; Feurer, M.; Biedenkapp, A.; Deng, D.; Benjamins, C.; Ruhopf, T.; Sass, R.; Hutter, F. SMAC3: A
Versatile Bayesian Optimization Package for Hyperparameter Optimization. arXiv 2022, arXiv:2109.09831.

41. Knowles, J. ParEGO: A hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization
problems. IEEE Trans. Evol. Comput. 2006, 10, 50–66. [CrossRef]

42. Wang, L.; Xu, S.; Wang, X.; Zhu, Q. Addressing Class Imbalance in Federated Learning. Proc. AAAI Conf. Artif. Intell. 2021,
35, 10165–10173. [CrossRef]

43. Yao, A.C. Protocols for secure computations. In Proceedings of the 23rd Annual Symposium on Foundations of Computer
Science (sfcs 1982), Chicago, IL, USA, 3–5 November 1982; IEEE: Piscataway, NJ, USA, 1982; pp. 160–164.

44. Ben-Efraim, A.; Lindell, Y.; Omri, E. Optimizing semi-honest secure multiparty computation for the internet. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, 24–28 October 2016;
pp. 578–590.

45. Li, K.H.; de Gusmão, P.P.B.; Beutel, D.J.; Lane, N.D. Secure Aggregation for Federated Learning in Flower. In Proceedings of the
DistributedML ’21: 2nd ACM International Workshop on Distributed Machine Learning, New York, NY, USA, 7 December 2021;
pp. 8–14. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TEVC.2005.851274
http://dx.doi.org/10.1609/aaai.v35i11.17219
http://dx.doi.org/10.1145/3488659.3493776

	Introduction
	Related Work
	Federated Learning: Heterogeneity and Trade-Offs
	Automated Machine Learning: From Centralized to Federated Learning
	Bridging the Gap

	Analysis of a Contemporary AutoML Framework
	Design and Implementation of the AutoFL Framework
	Conceptual Overview
	Methodology
	Dataset Distribution
	Meta-Learning
	Data and Feature Pre-Processing
	Classifier
	Bayesian Optimization
	Implementation of AutoFL

	Evaluation
	Experimental Setup
	Baseline Experiment
	Homogeneous Federation: i.i.d. versus Non-i.i.d
	Heterogeneous Resource Availability
	Impact of Differential Privacy
	Impact of Secure Aggregation
	Discussion

	Conclusions
	Appendix A
	References

