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Abstract—End-to-end Long Short-Term Memory (LSTM) has
been successfully applied to video summarization. However, the
weakness of the LSTM model, poor generalization with inefficient
representation learning for inputted nodes, limits its capability
to efficiently carry out node classification within user-created
videos. Given the power of Graph Neural Networks (GNNs)
in representation learning, we adopted the Graph Information
Bottle (GIB) to develop a Contextual Feature Transformation
(CFT) mechanism that refines the temporal dual-feature, yielding
a semantic representation with attention alignment. Further-
more, a novel Salient-Area-Size-based spatial attention model
is presented to extract frame-wise visual features based on the
observation that humans tend to focus on sizable and moving
objects. Lastly, semantic representation is embedded within
attention alignment under the end-to-end LSTM framework
to differentiate indistinguishable images. Extensive experiments
demonstrate that the proposed method outperforms State-Of-
The-Art (SOTA) methods.

Index Terms—Graph Information Bottleneck, Contextual Fea-
ture Transformation (CFT), Spatial Attention Model, video
summarization, Bi-LSTM.

I. INTRODUCTION

IN recent years, an enormous amount of user-created videos
have been spread widely online through major social media

platforms, including YouTube, Instagram, and Tiktok. Social
media platforms accelerate the trend of browsing short videos
with a wide coverage of video topics. In Fig. 1 (a), we illustrate
a common characteristic of user-created videos, that is, that it
contains much richer content than the surveillance video. Prior
works have made attempts to efficiently perform video sum-
marization [1], [2], [3]. However, most existing approaches
are not efficient enough to deal with user-created videos.
Therefore, we propose a Semantic representation and Attention
alignment-based Contextual Feature Transformation (SA-CFT)
with the Graph Information Bottleneck (GIB) model in video
summarization.

The classic video summarization techniques have applied
machine learning to develop models that capture intricate
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patterns of video cues, such as visual attention [4], foreground
objects, and motion cues [5], [6]. One of the mainstream
methods treats video summarization as a clustering problem,
where the frames containing content closer to the clustering
center are selected as the summary [7]. The classic methods’
efficiency relied on the representation ability of hand-crafted
feature extractors. However, hand-crafted feature extractors
could only be designed for small datasets and particular video
domains, such as sports games, news, movies, and surveillance
videos. They must be cautiously designed with appropriate
expertise. Due to the weakness of their representation ability,
classic methods have their limitations when dealing with large
datasets with more complicated content.

Researchers have proposed deep neural network-based sum-
marization methods to overcome the disadvantages of classic
methods. Instead of being constrained to particular video do-
mains, deep neural network-based methods could be adopted
for general video by establishing objective assessment factors,
such as diversity, representativeness, continuity, and so on.

Currently, video summarization methods based on deep
neural network models have roughly been categorized into
supervised and unsupervised methods. The supervised video
summarization methods leverage deep neural networks to pro-
cess the inputted video under the guidance of human-annotated
datasets during training [8], [9], [10]. When high-quality
annotated data sets are insufficient, the supervised methods
may suffer from poor performance. However, producing high-
quality annotated datasets is highly labor-intensive.

In unsupervised methods, the hand-crafted criteria, such
as diversity and representativeness, have been designed to
replace the ground-truth labels. While video summaries are
evaluated in terms of their similarity with human-annotated
summaries, the hand-crafted criteria should capture the essen-
tial mechanism of human annotation in selecting keyframes.
To promote these unsupervised methods, Zhou presented the
reinforcement learning-based end-to-end LSTM method [11]
as an effective way to generate summaries. The key idea was
to design a human-crafted reward similar to the mechanism of
manual annotation and gradually enhance the summarization
performance during reinforcement learning. Due to the diffi-
culty of designing a suitable reward mechanism, reinforcement
learning-based methods are facing difficulties [12].

However, the baseline network of Zhou’s method [11], the
end-to-end LSTM, has efficiently preserved the advantages
of LSTM in capturing long-range dependencies and further
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Fig. 1. (a) An example illustrating the difference between surveillance video and user-created video. While the surveillance video consists of a relatively
static scene, the user-created video contains diversified content and more frequent shot changes. (b) The heatmap illustrating the enhancement of the
discriminative ability in spatio-temporal domain by our contributions: 1) with/without the Spatial Attention Model (SAM) alignment, 2) with/without the
Semantic representation and Attention alignment-based Contextual Feature Transformation (SA-CFT) representation; the more red the colour is, the stronger
its discriminative ability, and vice versa.

addressed the issue of limited coding capability caused by
the gate structure. Thus, the end-to-end LSTM model demon-
strated superior performance in video summarization. Despite
its success, the LSTM model has a principal weakness which
is the poor generalization resulting from the over-fitting issue
that generally occurs during training. The weakness leads to
low precision in node classifications and then constrains the
accuracy in video summarization.

Given the discriminative power of the Generative Adver-
sarial Networks (GANs), Li proposed an unsupervised Cycle-
Consistent Adversarial LSTM (Cycle-LSTM) by integrating a
frame selector and a cycle-consistent learning-based evaluator
[13]. The Cycle-LSTM method improved the performance
of summarization over GAN-based LSTM [14]. Despite its
strong capacity for representation learning [15], the perfor-
mance of Cycle-LSTM drops with the unstable training of the
cycle-adversarial component in video summarization. Alterna-
tively, Graph Neural Networks (GNNs) had been successfully
adopted for representation learning [16].

The Graph Attention Networks (GAT) [17] have proven
to be effective in learning relationships between nodes by
utilizing a self-attention mechanism. The model learns atten-
tion weights to aggregate feature vectors of nodes and their
adjacent nodes, which enables efficient feature representation
of each node. This method has demonstrated superior expres-
sive and generalization abilities in graph data processing. Our
previous work [18] proposed a GAT-based Bi-directional Long
Short-Term Memory (Bi-LSTM) architecture to improve the
representation of both node features and the graph structure
simultaneously, and this approach was shown to effectively
alleviate the issue of poor generalization in video summariza-
tion. However, the paper [18] revealed that the generalization
capability of GAT can be undermined by noise in user-created
video summarization.

Despite the strengths of the GAT, it can be sensitive to noise
during graph node and edge construction in user-created video
summarization. The GAT establishes an attention mechanism
to assign variable weights to each neighbor for feature ag-
gregation by learning the structure information among graph

nodes [17]. However, recent studies have shown that deeper
network layers can lead to an over-smoothing effect where
node representations on stacked propagation become indistin-
guishable for samples of different classes [19]. Specifically,
GAT’s representation learning may map samples with non-
identical semantic or visual features nearby, which can cause
a decrease in video summarization performance. Moreover,
the diverse data in user-created videos forms more compli-
cated graph structures and node features, further limiting the
efficiency of representation learning using GAT.

To address the issue of over-smoothing, we propose a
Contextual Feature Transformation (CFT) mechanism that
builds upon GIB [20] to enhance the temporal correlation
among images. GIB is based on the Information Bottleneck
(IB) [21] principle, which aims to learn the minimum sufficient
representation of a given task by maximizing the mutual
information between the representation and the output, while
constraining the mutual information between the representa-
tion and the input data [20]. By doing so, GIB can strike a
balance between the expressiveness and robustness of graph
data representation. In our approach, we leverage the power
of GIB to learn a more informative and discriminative rep-
resentation of the input data, which is then further enhanced
by our proposed CFT mechanism to capture the context and
refine the temporal correlation among images.

In this study, we present a Semantic representation and
Attention alignment-based Contextual Feature Transformation
(SA-CFT) mechanism within the end-to-end Bi-LSTM frame-
work. Our contributions are as follows:

1) To capture the diverse content in user-created videos,
which is richer than surveillance videos, we introduce attention
alignment to extend the representation from a single seman-
tic feature space to a dual-feature space that includes both
semantic and visual features.

2) To enhance the discriminative power and robustness of
the dual-feature, we propose the SA-CFT mechanism, which
refines the representation learning of the higher-layer dual-
feature through stacked propagation of the GIB. As illustrated
in Fig. 1(b), the SA-CFT mechanism emphasizes the discrim-
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inative ability of the higher-layer dual-feature via temporal
refinement.

3) Based on the observation that moving and large objects
attract more attention, we introduce a Salient-Area-Size-based
Spatial Attention Model (SAM) to refine the spatial features
by leveraging the statistical information of the salient regions
of moving objects. Fig. 1(b) shows that the SAM emphasizes
the discriminative ability of the visual feature, enabling the
proposed method to focus on the moving and large foreground.

4) To tackle the convergence problem during the training
process, we employ the Deep Deterministic Policy Gradient
(DDPG) algorithm [22]. Additionally, we use the binary cross-
entropy loss function during supervised learning to obtain
more reasonable training results.

In conclusion, our proposed method addresses issues of
poor generalization and over-smoothing by refining the spatio-
temporal representation of the dual-feature. We conduct com-
prehensive experiments on widely-used datasets, SumMe
and TVSum, and demonstrate that our method outperforms
SOTA methods [11] and [18] by 32.9%/8.5% and 6.8%/5.8%
F−score improvements on the SumMe/TVSum datasets, re-
spectively.

II. RELATED WORK

This section provides an overview of the classic visual atten-
tion model-based and deep neural network-based methods for
video summarization. The deep neural network-based methods
are further classified into two categories: single-feature and
dual-feature methods. The single-feature methods operate on
a single feature space, such as the semantic or visual feature
space. On the other hand, the dual-feature methods extract both
semantic and visual features, hence the name “dual-feature”.

A. Classic visual attention model-based video summarization

Visual attention has been defined in the computer sci-
ence literature since the mid-1990s [23], [9], and used as
a criterion to measure the frame-wise importance in video
summarization. Ji et al. [24] designed an iso-content principle-
based saliency filter to select keyframes, which filters frames
with lower importance scores than a predetermined threshold.
Subsequently, Shih [4] generalized video summarization as a
keyframe determination problem solved by ranking frame-wise
attention levels. Since the attention is measured with hand-
crafted features, such as block-wise temporal motion and facial
area, Shih’s method is constrained to specific video domains.

Even though the hand-crafted features correspond to limited
representation ability, researchers have attempted to improve
the performance of the classic methods by merging various
visual cues, like moving objects, motion, foreground object
categories in video summarization [5], [6]. Recently, Kan-
nan presented a spatio-temporal saliency model to estimate
the frame-wise importance [25], where the spatial-temporal
saliency is developed based on low-level features such as
color contrast, color distribution, and center prior. Kannan’s
method has shown superior performance to other classic visual
attention model-based methods in video summarization.

Visual attention, as a low-level feature, was designed to
represent videos with relatively static backgrounds or specific
video domains in classic methods. However, extending visual
attention cues to enhance the efficiency of these methods
is limited in their ability to learn intricate patterns of large
datasets. Classic methods fall short when dealing with the
rapidly changing content in videos and fail to generate high-
quality video summaries. Deep learning models, with their
automatic multi-level representation power, have shown great
potential in achieving high efficiency when addressing large
datasets or general videos with complex content. Therefore,
video summarization methods based on deep learning models
have emerged as a promising approach to improve the perfor-
mance of video summarization.

B. Spatio-temporal single-feature deep neural network-based
video summarization

Supervised methods: Gong et al. [26] designed a novel
probabilistic model, the Sequential Determinantal Point Pro-
cess (SeqDPP), to learn the optimal subset of videos with the
informative criteria in a supervised fashion. Besides, Zhang
et al. [27] first adopted a LSTM to exploit the temporal
dependencies, improving accuracy of video summarization by
strengthening the keyframe selection criterion based on the
work in [26].

Subsequently, Ji et al. [8] proposed an encoder-decoder
framework with a novel attention-based LSTM mechanism
for video summarization. In particular, the encoder-decoder
framework cannot efficiently perform the keyframe selection
using a fixed-length encoding vector for long video sequences.
To address this, the attention-based LSTM mechanism was
developed to assign the encoding vector to frames with
more salient visual information. Ji emphasized the short-
term contextual attention on the long-term attention model
[8]. However, the supervised methods in video summarization
depend heavily on the quality of the annotated dataset, which
are highly labor-intensive to create.

Unsupervised methods: The discriminative ability of GAN
has led to its adoption in video summarization. Mahasseni
et al. [14] presented an approach with a variational auto-
encoder and a novel adversarial LSTM network, where the
auto-encoder selects keyframes, and the adversarial LSTM acts
as a discriminator to differentiate between the original and re-
constructed video frames. Li et al. [13] subsequently proposed
an unsupervised Cycle-Consistent Adversarial LSTM (Cycle-
LSTM) that combines a Bi-LSTM network for selecting
keyframes and a cycle-consistent GAN structure to maximize
the mutual information between the original and reconstructed
videos. The Cycle-LSTM method improves the performance of
summarization compared to Mahasseni’s method [14]. How-
ever, the cycle-adversarial component suffers from unstable
training results that lead to the model’s failure in selecting
keyframes.

Reinforcement learning in video representation simulated
the essential mechanism of human annotation. Zhou et al. [11]
presented an end-to-end LSTM-based reinforcement learning
method for video summarization, which comprised a novel
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feedback reward with the combination of diversity and rep-
resentativeness. The method was proven to be successful by
gradually enhancing the performance of video summarization
during reinforcement learning. But, the idea that promotes
video summarization by designing a more effective reward
mechanism has its limitations [12].

The principal weakness of single-feature deep neural
network-based methods is that the representation of a single
features is often inadequate for discriminating between images
with similar visual information but different semantic features.
For instance, two images with similar visual information but
completely different semantic features tend to be recognized
as similar images in a class. They fail to identify the indistin-
guishable images as different, which causes missing detection
of keyframes. To overcome this problem, researchers have
proposed dual-feature methods, which involve embedding two
types of features using deep learning models. By incorporating
complementary features, these methods can enhance represen-
tation efficiency and improve the accuracy of video

C. Spatio-temporal dual-feature deep neural network-based
unsupervised video summarization

Supervised methods: The work in [28] first introduced
Convolutional Recurrent Neural Networks (CRNN) to exploit
the spatio-temporal semantic feature-related dependencies and
shallow features under an end-to-end architecture. More con-
cretely, the combination of the semantic and shallow features
made the representation used for video summarization to
be more comprehensive, thereby producing superior perfor-
mance against the single-feature methods, such as that in
[11]. LMHA/LMHA-two [29] proposes a novel hierarchical
attention approach for supervised video summarization that
takes advantage of the inherent hierarchical structure of video
sequences. It utilizes intra-block and inter-block attention
mechanisms to learn both short-range and long-range temporal
representations. Inspired by the success of transformer-based
methods, HMT [30] introduces a hierarchical multimodal
transformer architecture for video summarization that lever-
ages both visual and textual information. The results from
standard datasets demonstrate that both approaches outper-
form SOTA methods in terms of effectiveness and efficiency.
However, due to the over-fitting phenomenon, which easily
occurred when the annotated labels were insufficient, the
performance of the supervised dual-feature methods decreased
sharply.

Unsupervised methods: Based on Mahasseni’s adversarial
LSTM network [14], Jung et al. presented a variance loss reg-
ularization for discriminative feature learning under the Vari-
ational Auto Encoder-GAN (VAE-GAN) framework, where a
novel Chunk and Stride Network (CSNet) was designed to
combine local and global temporal video features [31]. The
key idea was to enhance the performance of video summariza-
tion by integrating the semantic feature and the attention score
measuring the temporal dynamic information. CSNet-based
video summarization demonstrated superior performance com-
pared to single-feature methods, showing that the dual-feature
embedding approach improves the discriminative power of

the representation for video summarization. Furthermore, this
method was proved to be more efficient than the combination
of shallow features and semantic features presented in [28].

Despite the enhanced performance, the work in [31] had two
disadvantages. First, the attention score emphasized dynamic
temporal differences rather than the visual features that truly
represent the human visual perception mechanism. To over-
come this limitation, our prior work [18] proposed a dual-
feature method by integrating visual and semantic features.
Specifically, the visual information captures the visual per-
ception mechanism, wherein larger and moving objects attract
more attention. Therefore, the combination of semantic and
saliency features can further enhance the discrimination of
algorithms for selecting keyframes and filtering redundant
frames from user-created videos. Second, the adversarial com-
ponents of the CSNet method [31] caused unstable training and
significantly diminished performance. Therefore, in our previ-
ous work [18], we adopted an end-to-end LSTM model as the
baseline network and leveraged GAT to enhance representation
learning for video summarization.

D. Graph Neural Networks (GNNs)

In recent years, deep learning has been extended to graph-
structured data [32], [33], resulting in the success of GNNs
in various applications. GNNs learn node-level representations
through message passing and neighboring aggregation, which
helps in maintaining the topology information during the opti-
mization process [34]. Graph Convolutional Neural Networks
(GCNs), which generalizes the operation of Convolutional
Neural Networks (CNNs) to graphs of arbitrary structures,
have been proposed as an important branch of GNNs for
representation learning in node classification [35], [36], [17].
Kipf proposed the original spectral-GCN for semi-supervised
learning on graph data [35], which aimed to approximate and
simplify the Chebyshev spectral CNN (ChebNet) [37] to make
it more efficient. However, since the whole graph (including
all nodes and edges) was processed and stored on the basis of
Fourier transformation, the spectral-GCN still suffered from
high computation and memory costs.

Spatial GCNs, such as GraphSage [36] and the Graph
Attention Networks (GAT) [17], have been shown to be
an efficient way to reduce the computational and memory
costs for large-scale graphs. In spatial GCNs, convolution is
directly performed on the graph, making it possible to perform
training on a subset of nodes and edges within the graph.
Hamilton proposed an inductive framework called GraphSage,
which propagated information along the edges and aggregated
features for a central node from its neighboring nodes [36].
The inductive framework predicted the structure’s information
by using the aggregated information for a node, facilitating
the model’s generalization capability. Moreover, GraphSage
has been successfully applied to process complicated large-
scale data, such as videos with millions of frames. However,
GraphSage has a limitation in representing the dependency
among nodes due to the inappropriate identical weight setting
method that assigns the same weights to neighboring nodes
even when they contribute differently to the current node.
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GAT, on the other hand, assign variable weights to relevant
neighboring nodes based on their contributions through the
attention mechanism [17]. Compared to the identical weight
assignment in GraphSage, GAT has shown impressive im-
provement in node classification. Considering GAT’s strong
generalization ability, our previous work [18] leveraged GAT
to fuse the contribution of adjacent images to the current
image in terms of visual features and then transform the visual
features into higher-layer features. Furthermore, the GAT-
based Bi-LSTM in [18] enhanced the representation of both
graph structure and node features simultaneously, improving
summary performance.

However, the representation learned by GAT is not robust
and leaves features or structures vulnerable to disturbance
[38], [39]. Recent work has claimed that the over-smoothing
phenomenon that occurs during node representation on stacked
propagation causes low efficiency in differentiating indistin-
guishable samples [19]. Particularly with the representation
learning of GAT, samples with non-identical semantic or visual
features tend to be mapped nearby, causing a sharp drop in
the performance of video summarization for diversified data
with more complicated graph structures and node features.

To make the graph more robust against disturbance, an
information theory principle called the Graph Information Bot-
tleneck (GIB) was presented in [20]. GIB learns the minimum
sufficient representation of a given task by maximizing the
mutual information between the representation and the output,
and constraining the mutual information between the repre-
sentation and the input data. Furthermore, GIB establishes
an information theory model based on the characteristics,
structure, and fusion of graph structure data. It focuses on
the compression of node features and graph structures and
improves prediction ability.

While dealing with large-scale and high-dimensional graph
data, existing graph neural networks often face difficulties
in interpretation and generalization. To address these issues,
various methods have been proposed. For instance, Yu in-
troduced the Graph Information Bottleneck (GIB) framework
[40], which maps subgraphs in images to a low-dimensional
space for efficient subgraph identification. However, this model
suffers from unstable training and degraded results. To address
these problems, Yu proposed the Variational Graph Informa-
tion Bottleneck (VGIB) model [41], which combines the VAE
model with the information bottleneck network to eliminate
noise in the learning process and improve recognition accu-
racy.

In addition, Miao proposed the Graph Stochastic Attention
(GSAT) method [42], which injects randomness to block
task-irrelevant information and selects subgraph information
relevant to the task by reducing randomness. However, random
sampling may cause a loss of useful information. Sun proposed
the Variational Information Bottleneck guided Graph Structure
Learning framework (VIB-GSL) [43], which uses two neural
networks to transform a graph into a probability distribution
and embed it into a low-dimensional representation. The vari-
ational information bottleneck is used to limit the information
flow of the embedded vector in the training process, thereby
enhancing the ability to capture graph structure information.

In this work, we aim to enhance the discriminative ability
of video summarization through the development of a Con-
textual Feature based Transformation mechanism using the
GIB model. Our proposed mechanism generates a higher-
layer dual-feature that is refined using stacked propagation of
the GIB. Specifically, we focus on refining the representation
learning of the temporal dual-feature, which includes semantic
representation and attention alignment. To achieve this, we
propose a semantic representation and attention alignment
scheme for the GIB model under the end-to-end Bi-LSTM
framework. Our approach enables effective summarization of
videos with diverse content and complex graph structures.

III. PROBLEM FORMULATION

Given a long video X = {Xt}Tt=1, where Xt ∈ Rw×h×3,
and w, h, and 3 denote the width, height, and channel
for each frame, respectively, t ∈ N+ is the index of the
frame. T is the length of the video frames. y = {yt}Tt=1,
yt ∈ {0, 1} is the binary label representing whether or not
the tth frame is selected as a keyframe. The collection of the
selected keyframes composes the video summary represented
by Xsub = {Xt | t < T, and yt = 1}.

Generating Video Summarization: The binary possibility
set y = {yt}Tt=1 is computed on the Bernoulli distribution [36]
of {βt}Tt=1 ( βt ∈ [0, 1]), as formulated in Eq. (1):

yt = Bernoulli(βt), (1)

where βt = N(pt) denotes the Soft Selected Probability
(SSP) which is the probability of being selected as keyframes
in video summarization, and yt = 1 alternatively repre-
sents that the tth frame with βt is selected, and vice versa.
N(·) = exp(·)/

∑
exp(·) is the normalization operator. pt is

the probability computed by the Bi-LSTM in Eq. (2):

pt = σ(FC(ht)), (2)

where the hidden states {ht}Tt=1 of the Bi-LSTM are inputted
into a Fully Connected layer FC(·) [11], followed by a
sigmoid function σ(·) [44]. The input of the Bi-LSTM is the
higher-layer feature M ′ calculated via a step of compression
followed by a prediction within the SA-CFT.

IV. PROPOSED METHOD

As illustrated in Fig. 2, we propose a semantic representa-
tion and Spatial Attention Model’s (SAM) alignment-based
GIB model under the Bi-LSTM framework; the proposed
model has an enhanced performance in discriminating between
images by integrating semantic and visual features. First,
a SAM is modeled by measuring the frame-wise spatial
importance scores with the input of saliency features. Simul-
taneously, the semantic features are learned by a CNN [22].
Second, the concatenation of the semantic and spatial attention
features is further transformed into higher-layer features by
the SA-CFT established on the GIB. Lastly, the higher-layer
features are processed by the Bi-LSTM network to generate
the SSP. The reinforcement network, DDPG, is adopted to
minimize the back-propagation loss.
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Fig. 2. Framework of the proposed method. Initially, we integrate the semantic features extracted from ImageNet with the visual features obtained through
the Spatial Attention Model (SAM). Then, we feed the fused features into the SA-CFT network based on the Graph Information Bottleneck (GIB) architecture,
where Z

(0)
V is initialized as the inputted nodes’ set V = {vt}Tt=1 with the fused feature vt. The input features are then converted into higher level features.

Lastly, we input the optimized features into the Bi-LSTM network to select key frames and generate a summary video. Our contributions consist of two
key components: 1) the Graph Information Bottleneck (GIB) based SA-CFT network, and 2) the Spatial Attention Model (SAM) based attention alignment,
combined with the Bi-LSTM network.

A. Semantic representation and Attention alignment-based
Contextual Feature Transformation (SA-CFT)

To promote the discriminative ability of the dual-feature
and improve its robustness, we develop the Semantic repre-
sentation and Attention alignment-based Contextual Feature
Transformation (SA-CFT) mechanism on the GIB model to
generate a higher-layer dual-feature M . As shown in Fig. 2,
the process of SA-CFT mechanism involves two steps, the
compression followed by the prediction. The representation
Z

(L)
V = {z(L)

V,t }Tt=1 (z(L)
V,t ∈ Rd at the Lth iteration, and

d = d1 + d2) is estimated during compression, and then the
final output M ′ = {m′t}Tt=1 (m′t ∈ Rd) is computed via the
prediction (see Algorithm 1).

We regard image frames as nodes set to generate an
undirected attribute graph denoted as G = (E, V ), where
V = {vt}Tt=1 (vt ∈ Rd) is the set of the dual-features. In
Fig. 2, the semantic features F = {ft}Tt=1 (ft ∈ Rd2 , and d2

is a different cardinality) and the visual features C = {ct}Tt=1

(ct ∈ Rd1 , d1 = w×h) are concatenated to form the input V ,
modelled as Eq. (3):

vt = [ft ‖ ct], (3)

where ‖ is the concatenation operator. While the semantic
feature ft is learned via a pre-trained GoogleNet on ImageNet
[22], the visual feature ct is generated using the SAM model.
Let E = {e(l)

i,j} be the graph’s adjacency matrix (l ∈ N, and
l ≤ L+ 1 is the iteration time). In our approach, we initialize
the graph’s adjacency matrix E using Eq. (4), where e(0)

i,j = 1

if nodes i and j belong to the same clip and e(0)
i,j = 0 otherwise.

More specific, there is an edge between nodes i and j if and
only if they belong to the same clip. Conversely, if i and
j belong to different clips, they are not connected, and e

(0)
i,j

equals 0.

e
(0)
i,j =

{
1, i, j ∈ the same clip
0, else

. (4)

The KTS algorithm [45] is a widely used algorithm for
segmenting time series data into multiple clips. The main
goal of this algorithm is to maximize the similarity between
time series data within each clip while minimizing the simi-
larity between different clips, thereby improving analysis and
processing. In the context of video processing, KTS [45] is
employed to segment videos into multiple clips, where each
clip comprises a number of video frames, denoted by the
variable k. Within each clip, the output for each frame, denoted
by mi, with i ∈ [1, k], is calculated through the prediction in
Eq. (5). The output M is obtained by combining the outputs
{mi}ki=1 (mi ∈ Rd) of all clips.

mi =
∑

j∈[1,k],j6=i
Nj(e

(l)
ij ) · (Uz(l−1)

V,j ) s.t. l = L+ 1, (5)

where the weight e(l)
ij of the edge between the ith and jth

nodes is computed on a shared attention mechanism δ, U ∈
Rd×d is a matrix with learnable weights, and Nj(·) is the
normalization with the index j. Based on the GAT [17], the
model of attention weight e(l)

ij can be formulated as Eq. (6):

e
(l)
ij = δ(Uz(l−1)

V,i , Uz(l−1)
V,j ), (6)

where the attention weight e(l)
ij presents the interaction impact

of the jth node’s feature z(l−1)
V,j on the ith node’s feature z(l−1)

V,i

at the lth iteration.
The equation of the attention weight is further expressed

in Eq. (7) by introducing the LeakyReLU nonlinearity and a
weight vector a ∈ R2d,

e
(l)
ij = LeakyReLU(aT [Uz(l−1)

V,i ‖ Uz(l−1)
V,j ]), (7)

where aT is the transposition of the vector a.
The basic framework of GIB-based SA-CFT is shown in

Algorithm 1. The stacked propagation of the GIB is used
to refine the representation learning of the temporal dual-
feature (semantic representation with attention alignment) for
video summarization. The GIB learns the minimum sufficient
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Algorithm 1: The Framework of GIB-based SA-CFT
Input: The dataset G = (E, V );
k: The number of neighbors to be sampled;
Output: Z ′(L)

V ,
M =Wout � Z(L)

V = {W (L+1)
i z(L)

V,i }ki=1,
M ′ =W ′out � Z

′(L)
V = {W ′(L+1)

i z′(L)
V,i }ki=1

1 Initialize: Z(0)
V ← V ; for all vt ∈ V ,

2 Weights: U ∈ Rd×d, W (l)
i ,W

′(l)
i ∈ Rd×d,

Wout = {W (L+1)
i }ki=1, W ′out = {W ′(L+1)

i }ki=1,
W

(l)
i =

∑
j∈[1,k],j 6=iNj(e

(l)
ij ) · U for l ∈ [1, L+ 1]

W
′(l)
i =

∑
j∈[1,k],j 6=iNj(e

′(l)
ij ) · U for l = L+ 1

3 a. The upper bound of I(G;Z
(L)
V )

4 for iteration l = [1, · · · , L], do
5 i) calculate VIB(l):
6 z(l)

V,i ←W
(l)
i z(l−1)

V,i ; for all i ∈ [1, k]

7 µ
(l)
v ← {z(l)

V,i}
k/2
i=1

8 {σ2
v}(l) ← softplus({z(l)

V,i}ki=k/2)

9 variable z
(l)
v ∼ Gaussian(µ

(l)
v , {σ2

v}(l))
10 VIB(l) =

∑
z
(l)
v ∈Z(l)

V

[
logΦ(z

(l)
v ;µ

(l)
v , {σ2

v}(l))
11 −log(

∑100
n=1 λ

(l)
n · Φ(z

(l)
v ;µ

(l)
n , {σ2

n}(l)))
]
,

12 ii) calculate EIB(l):
13 φ

(l)
v = softmax([z(l−1)

V,i ‖ z(l−1)
V,j ]aT )

14 EIB(l) =
∑
z
(l)
v ∈Z(l)

V

KL(Cat(φ
(l)
v )||Cat(z

(l)
v ))

15 iii) Z(l)
V = min(VIB(l)) and Z(l)

E = min(EIB(l))

16 iv) update e(l)
ij :

17 e
(l)
ij = LeakyReLU(aT [Uz(l−1)

V,i ‖ Uz(l−1)
V,j ])

18 end
19 b. The lower bound of I(M ;Z

(L)
V )

20 I(M ;Z
(L)
V ) ≥ MIB = −

∑
v∈V Ls(Wout � Z(L)

V , Z
(L)
V )

21 c. By min(−MIB + γ1VIB(L) + γ2EIB(L)), we
update to obtain the optimal Z ′(L)

V = {z′(L)
V,i }ki=1, and

update e′(L+1)
ij = LeakyReLU(aT [Uz′(L)

V,i ‖ Uz′(L)
V,j ]).

22 d. generate the prediction
M ′ =W ′out � Z

′(L)
V = {W ′(L+1)

i z′(L)
V,i }ki=1

representation of a keyframe selection task by maximizing
the mutual information I(M ;Z

(L)
V ) between the representation

Z
(L)
V and the output M , and constraining the mutual informa-

tion I(G;Z
(L)
V ) between the representation Z(L)

V and the input
data G, as modelled in Eq. (8):

argminGIBγ
P (Z

(L)
V |G)∈Ω

(G,M ;Z
(L)
V ) = [−I(M ;Z

(L)
V ) + γI(G;Z

(L)
V )],

(8)
where P (Z

(L)
V | G) denotes the Probability Distribution

Functions (PDFs) of the random variable z(L)
v within the set

Z
(L)
V given the condition G = (E, V ), and γ ∈ {γ1, γ2} are

the hyperparameters. However, graph-structured data is known
to suffer from the problem of being non-i.i.d (non-independent
and identically distributed). Because of the Markov correlation

between video frames, it can be assumed that the graph data
has local dependence on the adjacent nodes’ set. Conversely,
the current node is assumed to be independent of the nodes
beyond the adjacent nodes’ set. Therefore, we restrict the
search space Ω to the adjacent nodes’ set. To simplify the opti-
mization process for GIB, we employ variational bounds [46]
to develop and optimize the terms I(M ;Z

(L)
V ) and I(G;Z

(L)
V ).

The upper bound of I(G;Z
(L)
V ): minimizes the mutual

information between representation Z(L)
V and the input infor-

mation G, which are used to eliminate the disturbance of noise
data in the inputted features, calculated in Eq. (9):

I(G;Z
(L)
V ) ≤ I(G; {Z(l)

V }l∈[1,lv ] ∪ {Z
(l)
E }l∈[lv+1,L])

≤
∑

l∈[1,lv]

VIB(l) +
∑

l∈[lv+1,L]

EIB(l), (9)

where VIB(l) and EIB(l) represent the mutual information
between the updated representation and the original input in
terms of feature and correlation structure respectively, and lv ∈
[1, L]. At the lth iteration, Z(l)

V is the updated representation
of the dual-feature, and Z(l)

E denotes the representation of the
structure information between the current node and its (k−1)
adjacent nodes.

We calculate VIB(l) in Eq. (10):

VIB(l) = E

[
log

P (Z
(l)
V | Z

(l−1)
V , Z

(l)
E )

Q(Z
(l)
V )

]
=

∑
z
(l)
v ∈Z(l)

V

[
logΦ(z(l)

v ;µ(l)
v , {σ2

v}(l))

−log(

100∑
n=1

λ(l)
n · Φ(z(l)

v ;µ(l)
n , {σ2

n}(l)))
]
,

(10)

where P (Z
(l)
V | Z

(l−1)
V , Z

(l)
E ) indicates the PDFs of the vari-

able z
(l)
v ∼ Gaussian(µ

(l)
v , {σ2

v}(l)) for the set Z(l)
V given

the conditions Z
(l−1)
V and Z

(l)
E at the lth iteration. E[·]

is the expectation value of the random variables. Q(Z
(l)
V )

denotes the PDFs of the Gaussian Mixture Model for set Z(l)
V

after reparameterization (the corresponding prior distribution
is written as z(l)

v ∼
∑100
n=1 λ

(l)
n ·Gaussian(µ

(l)
n , {σ2

n}(l)) [47].
Gaussian(:, :) is the probability density function of the Gaus-
sian distribution, denoted by Φ(:; :, :). We set λ(l)

n , µ(l)
n , and

{σ2
n}(l) as learnable parameters.
As for EIB(l) in Eq. (11), we set P (Z

(l)
E | E,Z

(l−1)
V ) as the

PDFs of the variable z(l)
e ∼ Cat(φ

(l)
v ) in the set Z(l)

E given
the conditions E and Z

(l−1)
V , and set Q(Z

(l)
E ) as the PDFs

of the prior distribution Cat(z
(l)
v ) for set Z(L)

E . Specifically,
the KL divergence [48] KL(Cat(φ

(l)
v )||Cat(z

(l)
v )) is leveraged

to measure the similarity between the conditional distribution
Cat(φ

(l)
v ) and the prior distribution Cat(z

(l)
v ).

EIB(l) = E

[
log

P (Z
(l)
E | E,Z

(l−1)
V )

Q(Z
(l)
E )

]
=

∑
z
(l)
v ∈Z(l)

V

KL(Cat(φ(l)
v )||Cat(z(l)

v )),
(11)
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where φ
(l)
v = softmax([z(l−1)

V,i ‖ z(l−1)
V,j ]aT ) indicates the

importance of the features of the jth node to the ith node
at the lth iteration. Cat(φ

(l)
v ) is the Gumbel-Softmax [49]

function of φ
(l)
v with temperature τ at the lth iteration.

Cat(z
(l)
v ) = |Z(l)

V |
−1

is the uniform distribution for the nodes’
set Z(l)

V with the structure Z(l)
E .

In summary, we can update Z
(l)
V and Z

(l)
E by Z

(l)
V =

min(VIB(l)) and Z(l)
E = min(EIB(l)), respectively.

The lower bound of I(M ;Z
(L)
V ): maximizes the mutual

information between the output M and the representation Z(l)
V ,

calculated in Eq. (12):

I(M ;Z
(L)
V ) ≥ 1 + E

[
log

∏
z
(l)
v ∈Z(l)

V

Q(M | Z(L)
V )

Q(M)

]

+E
P (M)P (Z

(L)
V )

[ ∏
z
(l)
v ∈Z(l)

V

Q(M | Z(L)
V )

Q(M)

]
.

(12)

The last term of Eq. (12) equals 1 empirically. We simply
set Q(M | Z(L)

V ) = Cat(Wout � Z(L)
V ) and Q(M) = P (M).

Thus, the right side of Eq. (12), denoted by MIB, is deduced
as Eq. (13),

MIB = −
∑

z
(l)
v ∈Z(l)

V

Ls(Wout � Z(L)
V , Z

(L)
V ),

(13)

Ls(:, :) = L(sigmoid(:), :) is the combination of a binary
cross-entropy loss L(:, :) (formulated in Eq. (18)) and a
sigmoid function sigmoid(:) [50]. Furthermore, � is element-
wise product with the first order of the tensor Wout and
the corresponding vector z(l−1)

V,i , modelled in Algorithm 1.
Last, we update to obtain the optimal Z ′(L)

V via min(−MIB+

γ1VIB(L) + γ2EIB(L)), where γ1 = 0.0001 and γ2 = 0.001
are the hyperparameters of VIB(L) and EIB(L), respectively.

B. Salient-Area-Size-based SAM
Inspired by the idea that human beings frequently pay more

attention to the sizable moving objects in a video, we propose
a saliency feature-based model, SAM, to formulate spatial
attention to the statistics of the saliency region of moving
objects. Let S = {st | st ∈ [0, 255]}Tt=1 denote the set of
saliency map. In Fig. 3, the core salient region detection is
proposed to refine the saliency map st ∈ Rd1 to generate
the frame-wise spatial attention feature ct ∈ Rd1 (t ∈ [1, T ],
d1 = w × h) in Eq. (14):

ct =

{
st, r∂ > r∂̂
0, else

, (14)

where st is the vector representing the pixel-wise salient value.
Specifically, a feature vector is extracted by a VGG [11], on
which a saliency detector [23] is adopted to detect the salient
regions of moving objects.

As for the pixel-wise saliency map st, we rank the area of
salient regions and then set the salient regions whose area r∂
is less than the threshold r∂̂ as non-salient regions.

saliency map

original image

saliency histogram core saliency level

core salient map
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Fig. 3. Spatial attention model based on salient regions. This model is utilized
to identify the key salient regions within an image by identifying the regions
with significance levels greater than the threshold value.

To calculate the optimal value of r∂̂ for determining the
core salient regions, we conduct experiments by ranging r∂̂
from 20 to 25 and randomly sampling 150 videos for testing.
In Fig. 4, when r∂̂ = 21, SAM arrives at the best performance
in F−score. A saliency map histogram is rendered from the
saliency map st, whose horizontal coordinate is the saliency
level r∂ , while the vertical coordinate is the frequency bins(·).
The range of horizontal coordinates is 26 saliency levels
presented as {r0, r1, · · · , r∂ , · · · , r25}, ∂ ∈ [0, 25], where the
class interval of each level is 10 (expect the special case
r25 = 5). In the saliency histogram, the frequency of vertical
coordinates is computed by the discrete function bins(·),
written as Eq. (15):

bins(r∂) =
or∂
w × h

, (15)

where or∂ is the number of pixels at the salient regions with
the saliency level r∂ .

C. Training-Unsupervised fashion (DDPG)
We adopt the DDPG [22] to train the SA-CFT-based Bi-

LSTM. The DDPG is a united algorithm of the actor-critic
deterministic policy gradient algorithm [22], which contains
two kinds of models: the actor and the critic. The actor
takes action according to the environment state, and the critic
evaluates the actor’s action and provides action-value. In this
work, the actor is the SA-CFT-based Bi-LSTM. The proposed
method serves as the actor to learn a policy µθµ by maximizing
the expected actor-value, written as Eq. (16), and then a liner
regression network is developed to play as a critic.

max
θµ

J(µ) = Es∼pβ

[
Qµθµ

(
s, µθµ(s)

)]
, (16)

where θµ is the parameter of the policy, pβ is the state
visitation distribution, s is the hidden state in the network, and
Qµθµ (·) is the actor-value function, modelled by the critic.
Following [22], we adopt the deterministic policy gradient
algorithm to calculate the derivative of J(µ). The policy
gradient is formulated as Eq. (17):

5θµJ ≈
∑
i

5aQ
(
s, a | θQ

)
|s=si,a=µ(si)5θµµ

(
s | θµ

)
|si ,

(17)
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Fig. 4. Illustration depicting the F−score function of with respect to the
threshold value. Its primary objective is to determine the optimal threshold
for identifying the core saliency region in an image.

where the parameters in the critic are updated by minimizing
the Smooth-L1 Loss J(µ) between the predicted and the
expected action-value.

D. Training-Supervised fashion

To compare with the supervised methods fairly, we extend
our model into a supervised fashion with the binary cross-
entropy loss L(:, :) in Eq. (18),

L(βt, gt) = −1

k

k∑
t=1

[
gtlog(βt) + (1− gt)log(1− βt)

]
, (18)

where βt represents the predicted SSP modelled in Eq. (1), gt
is the SSP of the annotated ground-truth, and k is the length
of the video frames within a clip.

V. EXPERIMENTS

A. Implementation Details

Datasets: We evaluate our model on two public datasets:
SumMe [51] and TVSum [52], where SumMe consists of 25
user-created videos covering a wide range of topics (such
as sports, vacations, and holidays) and TVSum contains 50
edited videos in 10 categories selected from YouTube. The
video durations range from 1 to 10 minutes. More than 15
users give frame-level importance scores to create manually
annotated summaries. Most of the videos from TVSum are
edited versions rather than the original ones. Two other
datasets, YouTube [53] and the Open Video Project (OVP),
are adopted to augment the training process [8], [11]. The
YouTube dataset contains 39 videos selected from the YouTube
channel, excluding cartoon videos, and the OVP consists of 50
documentary videos. Generally, the duration of the algorithm-
generated summary should be less than 15% of that of the
original video.

Evaluation metrics: We adopt the commonly used evalu-
ation metric, the F−score [27] which assesses performance
by measuring the similarity between the algorithm-generated
summary A and the gold-standard labels B annotated by the
users. First, the precise P and the recall R are calculated by
Eq. (19), and then the harmonic mean F−score is computed
in Eq. (20):

P =
overlapped duration of A and B

duration of A
,

R =
overlapped duration of A and B

duration of B
,

(19)

F−score = 2× P ×R
P +R

× 100%. (20)

Experimental settings: We conducted experiments on three
settings, namely Canonical (C), Augmented (A), and Transfer
(T), as listed in Table I. In the Canonical setting, we utilized a
single dataset and allocated 80% of it for training and 20% for
evaluation. In the Augmented setting, we employed four dis-
tinct datasets, with 80% of the first dataset and three others for
training, and 20% of the first dataset for testing. In the Transfer
setting, we used three datasets for training and one dataset
for evaluation. Our experimental methodology followed the
parameter configuration outlined in [8], [11], which included
down-sampling the video to 2 frames per second and dividing
it into multiple smaller segments. The hidden layer size of
the Bi-LSTM was set to 256. During the intensive learning
training, we set the episode to 5 and the learning rate to 1e−4.
Furthermore, we set the maximum number of iterations during
network training to 60 and recorded changes in the loss every 5
epochs. We performed validation experiments with five rounds
and reported the averaged F−score.

TABLE I
EXPERIMENTAL SETTINGS FOR SUMME AND TVSUM UNDER THE

CANONICAL (C), AUGMENTATION (A), AND TRANSFER (T) SETTINGS,
RESPECTIVELY.

Setting Training set Test set
Canonical 80%TVSum 20%TVSum

Augmented 80%TVSum+YouTube+OVP+SumMe 20%TVSum
Transfer TVSum+YouTube+OVP SumMe

B. Quantitative Results

Comparison with multiple network structures: To eval-
uate the performance of the proposed summarization method
comprehensively, we present the impact of multiple network
structures, such as Gate Recurrent Unit (GRU) [54], Recurrent
Neural Network (RNN) [55], CNN [56], and Bi-LSTM [44],
on the experimental results. In Fig. 2, we illustrate the case that
the Bi-LSTM [44] network is combined with the proposed SA-
CFT and SAM models. Moreover, Bi-LSTM can be replaced
by the GRU [54], RNN [55], or CNN [56].

TABLE II
COMPARISON AMONG MULTIPLE NETWORK STRUCTURES IN AN

UNSUPERVISED FASHION UNDER THE CANONICAL SETTING (F−score%).

Method SumMe TVSum
GRU [54] 54.1 61.4
RNN [55] 54.3 61.8
CNN [56] 54.8 62.5
Bi-LSTM 55.0 62.5

As shown in Table II, we can see that different network
structures have a particular impact on the experimental results.
The GRU performs the worst. Compared to the Bi-LSTM, it
is with 1.66% and 1.79% loss in F−score on SumMe and
TVSum, respectively. Moreover, the CNN network shows po-
tential performance with only 0.36% loss in F−score against
the Bi-LSTM on SumMe. However, the Bi-LSTM network
achieves the best performance among the above networks.
Therefore, we adopt the Bi-LSTM as our baseline network.



10

TABLE III
ABLATION STUDY. COMPARISON OF THE SUMMARY PERFORMANCE OF VARIOUS MODELS IN THE PROPOSED FRAMEWORK

USING UNSUPERVISED LEARNING UNDER THE CANONICAL SETTING (F−score%).

mode DR-DSN Bi-LSTM+DDPG GAT SA-CFT SAM F−score%
SumMe TVSum

1
√

41.4 57.6
2

√
45.9 57.8

3
√ √

50.9 58.5
4

√ √
51.1 58.7

5
√ √

52.6 62.4
6

√ √ √
51.5 59.1

7
√ √ √

55.0 62.5

Ablation study: In Table III, we utilize mode 1 to mode
7 to denote the baseline method DR-DSN [11] (mode 1),
our previous work [18] (mode 4 and 6), and the proposed
models (mode 2, 3, 5, and 7). The proposed method comprises
the GIB-based SA-CFT mechanism for transforming the dual-
feature into a higher-layer feature and the Salient-Area-Size-
based SAM for spatial feature refinement.

The ablation results of the proposed method on unsuper-
vised training justify that both the SA-CFT mechanism and
SAM model can enhance performance efficiently. Mainly, for
the SumMe and TVSum datasets, the SAM (mode 3) and
the SA-CFT (mode 5) perform at 10.89% and 1.21% gain
(5.0% and 0.7% absolute gain), as well as 14.6% and 7.96%
gain (6.7% and 4.6% absolute gain) compared to the baseline
network of the proposed method (mode 2). Moreover, the
combination of the SAM and the SA-CFT (mode 7) raises
the 19.83% and 8.13% F−score against mode 2 (9.1% and
4.7% absolute gain).

Furthermore, the proposed method outperforms the DR-
DSN (mode 1) significantly. The SAM (mode 3) and the SA-
CFT (mode 5) achieve improvements of 22.95% and 1.56%
gain (9.5% and 0.9% absolute gain) and 27.05% and 8.33%
gain (11.2% and 4.8% absolute gain). Simultaneously, the
combination (mode 7) arrives at 32.85% and 8.51% gain
(13.6% and 4.9% absolute gain) against mode 1. The superior
performance of the SAM (mode 3), the SA-CFT (mode 5),
and the combination (mode 7) demonstrates that the proposed
method effectively alleviates the weak generalization in DR-
DSN by refining the dual-feature.

In addition, compared to our previous method [18] (mode
6), the proposed method (mode 7) reaches 6.80% and 5.75%
gain (3.5% and 3.4% absolute gain). The improvements verify
that the SA-CFT is more robust than the GAT by generating a
higher-layer spatio-temporal feature. Meanwhile, we see that
the SA-CFT and the SAM are compatible in enhancing the
performance.

In our proposed SA-CFT, we integrate the Contextual
Feature Transformation (CFT) to refine the representation
learning of higher-layer dual-features by leveraging semantic
representation and attention alignment. To assess the efficiency
of the CFT, we further utilize it to refine the temporal
correlation among single-feature, semantic feature, or visual
feature processed via the SAM, referred to as S-CFT and A-
CFT respectively.

Additionally, in the S-CFT, A-CFT, and SA-CFT models,
we can substitute the Gaussian Mixture Model (GMM-100)

with a Gaussian model for the distribution of Z(l)
V . An ablation

study was performed to compare the performance of the Gaus-
sian Model and Gaussian Mixture Model. The SA-CFT model
utilizing GMM-100 exhibits an improvement in F−score
of 3.38% and 0.15% (an absolute gain of 1.8% and 0.9%)
compared to the Gaussian distribution. On the other hand,
when using the Gaussian distribution, A-CFT performs slightly
better than the S-CFT on the TVSum dataset, indicating
the potential to enhance video summarization through visual
features.

TABLE IV
ABLATION STUDY. COMPARISON OF THE SUMMARY

PERFORMANCE OF S-CFT, A-CFT, AND SA-CFT MODELS USING
UNSUPERVISED LEARNING UNDER THE CANONICAL SETTING

(F−score%).

CFT models SumMe TVSum

S-CFT Gaussian 52.7 61.2
GMM-100 53.4 61.7

A-CFT Gaussian 52.5 61.4
GMM-100 - -

SA-CFT Gaussian 53.2 61.6
GMM-100 55.0 62.5

Comparison with unsupervised approaches: We select 12
approaches as our baselines and then compare these methods
with our model on SumMe and TVSum. The baselines can be
roughly categorized into three classes: 1) the spatial structure-
based methods include K-medoids [57], Vsumm [53], Web
image [58], Dictionary selection [57], Online space coding
[59], and Co-archetypal [52]; 2) the temporal structure-based
methods contain GANdpp [14], DR-DSN [11], Cycle-SUM
[13], and CSNet [31]; 3) the spatio-temporal structure-based
method is the GAT adjusted Bi-LSTM [18] named GAT-LSTM
, and the deep semantic and attention network (DSAVS) [60].

The experiments are conducted in an unsupervised fashion
in the canonical setting [27]. As shown in Table V, the
proposed method yields 32.85% and 8.51% gain (13.6% and
4.9% absolute gain) against DR-DSN on SumMe and TVSum.
Compared to Cycle-SUM [13], the proposed method produces
31.26% and 8.51% gain (13.1% and 4.9% absolute gain),
respectively. Besides, the proposed method outperforms CSNet
[31], with 7.21% and 6.29% gain (3.7% and 3.7% absolute
gain). The experimental results confirm that the proposed
models overcome the unstable training of the adversarial
components in Cycle-SUM and CSNet. More specifically,
another limitation of the CSNet is that it presents an attention
score by measuring the dynamic temporal difference, which
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TABLE V
COMPARISON WITH OTHER UNSUPERVISED VIDEO

SUMMARIZATION METHODS UNDER THE CANONICAL
SETTING (F−score%).

Method SumMe TVSum
K-medoids [57] 33.4 28.8

Vsumm [53] 33.7 -
Web image [58] - 36.0

Dictionary selection [57] 37.8 42.0
Online space coding [59] - 46.0

Co-archetypal [52] - 50.0
GANdpp [14] 39.1 51.7
DR-DSN [11] 41.4 57.6

Cycle-SUM [13] 41.9 57.6
CSNet [31] 51.3 58.8

GAT-LSTM [18] 51.5 59.1
DSAVS [60] 47.0 59.4

Proposed 55.0 62.5

is proven to be inefficient in representing the visual feature
of the video. In contrast, our SAM model presents genuine
visual features based on the specified perception mechanism:
humans prefer to focus on sizable and moving objects.

Our previous work in [18] adopted the end-to-end LSTM
model as a baseline network and leveraged GAT to enhance
the representation learning for video summarization. However,
the proposed method also outperforms the GAT-LSTM [18]
with 6.80% and 5.75% gain. The results have proven that GIB
can generate a more robust high-layer dual-feature (semantic
representation with attention alignment) than GAT, with better
discriminative ability for video summarization. Compared to
DSAVS [60], our method is with 17.02% and 5.22% gain
(8.0% and 3.1% absolute gain) on SumMe and TVSum,
respectively.

Moreover, it is worth noticing that the F−score of the
SumMe dataset is relatively lower for most comparison algo-
rithms [57], [14], [11], [31] than those of the TVSum dataset,
which proves that the baselines could not perform well with
raw videos. However, the gain of a 32.9% F−score (13.6%
absolute gain) against DR-DSN on the SumMe dataset demon-
strates that the proposed method alleviates this phenomenon.

Comparison with supervised approaches: The proposed
method is compared to other 17 typical baselines in a super-
vised fashion on SumMe and TVSum. The experiments are
conducted in the Canonical setting [27] and the results are
listed in Table VI.

Compared to methods without temporal structure, such as
Interestingness [51], ours improves the F−score by 42.13%
(16.6% absolute gain) on the SumMe dataset. Compared to
methods based on temporal structure, such as Bi-LSTM [27],
Dpp-LSTM [27], and GANsup [14], the proposed method also
shows superior performance with a margin.

Furthermore, the proposed method increases the F−score
by 33.02% (13.9% absolute gain) on SumMe and 7.92% (4.6%
absolute gain) on TVSum against the DR-DSNsup [11]. The
proposed method attains 25% and 7.92% gain (11.2% and
4.6% absolute gain) against the Cycle-SUMsup [13]. Due
to the unstable training, CSNetsup in a supervised version
performs worse than the method in an unsupervised version.
The proposed method outperforms the CSNetsup [31], with
15.23% and 7.18% gain (7.4% and 4.2% absolute gain). The

TABLE VI
COMPARISON WITH OTHER SUPERVISED VIDEO

SUMMARIZATION METHODS UNDER THE CANONICAL
SETTING (F−score%).

Method SumMe TVSum
Interestingness [51] 39.4 -
Submodularity [61] 39.7 -

Summary transfer [62] 40.9 -
Bi-LSTM [27] 37.6 54.2

Dpp-LSTM [27] 38.6 54.7
GANsup [14] 41.7 56.3

DR-DSNsup [11] 42.1 58.1
Cycle-SUMsup [13] 44.8 58.1

CSNetsup [31] 48.6 58.5
CRSum [28] 47.3 58.0

GAT-LSTMsup [18] 51.7 59.6
HMT [30] 44.1 60.1

DSAVSsup [60] 48.9 59.8
DSNet [63] 50.2 62.1
LMHA [29] 51.1 61.0

LMHA-two [29] 51.4 61.5
RR-STG [64] 53.4 63.0
Proposed-sup 56.0 62.7

proposed method has been proven to be more stable in training
than Cycle-SUMsup and CSNetsup.

In contrast to the GAT-LSTMsup [18], ours improves the
F−score by 8.32% and 5.20% (4.3% and 3.1% absolute
gain). Our proposed method, the SA-CFT, outperforms sev-
eral transform-based methods including HMT [30], LMHA
[29], and LMHA-two [29], on both the SumMe and TVSum
datasets. Additionally, it achieves better results compared to
DSAVSsup [60] and DSNet [63] with 14.52% and 11.55%
F−score gain (7.1% and 5.8% absolute gain) and 4.85%
and 0.97% gain (2.9% and 0.6% absolute gain) on TVSum,
respectively. However, compared to RR-STG [64], our method
performs slightly worse on TVSum, with an absolute loss of
0.3%. Despite this, our method outperforms almost all of the
supervised methods. These results suggest that the SA-CFT
model, built on the GIB framework, can effectively address the
over-smoothing issue that occurs during node representation in
GAT. Specifically, the SA-CFT improves video summarization
performance by enhancing the differentiation of indistinguish-
able samples.

TABLE VII
COMPARISON WITH OTHER VIDEO SUMMARIZATION

METHODS UNDER THE CANONICAL (C), AUGMENTATION (A),
AND TRANSFER (T) SETTINGS, RESPECTIVELY (F−score%).

Method SumMe TVSum
C A T C A T

Bi-LSTM [27] 37.6 41.6 40.7 54.2 57.9 56.9
Dpp-LSTM [27] 38.6 42.9 41.8 54.7 59.6 58.7

GANdpp [14] 39.1 43.4 - 51.7 59.5 -
GANsup [14] 41.7 43.6 - 56.3 61.2 -
DR-DSN [11] 41.4 42.8 42.4 57.6 58.4 57.8

DR-DSNsup [11] 42.1 43.9 42.6 58.1 59.8 58.9
CSNet [31] 51.3 52.1 45.1 58.8 59 59.2

CSNetsup [31] 48.6 48.7 44.1 58.5 57.1 57.4
GAT-LSTM [18] 51.5 53.6 42.8 59.1 59.0 57.1

GAT-LSTMsup [18] 51.7 52.2 43.8 59.6 59.5 57.9
HMT [30] 44.1 44.8 - 60.1 60.3 -

LMHA [29] 51.1 52.1 45.4 61.0 61.5 55.1
LMHA-two [29] 51.4 52.8 45.6 61.5 62.8 56.7

Proposed 55.0 54.0 42.9 62.5 60.4 57.4
Proposed-sup 56.0 54.8 44.0 62.7 60.3 58.0
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Comparison with Canonical, Augmentation, and Trans-
fer Settings: In the Canonical and Augmentation settings, the
proposed method outperforms previous outstanding work by a
large margin shown in Table VII. Since CSNet utilizes global
and local information, the proposed method produces a slightly
worse F−score by 5.13% and 3.14% (2.2% and 1.8% abso-
lute gain) on SumMe and TVSum with unsupervised learning
in the Transfer setting. However, in a supervised fashion, the
proposed method produces nearly the same performance as
CSNetsup on SumMe and slightly better performance (0.6%
absolute gain) than CSNetsup on TVSum.

Our proposed method outperforms the supervised method,
HMT [30], LMHA [29], and LMHA-two [29], in both Canon-
ical and Augmentation settings on the SumMe dataset. These
results demonstrate that our method can alleviate issues caused
by poor generalization or over-smoothing by refining the
input data through temporal refinement of the dual-features
via the SA-CFT. Compared to LMHA-two [29], our method
achieves better results in the Canonical and Transfer settings
but performs slightly worse in the Augmentation setting. This
suggests that our model exhibits slightly poorer learning ability
than a multi-scale hierarchical attention model in dealing with
edited videos under different data characteristic conditions. In
the Transfer setting, our method performs slightly worse than
in the Canonical and Augmentation settings. Therefore, we
plan to address this issue in future work.

Time complexity comparison: The proposed framework
was implemented on a machine equipped with an Intelr

CoreTM i9-10900K CPU, NVIDIA GeForce RTX 3090, and
32GB of RAM, running a 64-bit Ubuntu 18.04.05 LTS Operat-
ing System. The time complexity is evaluated with five rounds
of experiments conducted on Seq1—Seq5 (each Seq includes
ten videos randomly selected from the TVSum or SumMe
datasets). In Table VIII, we present the time cost comparison
between the proposed method and two baselines, DR-DSN
[11] and GAT-adjusted Bi-LSTM [18]. The time cost per video
is computed and tabulated in the last row of Table VIII.

TABLE VIII
COMPARISON OF MODELS’ TIME COMPLEXITY USING UNSUPERVISED

LEARNING (TIME: SECOND).

Sequence DR-DSN [11] GAT-LSTM [18] Proposed
Seq1 1.2337 2.7705 2.5584
Seq2 2.4160 5.2917 5.3485
Seq3 2.3674 4.9910 5.1761
Seq4 1.7709 3.8535 3.7807
Seq5 1.8126 3.8478 4.0096

Average 0.1920 0.4151 0.4175

The proposed method comprises two components, a GIB
followed by a Bi-LSTM. The GIB is a specific GNNs in
time complexity, written as O(|V | · d · d + |E| · d). d is the
cardinality of the dual-feature input feature, and |V | and |E|
are the numbers of nodes and edges for the video frames,
respectively. Moreover, the time complexity of the Bi-LSTM
equals the sum of complexities of two LSTM layers, 2·O(n·d),
where n is the size of the hidden layer.

Since the GAT and GIB correspond to similar time com-
plexity, the time complexity of both the proposed method
and the GAT-adjusted Bi-LSTM [18] is approximate O(|V | ·

d2 + |E| · d) + 2 · O(n · d). By contrast, the time com-
plexity of the DR-DSN is low with only a Bi-LSTM model
2 · O(n · d). In Table VIII, the GAT-adjusted Bi-LSTM [18]
and the proposed method cost 0.2231s and 0.2255s more
time per video than DR-DSN, respectively. However, the pro-
posed method achieves a significantly higher F−score than
reference methods in video summarization, with impressive
F−score improvements as high as 32.85% and 8.51% gain
(13.6% and 4.9% absolute gain) against DR-DSN [11].

C. Quality Results

Selected Keyframes: In Fig. 5, we visualize the keyframes
selected via the proposed method and user annotations with red
and gray bars, respectively, for four different videos (a)-(d) on
the TVSum dataset. It can be seen that most high-score frames
are selected by the proposed method. The visualization results
indicate that the proposed method can accurately predict the
keyframes approaching human selections via the combination
of the SA-CFT mechanism and the SAM model.

Spatial Importance: In Fig. 6, the spatial importance scores
calculated via the SAM and the corresponding user-labelled
scores are labelled by red and gray bars, respectively. The
spatial importance score αt is computed as the sum of saliency
histograms of the core salient regions in Eq. (21):

αt =

r25∑
r∂>r∂̂

bins(r∂). (21)

The trend of the blue curve presents the distribution of the
frame-wise salient regions’ area, which follows the distribution
of the user-labelled scores. It demonstrates that the SAM
can extract the visual features obeying human perception.
Furthermore, we illustrate the spatial attention feature maps
for four frames with the highest Spatial Importance below the
bar chart. The visualization of the spatial importance scores
has shown that the semantic information is compatible with
the visual information.

D. Failure case

In Fig. 7, we illustrate a failure case. The inputted video
“Saving Dolphins” on SumMe can be divided into two clips:
1) dolphins are washed onto the beach, labelled as Event 1; 2)
people on the beach help dolphins return to the sea, labelled as
Event 2. The moving objects (like the dolphins) are captured
from far to near in Event 1. Since the camera shot is taken from
a long distance, the dolphins are too small to be recognized as
an attention object. The problem is that the summary generated
by the proposed method only contains Event 2. The proposed
model is likely to fail when the moving object is far away from
the shooting place, as in the sample “Saving Dolphins”. The
lack of long-distance scene detection via SAM causes failure
in this kind of case. We plan to learn a model that can integrate
long-distance scene detection in the future in this field.

VI. CONCLUSION

This paper introduces a new approach to address the chal-
lenges of poor generalization and over-smoothing in video



13

Fig. 5. Visualization of comparison between the proposed method and the user-annotated ground-truth for four videos (a)-(d) from the TVSum. The gray
bars are the user-annotated frame-wise scores, and the red bars denote the keyframes’ SSP (predicted by the proposed method).

Fig. 6. Visualization of the spatial importance scores. The gray bars
denote the user-annotated ground-truth, and the red bars indicate the spatial
importance scores of the keyframes predicted by the Spatial Attention Model
(SAM). An extensive blue curve is the frame-wise salient regions’ area plotted
as a comparison to the user-labelled score distribution. We illustrate the spatial
attention feature maps for four frames with the highest Spatial Importance
shown below the bar chart.

summarization. The proposed method incorporates attention
alignment and spatial attention models to create a dual-feature
space that includes both visual and semantic features. The SA-
CFT mechanism uses the GIB stacked propagation to refine
the representation learning of the dual-feature, enhancing its
discriminative power and robustness. To overcome the con-
vergence problem during training, we employed the DDPG
algorithm and binary cross-entropy loss function in supervised
learning. Our experiments on SumMe and TVSum datasets
showed that our method outperformed the SOTA approaches.
We also found that the SAM model had limited accuracy in
detecting telephoto targets due to the domain adaption issue
under the Transfer setting in a supervised fashion. To address
this issue, we plan to integrate a telephoto target detection
module into the SAM model.
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