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Abstract: In this study, we comprehensively investigate the constant voltage stress (CVS) time-
dependent breakdown and cycle-to-breakdown while considering metal-ferroelectric-metal (MFM)
memory, which has distinct domain sizes induced by different doping species, i.e., Yttrium (Y)
(Sample A) and Silicon (Si) (Sample B). Firstly, Y-doped and Si-doped HfO2 MFM devices exhibit
domain sizes of 5.64 nm and 12.47 nm, respectively. Secondly, Si-doped HfO2 MFM devices (Sample B)
have better CVS time-dependent breakdown and cycle-to-breakdown stability than Y-doped HfO2

MFM devices (Sample A). Therefore, a larger domain size showing higher extrapolated voltage under
CVS time-dependent breakdown and cycle-to-breakdown evaluations was observed, indicating that
the domain size crucially impacts the stability of MFM memory.

Keywords: ferroelectric; domain size; reliability

1. Introduction

Since the initial discovery of Si-doped HfO2 materials’ ferroelectric properties in
2011 [1], significant attention has been directed toward oxide materials with a fluorite
structure, such as doped HfO2 [2], and the solid solution of HfxZr1-xO (HZO) [3]. These
materials have garnered interest for their compatibility with advanced process technology
and ability to exhibit ferroelectric behavior even at thicknesses of ≤10 nm, setting them
apart from traditional perovskite ferroelectric materials. Recent studies have revealed that
the thickness of HfO2-based ferroelectric films can be reduced to as little as 1 nm while
maintaining the occurrence of spontaneous polarization and its ability to alter polarization
direction [4]. This finding suggests that HfO2-based ferroelectric film does not have a critical
threshold for scaling down, unlike perovskite materials. This exceptional scalability feature
indicates a promising advantage for developing memory devices driven by polarization.

Furthermore, ferroelectric HfO2-based technologies are promising materials for non-
volatile memories [5], logic FETs [6], and neuromorphic applications [7–9] because of
their compatibility with complementary metal-oxide-semiconductor (CMOS) technol-
ogy [10,11]. Ferroelectric properties can be induced by various doping species in HfO2 films,
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e.g., Zr, Si, Al, Gd, etc. Recently, high-performance ferroelectric-based technologies have
been demonstrated with optimized annealing conditions, dopants, electrodes, interfacial
layers, etc. [12–21]. However, reliability remains one of the main concerns in ferroelectric-
based technologies [22], particularly the instability related to domain size’s impact on
time-dependent dielectric breakdown and cycle-to-breakdown. Understanding the impact
of domain size on the stability of ferroelectric-based devices is not extensively reported in
the literature.

In this study, Yttrium (Y)-doped and Silicon (Si)-doped HfO2 metal-ferroelectric-metal
(MFM) devices were fabricated to intentionally induce different domain sizes in metal-
ferroelectric-metal (MFM) devices. The o-phase with ferroelectricity can be induced through
the annealing process of differently doped ferroelectric films since the crystal radius of
doping below/above Hf can stabilize the t-/c-phases [2]. CVS time-dependent stress and
cycle-to-breakdown measurements were conducted. Furthermore, the correlations between
domain size and CVS time-dependent stress and cycle-to-breakdown stability are discussed
and analyzed to understand the impact of domain size.

2. Materials and Methods

Figure 1 shows the schematic structure of metal-ferroelectric-metal (MFM) capacitors
and a brief process flow of this work. At first, 10-nm TiN was deposited via PVD as the
bottom electrode. Next, 9.5-nm HfO2-based ferroelectric layers with two different dopants,
Y and Si, were deposited via thermal ALD at 300 ◦C. Afterward, another 10-nm TiN was
deposited via ALD on the ferroelectric films as the top metal electrode. Lastly, RTA was
conducted in N2 ambient at 650 ◦C for crystallization for 20 s.
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Figure 1. (a) Schematic of the process flow and (b) schematic structure of MFM capacitors with
different dopants in ferroelectric layers.

The measurement setup for the capacitor used in this study was 2400µm2 (60 µm × 80 µm).
To perform electrical characterizations such as I-V (current-voltage) and time-dependent
dielectric breakdown (TDDB) measurements, a Keysight B1500 Source Measurement Unit
(SMU) Keysight, USA, was employed. To characterize the ferroelectric properties, includ-
ing P-V (polarization-voltage) and cycle-to-breakdown measurements, a Keysight B1530
Waveform Generator/Function Measurement Unit (WGFMU) Keysight, USA, was utilized.
In this setup, the capacitor was biased at the bottom via a chuck electrode, while a ground
electrode was placed on top.

To compare the sample’s domain size, distribution, and homogeneity, we used contact
resonance piezoresponse force microscopy (PFM). Although a quantitative interpretation
of the results is beyond the scope of this work, we used the same probe. We also operated
under the same conditions on two samples with the same physical thickness (9.5 nm).
Therefore, the results represent a relative comparison between samples and can be used



Nanomaterials 2023, 13, 2104 3 of 9

to analyze the domain size (Figure 2). For instance, Sample A (Y-doped) has a smaller
domain size than Sample B (Si-doped). Details of the domain structures can also be
found elsewhere [23]. Table 1 briefly describes the dopants and domain sizes used in this
study. Distinct differences in the domain sizes of Sample A and Sample B can be used to
understand the impact of domain size on the reliability of MFM devices.
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Figure 2. Contact resonance piezoresponse force microscopy PFM measurements in Sample A
(Y-doped) and Sample B (Si-doped).

Table 1. A brief summary of the dopants and domain sizes used in this study.

Dopant in
Ferroelectric Layer

Domain Size
(nm)

Doping
Concentration

Sample A Y 5.6 2.9%

Sample B Si 12.5 2.5%

3. Results

To understand ferroelectricity, we used P-V measurements with a triangular pulse of
10 µs/V and a trapezoidal plus with Tr (rising time)/Tf (falling time) fixed at 0.5 µs and
Twidth (pulse width) set at 1µs for the cycling. Figure 3 shows the P-V characteristics of
Samples A and B in the fresh state and after 103 cycles. Figure 4 shows comprehensive
endurance characteristics at different cycling numbers. Sample A shows a slightly larger
2Pr than Sample B in the pristine state. Upon increasing the cycling number, Sample A
exhibits a clear wake-up effect with a saturation of 2Pr after 104 cycles. However, Sample B
does not exhibit a saturation of 2Pr. Overall, Sample A shows a larger 2Pr than Sample B
after 105 cycles

Nanomaterials 2022, 12, x FOR PEER REVIEW 4 of 10 
 

 

 

Figure 3. P-V characteristics in Samples A and B. 

 

Figure 4. Polarization characteristics with respect to cycling numbers. 

To understand the impact of domain size on time-dependent breakdown stability, 

we performed constant voltage stress time-dependent dielectric breakdown and cycling-

to-breakdown evaluations. Figures 5 and 6 show the results of the constant voltage stress 

(CVS) time-dependent dielectric breakdown (TDDB) and cycle-to-breakdown evaluations 

in Samples A and B, respectively. 

Figure 5c,d shows Weibull plots of time-to-breakdown (tBD) distributions for three 

TDDB VG conditions, which follow the Weibull failure distribution: 

ln[− ln(1 − F(t))] =  𝛽 ln(𝑡) − 𝛽 ln (𝜂) (1) 

where t is the time; β is the shape parameter; η is the scale factor of 63.2% value. The fitted 

β is 2.497 and 3.829 for Samples A and B, respectively. A higher β implies a tight distribu-

tion and small variability. 

In Figure 5e, lifetime of 1% failure analyses are extrapolated from the Weibull plot of 

tBD distribution and projected to a 10-year line. The operating voltages of Sample A are 

slightly lower than Sample B (2.62 V) at 2.24 V. 

Figure 3. P-V characteristics in Samples A and B.



Nanomaterials 2023, 13, 2104 4 of 9

Nanomaterials 2022, 12, x FOR PEER REVIEW 4 of 10 
 

 

 

Figure 3. P-V characteristics in Samples A and B. 

 

Figure 4. Polarization characteristics with respect to cycling numbers. 

To understand the impact of domain size on time-dependent breakdown stability, 

we performed constant voltage stress time-dependent dielectric breakdown and cycling-

to-breakdown evaluations. Figures 5 and 6 show the results of the constant voltage stress 

(CVS) time-dependent dielectric breakdown (TDDB) and cycle-to-breakdown evaluations 

in Samples A and B, respectively. 

Figure 5c,d shows Weibull plots of time-to-breakdown (tBD) distributions for three 

TDDB VG conditions, which follow the Weibull failure distribution: 

ln[− ln(1 − F(t))] =  𝛽 ln(𝑡) − 𝛽 ln (𝜂) (1) 

where t is the time; β is the shape parameter; η is the scale factor of 63.2% value. The fitted 

β is 2.497 and 3.829 for Samples A and B, respectively. A higher β implies a tight distribu-

tion and small variability. 

In Figure 5e, lifetime of 1% failure analyses are extrapolated from the Weibull plot of 

tBD distribution and projected to a 10-year line. The operating voltages of Sample A are 

slightly lower than Sample B (2.62 V) at 2.24 V. 
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To understand the impact of domain size on time-dependent breakdown stability, we
performed constant voltage stress time-dependent dielectric breakdown and cycling-to-
breakdown evaluations. Figures 5 and 6 show the results of the constant voltage stress
(CVS) time-dependent dielectric breakdown (TDDB) and cycle-to-breakdown evaluations
in Samples A and B, respectively.

Figure 5c,d shows Weibull plots of time-to-breakdown (tBD) distributions for three
TDDB VG conditions, which follow the Weibull failure distribution:

ln[− ln(1 − F(t))] = β ln(t)− β ln(η) (1)

where t is the time; β is the shape parameter; η is the scale factor of 63.2% value. The fitted β
is 2.497 and 3.829 for Samples A and B, respectively. A higher β implies a tight distribution
and small variability.

In Figure 5e, lifetime of 1% failure analyses are extrapolated from the Weibull plot of
tBD distribution and projected to a 10-year line. The operating voltages of Sample A are
slightly lower than Sample B (2.62 V) at 2.24 V.

In designing the cycle-to-breakdown (Cycle-to-BD) measurement, we chose a PUND
waveform with triangular pulses for the reading state. We set the rising, falling, and delay
times (Tr/Tf/Tdelay) to a fixed duration of 5 µs. The PUND waveform allowed for clear
observation of whether or not the sample experienced breakdown. In the cycling state,
trapezoidal pulses were used as the waveform. The Tr and Tf were fixed at 0.5 µs, while
the Twidth was set to 1 µs. To determine the cycles of the chosen reading step, we divided
the interval to reach 1E6 cycles into 12 segments. After calculations, we determined that
100.375 cycles would serve as the interval between the two consecutive reading states.

Similar to the TDDB analysis, cycle-to-breakdown (Cycle-to-BD) distributions for three
different Cycle-to-BD VG conditions were used to construct Weibull plots. These plots were
then used to extract fitting values from the ß value and generate lifetime curves. However,
to adapt the Weibull failure distribution to the Cycle-to-BD analysis, the time-to-BD (tBD)
was transformed into cycle-to-BD (CBD). Figure 6c,d display the fitting β values and
corresponding lines for different devices. Sample A yielded a fitted β value of 0.948, while
sample B had a βvalue of 1.274. These values are consistent with the TDDB analysis results,
where Sample B exhibited a higher β value. The discrepancy in β values between TDDB
and Cycle-to-BD measurements may be due to the Cycle-to-BD measurement using both
positive and negative pulses during the cycling stage compared to TDDB measurements
with a constant positive bias.
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lation for a 10-year lifetime at 1% failure for devices with Samples A and B.
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number extrapolation for a 106-cycling lifetime at 1% failure for Samples A and B.

Figure 6e illustrates the 1% failure analysis of the 106-cycle lifetime analysis. The trend
observed in the Cycle-to-BD analysis is similar to the TDDB analysis. For Sample A, the
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determined operating voltage is 3.45 V, which is slightly lower than Sample B’s operating
voltage of 3.79 V.

Figure 7 shows the correlation between operation voltage (based on constant voltage
stress TDDB and cycle-to-breakdown measurements) and domain size. Table 2 summarizes
operation voltages based on CVS TDDB and cycle-to-breakdown evaluations. Figure 7
indicates that a larger domain size exhibits better TDDB and cycle-to-breakdown stability,
i.e., higher 10-year operation voltages and higher voltages up to 106 cycles. In addition,
Table 3 presents the maximum lifetime of targeting applied voltage at 3V results that
Samples A and B can withstand in seconds. We calculated the lifetime of the Cycle-to-BD
measurement by multiplying the predicted breakdown cycling number by a duration
of 1 cycle in the measurement waveform design. According to our results, the lifetime
measured in the TDDB analysis is longer than in the Cycle-to-BD analysis. This finding
indicates that the measurement technique involving the continuous application of the same
bias direction is less likely to induce defects generation and device breakdown than the
technique involving a continuously changing bias direction. However, from the lifetimes
in seconds, Sample B still exhibits a longer lifetime with a larger domain size in both the
TDDB and Cycle-to-BD measurements. These findings are consistent with previous results.
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Table 2. Summary of the extrapolated operation voltage.

10-year
Operation

Voltage Based
on CVS TDDB

106-Cycling
Operation

Voltage Based on
Cycle-to-Breakdown

Sample A 2.24 3.45

Sample B 2.62 3.79

Table 3. The maximum lifetime results that two samples can withstand in seconds.

Lifetime
of Cycle-to-BD @3V

(s)

Lifetime
of TDDB @3V

(s)

Sample A 203 515

Sample B 12,170 146,058
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The charging effects along the domain boundaries have been reported [24]. Therefore,
larger domain sizes represent fewer domain boundaries (Figure 8) and reduce the chance of
charging effects that create leakage paths as bias is applied to the device, thereby improving
TDDB and cycle-to-breakdown stability. Besides, it is worth noting that Sample B exhibits
larger β than Sample A, indicating better uniformity due to fewer domain boundaries in
Sample B. In summary, larger domain sizes and fewer domain boundaries can improve
CVS TDDB and cycle-to-breakdown reliability. However, samples with a larger domain
size may degrade ferroelectricity.
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