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Abstract: Scenario generation has attracted wide attention in recent years owing to the high penetra-
tion of uncertainty sources in modern power systems and the introduction of stochastic optimization
for handling decision-making problems. These include unit commitment, optimal bidding, online
supply–demand management, and long-term planning of integrated renewable energy systems.
Simultaneously, the installed capacity of solar power is increasing due to its availability and peri-
odical characteristics, as well as the flexibility and cost reduction of photovoltaic (PV) technologies.
This paper evaluates scenario generation methods in the context of solar power and highlights their
advantages and limitations. Furthermore, it introduces taxonomies based on weather classification
techniques and temporal horizons. Fine-grained weather classifications can significantly improve
the overall quality of the generated scenario sets. The performance of different scenario generation
methods is strongly related to the temporal horizon of the target domain. This paper also conducts a
systematic review of the currently trending deep generative models to assess introduced improve-
ments, as well as to identify their limitations. Finally, several research directions are proposed
based on the findings and drawn conclusions to address current challenges and adapt to future
advancements in modern power systems.

Keywords: scenario generation; solar power generation; uncertainty; weather classification; stochas-
tic optimization; deep generative models; photovoltaic forecasting

1. Introduction

Sustainability-oriented initiatives are growing increasingly crucial as the consequences
of climate change have intensified in recent years. Transitioning away from fossil fuels is
critical, as future global energy needs are expected to increase due to population, economic,
and technological growth [1]. Renewable energy sources (RES), such as wind, solar, hydro,
and geothermal, should occupy larger proportions of the total energy mix while simultane-
ously developing energy-efficient technologies to minimize greenhouse gas emissions and
improve overall energy utilization.

Solar power is one of the most popular RES due to its abundant nature, wide avail-
ability, and strong diurnal and seasonal patterns. Furthermore, the installation of solar
photovoltaics (PVs) is relatively simple. The global installed solar power capacity was
approximately 942 GW by the end of 2021, with its annual increase rate surpassing that
of onshore wind power [2]. The total installed solar capacity is expected to increase
significantly due to the cost reduction in PVs production and continuous technological

Energies 2023, 16, 5600. https://doi.org/10.3390/en16155600 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en16155600
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-2693-1044
https://orcid.org/0000-0001-7231-7662
https://doi.org/10.3390/en16155600
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en16155600?type=check_update&version=1


Energies 2023, 16, 5600 2 of 29

advancements. Specifically, it is expected that up to 69% of the electricity consumption in
the European Union will be covered by PV power by 2050 [3]. Moreover, PVs are extremely
flexible, as small-scale distribution-level PV panels can easily be installed on rooftops and
other urban locations.

However, solar power is a variable RES, exclusively dependent on prevailing weather
conditions. Dynamic cloud behavior, as well as other stochastic meteorological factors,
contribute to the intermittent nature of solar power generation (SPG). Several problems
may arise from the increasing integration of PVs into power systems, such as reverse power
flow and unexpected voltage rises [4]. Accurately estimating future SPG is vital to ensure
power quality standards in a cost-effective manner.

Deterministic solar power forecasting (SPF) has been studied comprehensively in
recent years. Numerous studies have summarized, classified, and reviewed proposed
deterministic SPF methods based on various aspects. A systematic review of SPF meth-
ods, evaluation metrics, optimization, and data pre-processing techniques, was provided
in [5] and extended in [6] to include hybrid methods. In [2], a taxonomy of short-term
SPF methods based on climatic conditions was introduced. In recent years, the focus of
deterministic SPF has shifted toward machine learning. A comparative analysis of different
machine learning methods for SPF was conducted in [7]. In [8], a similar comparative
analysis was focused on deep learning methods. A comprehensive taxonomy of machine
learning SPF methods based on various aspects, such as the machine learning technique
used, the location, and the forecasting horizon, was introduced in [9]. Short-term SPF
methods, spanning from several hours-ahead to day-ahead predictions, were reviewed
in [10]. Further decreasing the forecasting horizon has become increasingly popular with
the emergence of real-time operation and management of power systems. A review of very
short-term (i.e., intra-hour) forecasting methods for wind and solar power was provided
in [11]. In [12], very short-term SPF methods are comprehensively reviewed, with a focus
on cloud modeling techniques. SPF using sky images is essential for such short forecasting
horizons [13].

Deterministic methods issue forecasts in the form of point predictions, which do
not provide any information regarding the forecasting uncertainty. On the other hand,
probabilistic methods generate forecasts that quantify the uncertainty to some extent.
Probabilistic forecasts are issued in the form of quantiles, prediction intervals (PIs), or
probability density functions (PDFs) [14]. The consideration of the uncertainty of the
stochastic input variables is crucial for the optimal operation and planning of power
systems. While PDFs fully represent the uncertainty of the stochastic variables, they
lead to a significant increase in computational cost [15]. On the other hand, PIs and
quantiles contain limited information about the uncertainty, leading to overly conservative
decisions via interval or robust optimization [16]. Furthermore, probabilistic forecasts fail to
capture the temporal autocorrelation of the forecasting errors, as well as the spatiotemporal
correlations of adjacent or geographically dispersed locations [17].

The interdependence structure of stochastic variables, such as SPG, carries significant
weight with the planning, integration, and operation of stochastic time-dependent and
multi-stage power system processes [18]. To address this important aspect, some researchers
have suggested generating scenarios instead of point or probabilistic forecasts. Scenarios
can be deterministic or stochastic, depending on the incorporated uncertainty of the model
used to generate the scenarios. Deterministic scenarios are based on physics-based models
with case-sensitive pre-determined parameters that map the output to the input. Stochastic
scenarios are defined as possible discrete realizations of the probability distribution of
stochastic variables, issued with a limited number of outcomes in the form of forecasted
time-series or typical trajectories [19]. With the use of stochastic scenarios, the original
distribution-based power system optimization problems become deterministic but still
maintain the uncertainty and spatiotemporal interdependence aspects [20]. This paper
focuses on stochastic scenario generation; thus, hereafter, stochastic scenarios will simply
be referred to as scenarios.
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Scenario generation methods (SGMs) have become increasingly popular in recent
years, mainly due to their suitability for solving power system decision-making problems
via stochastic optimization. Nevertheless, limited attempts have been made to systemat-
ically review and categorize SGMs in the context of RES-based power systems. In [21],
a systematic categorization of SGMs proposed for wind power was provided, as well as
a summary of evaluation metrics to efficiently assess the quality of generated scenarios.
Furthermore, a comprehensive analysis of power system stochastic optimization problems
(SOPs) and the corresponding SGMs were conducted, alongside a comparison between
different SGMs for each application. In [22], three different methods of generating wind
power scenarios (WPS) were evaluated based on their results of a day-ahead stochastic
unit commitment (UC) problem. It was shown that traditional verification metrics failed
to identify the obvious visual differences of the generated scenarios, indicating the im-
portance of using performance-based evaluation metrics. In [23], four commonly used
evaluation metrics were employed to assess the scenarios generated by three different deep
generative models (DGMs) regarding wind power, solar power, and electricity prices. The
results stressed the importance of using multiple evaluation metrics to effectively assess
the quality of the generated scenarios. Wind and solar power SGMs were comprehensively
reviewed in [24]. SGMs were classified into several categories and compared. Furthermore,
a classification and detailed description of scenario reduction methods and evaluation
metrics was provided.

Several aspects of SGMs in the context of integrated renewable energy systems remain
unaddressed. None of the above studies have focused on reviewing SGMs specifically
from the perspective of solar power to highlight the differences between wind and solar
as stochastic processes. Classifications are based on SGMs, scenario reduction methods,
evaluation metrics, and application domains of power systems, but not on the tempo-
ral horizon of the generated scenarios. Furthermore, important aspects of RES-related
stochastic variables, such as weather conditions, are ignored. In recent years, generative
methods have gained increasing momentum for scenario generation and have generated
promising results. However, ref. [21] only presented a brief introduction to DGMs in
the context of WPS generation as part of the machine learning category. In [24], DGMs
were acknowledged as a popular choice for scenario generation; nevertheless, only a few
related studies were briefly reviewed. Thus, both [21,24] only briefly referred to generative
methods, which indicates the necessity of a more systematic assessment and comparison of
the proposed DGMs, complementary to the existing literature.

This review paper surveys and evaluates SGMs in the context of SPG. The advan-
tages and limitations of each method are highlighted, and overall conclusions are drawn.
Dissimilarities between wind and solar power are identified, as well as the subsequent
differences regarding the SGMs used for each stochastic variable. A taxonomy of solar
power SGMs based on weather classification techniques is introduced. In addition, the
SGMs are classified according to their temporal horizon. Furthermore, as DGMs emerge
for long-term solar power scenario (SPS) generation, they are surveyed and compared in
more detail. Future research directions for SPS generation are proposed based on identified
research gaps and current advancements in the planning and operation of modern power
systems.

The rest of this paper is organized as follows: an overview of SPS generation methods
is provided in Section 2. Section 3 presents a taxonomy of studies incorporating weather
classifications for SPS generation. In Section 4, a review of DGMs proposed for SPS
generation is conducted. Future research directions are proposed in Section 5. Section 6
concludes the paper.

2. Solar Power Scenario Generation Overview

This section provides necessary definitions and presents an overview of scenario
generation for solar power. Statistical properties are provided based on a bibliometric
analysis and comparisons with scenario generation for wind power are made. SGMs
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are categorized and briefly analyzed. Furthermore, it presents a classification of SGMs
according to their temporal horizon and the corresponding commonly used power system
SOPs.

2.1. Definitions

Assume a stochastic process {Yt}, such as SPG, for t ∈ N+. A multivariate stochastic
variable Zt is then formulated as follows [25]:

Zt = {Yt+1, Yt+2, . . . , Yt+K} (1)

where t represents a reference time point, and {t + 1, t + 2, . . . , t + K} is a set of future
time points, stretching over a temporal horizon K, beginning from t + 1 with a constant
step of one time unit. Yt+i, with i ∈ {1, 2, . . . , K}, represents all possible values of the
stochastic process {Yt} at time point t + i, thus, Zt includes all possible future realizations
of {Yt} over the given temporal horizon K. A scenario ẑt, issued at time t, is defined as a
possible realization of the predictive distribution of the stochastic variable Zt:

ẑj
t =

{
ŷj

t+1|t, ŷj
t+2|t, . . . , ŷj

t+K|t

}
j = 1, 2, . . . , J (2)

where ŷj
t+i|t is a possible realization of the stochastic variable Yt at time t + i, issued at

time t. Index j denotes the scenario number of a scenario set containing J scenarios in
total [25]. Thus, scenarios ẑt are trajectories formed by random realizations of the stochastic
variable Yt at each time point, which are sampled from the predictive distribution of the
multivariate stochastic variable Zt.

A general framework of the scenario generation process is presented in Figure 1.
Depending on the occasion, probabilistic forecasts, forecasting errors, or historical obser-
vations can be used to formulate the multivariate stochastic variable Zt, which is then
sampled, discretized, clustered, or processed in some other way to generate the scenario
trajectories. SGMs are described in Section 2.3. The final scenario set describes possible
future paths of the stochastic process {Yt}, while the realizations in each lead time depend
on previously predicted realizations.
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Figure 1. The general framework of the scenario generation process.

The temporal horizon for which scenarios are generated differs according to the
context of the decision-making problem. Scenario forecasting usually refers to short-term
forecasted scenarios for day-ahead operations, while scenario generation usually refers to
representative (typical) scenarios for long-term resource and allocation planning. Scenario
forecasting usually relies on point or probabilistic forecasts, while scenario generation
exploits large datasets of historical observations [26]. For the remainder of this paper, both
scenario generation and scenario forecasting will be referred to as scenario generation,
while specific distinctions will be made when necessary. For some long-term power system
planning problems, the temporal autocorrelation of scenarios is omitted, as its significance
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decreases with the horizon increase. All potential temporal horizons for scenario generation,
i.e., from minutes to years-ahead, are considered in this paper.

2.2. Literature Overview

A comprehensive literature review in the solar power scenario generation field was
conducted to provide an overview of the existing state-of-the-art and extract several statis-
tics and insights. The studied literature contained research papers that either propose new
solar power SGMs or use existing methods to generate scenarios that are used as input
to SOPs. Only journal publications were considered since the related conference papers
overlap in topic with the rest of the publications, and they provide only a subset. In all the
research papers, scenarios are generated for either PV power output or solar irradiance,
among other stochastic variables. Figure 2 presents the number of publications per year
that satisfy these criteria. It is obvious that there is an increasing trend, which is a result of
the increasing popularity of PVs and a shift towards uncertainty-integrated representations
and stochastic optimization. Note that only the first two months of 2023 are considered in
the bibliometric analysis; hence, the total number of journal publications in 2023 is expected
to surpass those of 2021 and 2022.
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Figure 2. Journal publications per year related to solar power scenario generation.

As shown in Figure 3a, in 82% of the studied journal publications, scenarios were
generated for PV power generation. In the remaining publications, scenarios were gener-
ated for solar irradiance. Historical observations were used to generate scenarios in 54%
of the studied journal publications, as shown in Figure 3b. In the remaining publications,
scenarios were generated based on previously issued forecasts; point forecasts with added
error in 29% and probabilistic in 17% of the total cases, respectively. Typical scenarios
were issued for long-term horizons in 41% of the studied journal publications, as shown
in Figure 3c. The majority of the remaining cases generated scenarios for short-term hori-
zons, mainly as day-ahead forecasts. Only 3% of the total studied publications generated
scenarios for ultra-short-term horizons, i.e., up to 1 h ahead of forecasts. This is due to the
high accuracy of deterministic forecasts for such small forecasting horizons, which makes
scenario analysis and its inherent complexity unnecessary. The temporal horizons of the
proposed SPS generation methods are further analyzed in Section 2.5.

Additional uncertainty sources were considered for scenario generation in several of
the studied journal publications. As shown in Figure 4, wind, load, and electricity prices
appear as additional uncertainty sources in 49, 39, and 12 research papers, respectively.
In 6 cases, scenarios were generated for other additional uncertainty sources, such as
temperature and run-of-river hydropower. In 17 out of 79 studied journal publications,
scenarios were generated exclusively for PV power or solar irradiance.
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2.3. Scenario Generation Methods

Several classifications of SGMs have been proposed in the related literature. In [21], SGMs
were classified into three categories: sampling-based, forecasting-based, and optimization-
based. Sampling-based methods rely on sampling PDFs to generate discrete scenarios. On
the other hand, forecasting-based methods use statistical models or machine learning for
scenario generation. Optimization-based methods use techniques, such as clustering, on
large sets of historical observations to generate a reduced set of representative scenarios.
In [24], SGMs were classified into parametric and non-parametric, depending on whether
distribution assumptions regarding the uncertainty variable were necessary.

In this review paper, both classifications are considered to survey the SGMs for PV
power and solar irradiance. In 39 out of the total 79 studied journal publications, scenarios
are generated by a parametric sampling-based approach, as shown in Figure 5. Only a
single parametric approach is optimization-based. On the other hand, the forecasting-
based approaches constitute most of the non-parametric methods. The rest of the non-
parametric methods are equally divided between sampling-based and optimization-based
approaches. The general advantages and limitations of each SGM are summarized in
Table 1. A comparison of SGMs on several important aspects is presented in Figure 6. Note
that these comparisons are not exact, but rather rough approximations based on up-to-
date research findings. Figure 6 is designed for facilitating purposes, to provide general
guidelines rather than precise comparisons. Table 1 and Figure 6 are further analyzed in
Sections 2.3.1–2.3.6.
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2.3.1. Parametric Sampling-Based Methods

In parametric sampling-based methods, forecasting errors or historical data are fitted
to a pre-determined distribution. The PDF is then discretized and sampled with a specific
sampling technique. Parametric sampling-based methods are simple, computationally
efficient, and generate quality scenarios when the distribution assumptions are accurate.
However, stochastic variables, such as SPG, rarely follow a specific distribution, which leads
to the generation of simplified scenarios that do not share the same statistical properties as
the real observations.
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Table 1. The main advantages and limitations of SGMs for solar power.

SGM References Advantages Limitations

Parametric Sampling [3,27–53]

• Simple implementation • Distribution assumptions

• Accurate when distribution
shapes are known

• Cross-variable correlations are not
captured

Parametric Copula [15,17,54–62]

• Cross-variable correlations are
captured • Unsuitable for long-term horizons

• Extreme events and tail
dependencies are captured • Complexity in higher dimensions

Parametric
Forecasting [63–66]

• High flexibility • Distribution assumptions

• Easy to use • Prone to overfitting

Parametric
Optimization [67] • Computational efficiency

• Distribution assumptions
• Cross-variable correlations
• are not captured

Non-parametric
Sampling [19,68–72]

• Data-driven
• Cross-variable correlations are

captured

• Computational burden
• Data reliance

Non-parametric
Forecasting

(non-DGMs)
[73–77] • Data-driven

• High flexibility

• Computational burden
• Inability to distinguish from

historical observations

Non-parametric
Forecasting (DGMs) [16,20,26,78–92]

• Data-driven
• Generation of

history-distinguishable samples
• Cross-variable correlations are

captured
• Unsupervised learning

• Data reliance
• Computational burden

Non-parametric
Optimization [4,93–97] • Computational efficiency

• Data reliance
• Cross-variable correlations are not

captured

The most commonly used sampling technique is Monte Carlo sampling (MCS) [27–41].
In [33], MCS was used to sample the assumed error distribution of PV power curtailment
forecasts generated by gated recurrent units (GRUs). In [34], MCS was used to sample
forecasted PDFs of solar irradiance. The main disadvantage of traditional MCS is its
complete randomness; thus, multiple scenarios are required to achieve a representative
scenario set. Furthermore, the final scenario set usually includes many useless scenarios
that are almost identical to others. Several traditional MCS improvements have been
proposed. In [27], lattice MCS was used combined with roulette wheel selection (RWS) to
efficiently generate scenarios. In [35], a seven-step distribution model was used to discretize
the data distribution in order to generate less—but higher quality—scenarios. In both cases,
the generated results were similar to those of traditional MCS, while maintaining a much
smaller computational cost.

To overcome the limitations of MCS, several studies have used Latin hypercube
sampling (LHS) [42–47]. LHS is a multi-dimensional stratified sampling method that
divides the parameter space into equiprobable intervals. Compared to MCS, LHS is more
efficient computationally and provides a better spread of the samples to include more
extreme scenarios. In [42], LHS was used to generate scenarios from the error distribution
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of solar power point predictions. A multi-zone sampling method was adopted to better
handle boundary scenarios. In [44], LHS was used to jointly sample PV power and load
forecasting error distributions. Compared to MCS combined with scenario reduction, the
proposed method generated scenarios with higher computational efficiency and included
more low-probability extreme weather scenarios.

Other sampling techniques found in the literature for SPS generation include
RWS [3,48–51], uniform random sampling [52], and Gibbs sampling [53]. RWS ensures
proportional representation, as scenarios are sampled based on their probability of oc-
currence. Consequently, less data are needed for generating typical representative SPSs,
compared to MCS. However, higher probability scenarios may be repetitively sampled
while excluding low probability scenarios that represent extreme events. On the other hand,
Gibbs sampling is particularly suitable for sampling in relatively higher dimensional spaces
while capturing cross-variable correlations to some extent. However, Gibbs sampling
depends on the availability of the conditional distributions of each variable.

SPF errors are usually assumed to follow the normal distribution, where the fore-
casted data are set as the mean values of the distribution [27,28,32,33,42,44]. The standard
deviation of the distribution is directly related to the uncertainty band of the scenarios.
A higher standard deviation increases the ability to capture extreme scenarios, often at
the cost of scenario representativeness. On the other hand, several distributions are used
to fit the historical observations of solar irradiance, such as beta [3,30,36], Weibull [41],
normal [35,50,52], and lognormal [39,40]. Beta distribution has been the traditional choice
in fitting solar irradiance data; however, in [41], better results were achieved with the
Weibull distribution.

2.3.2. Parametric Copula-Based and Other Forecasting-Based Methods

The parametric sampling-based methods described in Section 2.3.1 heavily rely on the
chosen distribution shape, which, in many cases, fails to accurately describe the behavior of
a stochastic variable, such as SPG. Furthermore, these methods are incapable of modeling
correlations between multiple variables. On the other hand, dependency structures be-
tween multiple variables can be captured efficiently by copulas. Copulas are multivariate
distribution functions that link together the marginal distributions of stochastic variables.
First, the marginal distribution of each stochastic variable is transformed to the uniform
domain using its cumulative distribution function (CDF). After applying the inverse CDF
transformation, the marginal distributions are combined into a joint multivariate distribu-
tion using a predetermined copula type. Unlike [21], in this paper, copula-based methods
are distinguished from sampling-based methods, as significant distinctions appear between
them. Copula-based methods depend more on generated forecasts and the necessary trans-
formations to obtain the copulas rather than the sampling technique used for generating
the scenarios. Significant forecasting information is needed to construct the CDFs of the
variables. This information is sometimes unavailable or can be very difficult to obtain.
Furthermore, copula-based methods are significantly more complex to develop compared
to distribution-based methods and heavily depend on the performance of the probabilistic
forecasting model. However, in the presence of quality probabilistic forecasts, once the
copula is obtained, it is significantly faster in run-time during usage and better in describing
the distributions of the variables, capturing cross-variable correlations, and generating
higher-accuracy and time-efficient short-term scenarios.

A parametric copula-based method was first proposed in [18] to generate WPS for sev-
eral spatially correlated wind power plants. No assumptions about the forecasting error dis-
tributions were necessary since the marginal distributions were obtained by non-parametric
probabilistic forecasts generated with quantile regression. However, the proposed approach
is not completely parametric-free since the type of copula needs to be pre-determined. A
Gaussian copula was chosen in [18] to create the multivariate distribution function, which
was then sampled to generate WPS. The approach proposed in [18] was first used in [17]
for SPS generation, taking into consideration spatiotemporal dependencies. The approach
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proposed in [18] has also been used in [54,55]. Several improvements of [18] have also been
proposed. In [15], the copula was set to capture temporal autocorrelations of SPSs, which
were sampled using LHS. In [56], both temporal and other cross-variable correlations were
captured using copulas. Multiple RES were considered for scenario generation using a
Gaussian copula in [58]. In [57], Gibbs sampling was used to sample the copula-based joint
distribution of several RES power plants.

In some cases, the Gaussian copula cannot sufficiently capture the interdependencies
between variables. On the other hand, vine copulas efficiently capture the different types of
dependencies while preserving outliers and limiting the additional computational burden.
Vine copulas were used for solar, wind, and run-of-river hydropower scenario generation
in [58] and for joint solar-wind scenarios in [59]. In [60], t-copulas were used to consider
the data outliers while better capturing the tail dependencies. However, t-copulas can be
time-consuming, especially for parameter determination. Other studies have proposed
combining multiple copulas to capture highly complex dependencies. In [61], a self-
organizing map was used to cluster PV and meteorological data. A different copula was
used for each cluster to develop the joint distributions. In [62], the combined copulas
comprised the Clayton copula, the Gumbel copula, and the Frank copula. However,
combined copulas significantly increase the overall complexity and the risk of overfitting.

In non-copula parametric forecasting-based methods, scenarios are based on previ-
ously generated point forecasts. Distribution assumptions are made for the forecasting
errors, which are then sampled and added to the corresponding point forecasts to generate
scenarios. Parametric forecasting-based methods are usually based on simple statistical
models or machine learning. In [63], an auto-regressive moving average (ARMA) model
was used to generate the error distribution of previously generated forecasts, based on a
Gaussian assumption. The generated distribution was then sampled with LHS to generate
SPSs and WPSs. A machine learning method was first introduced in [64] to generate solar,
wind, and load scenarios. In this method, point forecasts were generated utilizing artificial
neural networks (ANNs) and exogenous variables as inputs. A forecasting error value
assumed to follow a normal distribution was then added to the point forecast to gener-
ate a scenario trajectory. The generated scenarios of the proposed ANN-based method
had superior characteristics compared to those of statistical-based methods, such as the
seasonal auto-regressive integrated moving average (SARIMA). The method proposed
in [64] was also used in [65] for solar irradiance scenario generation. In [66], scenarios
were generated by transforming historical data and feeding them to a multivariate Vector
ARMA to generate spatiotemporal forecasts which were assumed to follow a Gaussian
distribution. Non-copula parametric forecasting-based methods are simple, flexible, and
easily extendable to multiple locations and timeframes. On the other hand, they still rely on
error distribution assumptions, which may lead to overly simplistic scenarios. Furthermore,
they are prone to overfitting and heavily rely on the performance and finetuning of the
forecasting model. Thus, while simpler and more flexible than copula-based methods, they
fail to reach their high-accuracy performance.

2.3.3. Parametric Optimization-Based Methods

Optimization-based methods are usually non-parametric, as they rely on large sets of
historical data to which they apply scenario reduction techniques based on pre-determined
metrics. However, few studies have suggested parametric optimization-based approaches
where the historical data are fitted to a known distribution. The distribution is then
discretized, and the discrete realizations are clustered to form the final scenarios. In [67],
the PV power output was assumed to follow the Beta distribution, which was discretized
using the Wasserstein distance. The discrete scenarios were then clustered using K-medoid
clustering to form the final set of scenarios. The generated scenarios were of higher
accuracy compared to those generated by an ARMA model and parametric distribution-
based approaches. While parametric optimization-based approaches generally outperform
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distribution-based approaches, they perform poorly when no assumed distribution can
sufficiently characterize the stochastic variable.

2.3.4. Non-Parametric Sampling-Based Methods

Non-parametric sampling-based methods either rely on empirical distributions or
generate distributions using techniques such as kernel density estimation (KDE). In [68,69],
PIs generated for 19 different confidence levels were decomposed to quantiles to generate
an empirical CDF. The CDF was then sampled with MCS to generate solar, wind, and load
scenarios. In [70], the error distribution of PV power was estimated by calculating the error
bounds and then using an epi-spline approximation. The probabilities of each scenario
were calculated using a copula. The results indicated that the proposed methodology
generated smoother scenarios compared to traditional copula-based approaches. In [19],
KDE was used to generate the joint multivariate distribution of the forecasting errors. The
distribution was then sampled with MCS to generate joint scenarios of solar, load, and
electricity prices. In [71], KDE was applied to historical data to generate joint scenarios of
PV power and load with MCS sampling. In [72], probabilistic graphical models were used
to predict the distribution of the forecasting error of solar irradiance. While these models
do not require any prior distribution assumption, they either require large amounts of data
to build realistic empirical distributions or have substantial computational costs, making
them less attractive for practical implementation. The overall scenario generation process
is thus much more time-consuming compared to parametric methods while not providing
particularly better results when sufficient distributions are known upfront.

2.3.5. Non-Parametric Forecasting-Based Methods

Non-parametric forecasting-based methods are completely data-driven and indepen-
dent of any form of distribution assumption. Most methods are based on DGMs, which have
gained increasing popularity in recent years for SPS generation [16,20,26,78–92]. DGMs
are completely assumption-free and generate new synthetic data that highly resemble the
training samples. They generate optimal long-term representative scenarios while still
showing promising results in short-term temporal horizons. On the other hand, DGMs
heavily rely on data availability and require massive computational resources as they are
based on deep learning. A comprehensive review of DGMs proposed for SPS generation is
provided in Section 4.

This subsection provides a brief description of proposed non-DGM methods for SPS
generation. In [74], intra-hour PV power scenarios were generated by an ANN using a
fuzzy inference framework. However, the proposed model generated only three scenarios,
i.e., the upper and the lower bounds as well as a center scenario. In [75], synthetic sequences
of solar irradiation were generated by applying non-parametric bootstrapping on historical
data. The proposed method generated synthetic typical scenarios that were complementary
to the historical observations. In [73], an autoregressive-to-anything statistical process was
used combined with historical observations to generate solar, wind, and load scenarios.
Non-DGM methods are less computationally demanding than DGM methods; however, the
synthetic scenarios generated by them often fail to distinguish themselves from historical
observations. Thus, they are not fully capable of capturing the behavior of stochastic
variables, such as SPG. To overcome these limitations, week-ahead weather forecasts
were combined with historical observations and fed to a combined GRU-convolutional
neural network (CNN) [76] to generate PV power scenarios capturing spatiotemporal
dependencies. The proposed model was compared to the DGM proposed in [78] and
generated better scenarios while efficiently capturing spatiotemporal correlations. However,
the proposed model heavily depends on the quality of the week-ahead forecasts, which are
difficult to obtain. In [77], a long short-term memory auto-encoder (LSTM-AE) was set up to
generate scenarios for a hybrid hydro-PV system. The proposed model is completely model-
free, performs feature extraction, and captures spatiotemporal dependencies. Nevertheless,
the SGMs proposed in [76,77] depend on complex deep learning structures to generate
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efficient forecasts without any distribution assumption, which leads to a significant increase
in computational complexity. This increase in computational complexity is only cost-
effective when efficient PV physical models are not available or when no known distribution
can sufficiently characterize SPG.

2.3.6. Non-Parametric Optimization-Based Methods

As mentioned in Section 2.3.3, non-parametric optimization-based methods apply
scenario reduction techniques to large sets of historical data to generate representative
scenarios. In most cases, clustering is chosen for SPS generation [4,93–95]. K-means
clustering is a commonly used clustering method. However, in [93], the fuzzy-C-means
clustering method produced better results. In [94], clustering showed superior performance
in generating solar, wind, and electricity price scenarios compared to the KDE-based non-
parametric sampling method. In [96], clustering was applied to weather forecasts generated
by a recurrent neural network (RNN) to generate solar irradiation, wind, and temperature
scenarios. Moment matching was used in [97] to generate solar, wind, and electricity price
scenarios. With moment matching, scenarios are generated such that they share the same
statistical features with historical observations.

Non-parametric optimization-based methods are efficient SGMs that generate long-
term representative SPSs. However, they heavily rely on historical data availability and
fail to generate scenarios that distinguish them from already observed paths. Furthermore,
the number of the generated scenarios needs to be pre-determined in certain optimization-
based methods, such as clustering, which is not always possible.

2.4. Comparisons with Wind Power SGMs

Several distinctions appear between solar and wind power SGMs. In parametric
sampling methods, the Weibull distribution is a commonly used distribution function
to describe wind power [24]. On the other hand, the beta distribution, as well as the
normal and lognormal distributions, have been used to describe SPG. Regarding copulas,
the Gumbel and Gaussian copulas are suggested for the description of wind variations
in low and high dimensions, respectively [17]. The Gaussian copula is commonly used
for solar power; however, other types of copulas have not been comprehensively tested.
Frank copulas are suitable for negative cross-variable correlations, such as wind and solar
correlations [59]. Furthermore, in the proposed parametric forecasting-based approaches
for SPS generation, the forecasting error is always assumed to follow a normal distribution.

Most of the SGMs proposed for solar power are parametric sampling-based, as the
characterization of solar power distributions is easier compared to that of wind. Further-
more, significantly fewer parametric forecasting-based and optimization-based methods
are proposed for solar power compared to wind [21]. Solar power has become increasingly
popular in recent years, which, combined with the shift towards DGMs, leads to the gradual
abandonment of the more traditional forecasting-based and optimization-based SGMs.
Moreover, DGMs are particularly popular for SPS generation, as the required training
time is usually reduced compared to that for generating WPSs. This is due to the reduced
complexity of SPG, which only occurs during the daytime.

2.5. Classification Based on Temporal Horizon

SGMs significantly differ in terms of the temporal horizon they are best suited for. A
taxonomy of the studied research papers based on the temporal horizon for which the SPSs
are generated is presented in Table 2. Figure 7a presents the share of different temporal
horizons for each SGM. The most common power system target domains for which SPSs are
generated are presented in Figure 7b. Long-term temporal horizons span from several days
to years ahead and are used for power system planning tasks, such as optimal allocation of
RES and capacity determination. Short-term temporal horizons span from several hours to
day-ahead decision-making tasks, such as UC, economic dispatch, and optimal bidding



Energies 2023, 16, 5600 13 of 29

strategies. Ultra-short-term temporal horizons refer to intra-hour forecasting aimed at
real-time operations of microgrids and home energy management systems (HEMS).

Table 2. Classification of proposed solar power SGMs based on temporal horizon.

Temporal Horizon References

Ultra-short-term [61,74]

Short-term [3,6,15,17,27,31,32,34,35,37,41–46,48–52,54–60,62,64–70,72,80,81,83,86,89,90,95,97]

Long-term [4,19,20,26,28–30,33,36,38–40,47,53,63,71,73,75–79,82,84,85,87,88,91–94,96]
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Parametric sampling-based methods can be used for both short-term and long-term
temporal horizons, with a slight preference towards short-term horizons, where the avail-
able execution times are shorter and require simpler SGMs. On the other hand, optimization-
based methods are slightly more used for long-term temporal horizons, as they rely on
large sets of historical data that are capable of representing long-term trends of SPG. Non-
parametric sampling-based methods are used both for short-term and long-term temporal
horizons, depending on whether they rely on forecasts or historical data to generate the
empirical distributions. However, as their complexity is significantly increased, they are
best suited for long-term planning tasks. Non-parametric forecasting-based methods are
mainly destined for long-term temporal horizons, owing to their increased computational
complexity and their ability to infer complex, deeply rooted relationships between data. The
only exception is in [74], where a simple fuzzy ANN was used to generate three scenarios
for intra-hour forecasting. Copula-based methods are exclusively designed for short-term
temporal horizons, where they are extremely accurate. As the temporal horizon increases,
they fail to capture cross-variable and interdependent temporal correlations. Similarly,
non-copula parametric forecasting-based methods are better suited for short-term temporal
horizons as they rely on the accuracy of previously generated point forecasts.

3. Taxonomy Based on Weather Classifications
3.1. Weather Classifications

SPG is directly related to the prevailing weather conditions, especially to the cloud
coverage of the sky. Different weather conditions can significantly alter the power curve
of solar generation. Generating SPSs for different weather conditions can significantly
improve the accuracy of the scenarios and reduce the overall computational cost, as fewer
scenarios are necessary to describe the uncertainty of SPG. A simple typical SPG scenario
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set, comprising nine scenarios, is depicted in Figure 8a. The variance of the initial scenario
set is relatively big, indicating an increased complexity and difficulty in obtaining these
initial scenarios. However, considering simple different weather types, e.g., sunny, cloudy,
and overcast sky conditions, the initial scenario set can be divided into three typical scenario
sets (Figure 8b–d), each corresponding to a specific weather type. The variance of each
scenario set is significantly reduced, leading to an increase in both computational efficiency
and accuracy.

Energies 2023, 16, x FOR PEER REVIEW 14 of 29 
 

 

3. Taxonomy Based on Weather Classifications 
3.1. Weather Classifications 

SPG is directly related to the prevailing weather conditions, especially to the cloud 
coverage of the sky. Different weather conditions can significantly alter the power curve 
of solar generation. Generating SPSs for different weather conditions can significantly im-
prove the accuracy of the scenarios and reduce the overall computational cost, as fewer 
scenarios are necessary to describe the uncertainty of SPG. A simple typical SPG scenario 
set, comprising nine scenarios, is depicted in Figure 8a. The variance of the initial scenario 
set is relatively big, indicating an increased complexity and difficulty in obtaining these 
initial scenarios. However, considering simple different weather types, e.g., sunny, 
cloudy, and overcast sky conditions, the initial scenario set can be divided into three typ-
ical scenario sets (Figure 8b–d), each corresponding to a specific weather type. The vari-
ance of each scenario set is significantly reduced, leading to an increase in both computa-
tional efficiency and accuracy. 

(a) (b) 

  
(c) (d) 

Figure 8. Typical scenario sets of SPG. (a) Nine scenarios without weather classification; (b) sunny 
day scenario set; (c) cloudy day scenario set; (d) overcast day scenario set. 

Several weather classification strategies have been proposed for SPS generation. A 
taxonomy of the proposed solar power SGMs that introduce weather classifications is pre-
sented in Table 3. Table 3 also includes seasonal classifications wherever they appear. The 
simplest weather classification for SPS generation is based on sky conditions and includes 
two weather types, i.e., sunny and cloudy [61]. A slightly more detailed and commonly 
used classification includes rainy as a weather type [36,42]. As shown in Figure 8b, sunny 
days are characterized by a bell-shaped SPG curve, while overcast days are those with a 
significantly lower peak in the daily generation. Cloudy days are the most dynamic due 
to frequent changes in sky conditions, leading to high fluctuations in the generated solar 
power. Other studies have included more classifications, such as partly/mostly cloudy 
[89], as well as classifications based on temperature (hot/cold sunny, hot/cold cloudy) [51] 

0

0.2

0.4

0.6

0.8

1

0:00 4:00 8:00 12:00 16:00 20:00

Po
w

er
 g

en
er

at
io

n 
(p

u)

Hour of Day

0

0.2

0.4

0.6

0.8

1

0:00 4:00 8:00 12:00 16:00 20:00

Po
w

er
 g

en
er

at
io

n 
(p

u)
Hour of Day

0

0.2

0.4

0.6

0.8

1

0:00 4:00 8:00 12:00 16:00 20:00

Po
w

er
 g

en
er

at
io

n 
(p

u)

Hour of Day

0

0.2

0.4

0.6

0.8

1

0:00 4:00 8:00 12:00 16:00 20:00

Po
w

er
 g

en
er

at
io

n 
(p

u)

Hour of Day

Figure 8. Typical scenario sets of SPG. (a) Nine scenarios without weather classification; (b) sunny
day scenario set; (c) cloudy day scenario set; (d) overcast day scenario set.

Several weather classification strategies have been proposed for SPS generation. A
taxonomy of the proposed solar power SGMs that introduce weather classifications is
presented in Table 3. Table 3 also includes seasonal classifications wherever they appear.
The simplest weather classification for SPS generation is based on sky conditions and
includes two weather types, i.e., sunny and cloudy [61]. A slightly more detailed and
commonly used classification includes rainy as a weather type [36,42]. As shown in
Figure 8b, sunny days are characterized by a bell-shaped SPG curve, while overcast days
are those with a significantly lower peak in the daily generation. Cloudy days are the
most dynamic due to frequent changes in sky conditions, leading to high fluctuations
in the generated solar power. Other studies have included more classifications, such as
partly/mostly cloudy [89], as well as classifications based on temperature (hot/cold sunny,
hot/cold cloudy) [51] and duration of meteorological phenomena (short-term/continuous
rainfall, short-term/continuous snowfall) [76].



Energies 2023, 16, 5600 15 of 29

Table 3. Taxonomy of reviewed solar power SGMs, based on weather classifications and seasonality
analysis.

References Seasonality Weather
Classification

[26] 4 seasons (summer, winter,
shoulder A, shoulder B) 2 weather types (normal, abnormal)

[36] 4 seasons
(summer, autumn, winter, spring) 3 weather types (sunny, rainy, cloudy)

[42] − 3 weather types (sunny, rainy, cloudy)

[79] 2 seasons (heating, non-heating) 2 weather types for heating season
4 weather types for the non-heating season

[89] 12 months 4 weather types (sunny, partly cloudy, mostly cloudy,
rainy/snowy)

[91] − 5 weather types
(sunny, cloudy, rainy, snowy, windy)

[51] − 4 weather types (hot sunny, hot cloudy, cold sunny,
cold cloudy)

[61] 2 seasons (summer, winter) 2 weather types (sunny, cloudy)

[72] − 8 weather types based on precipitation PDF (from
sunny to rainy)

[76] 4 seasons
(summer, autumn, winter, spring)

6 weather types (sunny dominant, cloudy dominant,
short-term rainfall, continuous rainfall, short-term

snowfall, continuous snowfall)

Besides sunny and cloudy, which are the two most essential weather types, additional
weather types should be included, depending on their effect on SPG, the prevailing weather
conditions of the region, the decision-making problem, and the computational complexity
constraints. Cloud conditions can be further divided into several classes based on cloud
motion, height, and shape. Wind fields have also been proven to significantly affect the PV
power output, as the airflow over a PV module unevenly distributes its temperature [98,99].
In [91], the windy weather condition was considered as one of the five determined weather
types. However, the optimal choice of weather conditions depends on the correlation of
SPG to different meteorological parameters. Some weather conditions do not significantly
affect SPG; thus, their consideration should depend on the decision-making problem and its
computational complexity constraints. For example, in regions with low precipitation levels
throughout the year, the rainy weather type may not be necessary, as it will increase the
computational cost without significantly changing the overall quality of the SPG scenarios.
However, if the power system optimization problem is sensitive to extreme, low-probability
scenarios, the decision-maker should consider including rainy or other low-probability
weather types. Multiple weather classifications can significantly increase the quality of the
generated scenarios, as the variance of each scenario set decreases, and fewer scenarios
are needed to accurately quantify the uncertainty of SPG. On the other hand, too many
weather classifications can lead to complex frameworks with insignificant uncertainty, in
which scenarios have no use.

Multiple methodologies have been proposed to derive classifications of weather from
historical data or weather forecasts. A simple, efficient, and common method for classi-
fications is based on constructing solar irradiance profiles, which are directly related to
SPG [42,51]. However, classifications based on solar irradiance are coarse-grained; thus,
obtaining other weather types besides sunny, cloudy, and overcast is difficult. In [79],
clustering on historical data was used to obtain different weather types. Clustering was
based on temperature values, as temperature showed the highest correlation with both
solar irradiance and load. The proposed methodology is particularly useful when scenarios
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are generated for multiple stochastic variables and historical meteorological data are avail-
able. In [72], eight atmospheric conditions were deduced by considering two precipitation
probabilities in each of four sky conditions (sunny, mostly sunny, mostly cloudy, and
cloudy). The atmospheric conditions represented sky conditions from sunny with a low
probability of rain, to cloudy with a high probability of rain. Deep learning methods have
also been used to determine weather classifications based on historical data by specifying
different weather types in the labels of DGMs. In [26], a data-driven method was proposed
to divide weather types into normal and abnormal days. The classification was based on
an advanced time-series distance metric called dynamic time warping (DTW). DTW was
measured between all historic daily time series and a reference representative daily time
series. The daily time series were then sorted and plotted based on their DTW values to
identify the slope change. The days beyond the slope change were considered abnormal.
The proposed methodology is completely data-driven and magnifies abnormal days that
are less frequent. Thus, higher quality SPSs were generated for the abnormal days, in
which the uncertainty is at the highest level. Data-hidden information regarding geography
characteristics and prevailing weather conditions of the target region are fully exploited
when sophisticated data mining techniques are used. On the other hand, data-driven
approaches require huge amounts of data to perform the classifications efficiently.

Weather classifications significantly improve the overall quality of the generated SPSs.
The accuracy of the SPG scenarios is increased, while the variance of each scenario set is
limited; thus, fewer scenarios are necessary to describe the uncertainty of SPG, leading to a
reduction in computational complexity. However, little focus has been given to weather
classification techniques. It is essential to consider finer weather classifications, such as
finer divisions of cloud conditions, depending on cloud formation and motion, as well
as new classifications based on other parameters that affect SPG, such as wind fields
and regional climatic phenomena. The optimal number of weather conditions should be
determined based on the prevailing climatic conditions of the target region while achieving
an accuracy–computational efficiency tradeoff. Furthermore, greater focus should be placed
on data-driven techniques for deriving weather classifications, as the availability of longer
and more detailed meteorological datasets increases.

3.2. Seasonality Analysis

Besides weather classifications, several studies have proposed generating SPSs inde-
pendently for different seasons. Seasonal classifications are based on temporal divisions
of the year. Such divisions are calendar-based or meteorological-based. Calendar-based
classifications are usually monthly or seasonal (winter, spring, summer, and autumn).
Seasonality analysis on a calendar basis facilitates energy management optimization tasks
that incorporate time-series variables with seasonal labeling, such as wholesale gas price,
seasonal water inflow, and seasonal load profiles. On the other hand, with meteorological-
based classifications, seasons are determined based on factors such as temperature, load
type, and general sky conditions. Meteorological-based seasonality analysis resembles the
weather classifications described in Section 3.1 and deduces finer seasonal characteristics,
that adapt more to the geographical and meteorological characteristics of the target region.

SPG has strong diurnal and seasonal characteristics. Typical PV power generation
curves differ depending on the time of the year, as solar power is directly linked to factors
such as temperature, daylight duration, solar zenith angle, precipitation, and prevailing
sky conditions. Throughout each season, SPG is mainly affected in terms of daily peaks
and duration of generation. However, these distinctions are highly predictable, and de-
terministic forecasting models can sufficiently capture seasonal variations of SPG. On the
other hand, meteorological-based seasonal classifications are difficult to efficiently deduce,
as seasonal variations significantly differ depending on the geographical location, which
leads to an increase in computational complexity. Furthermore, there is no guarantee that
seasonal characteristics will be sufficiently consistent throughout each season. Thus, it is
suggested to put more focus on weather classifications rather than meteorological-based
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seasonal divisions. On the other hand, calendar-based seasonality analysis is beneficial
whenever SOPs contain seasonal-labeled stochastic variables.

4. Review of Deep Generative Models for Solar Power Scenario Generation

In recent years, DGMs have emerged as alternatives for generating SPSs, owing to
their data-driven nature and their ability to generate new synthetic data that resemble
historical observations. Furthermore, DGMs are based on deep learning, thus enabling
the identification of complex, non-linear relationships, cross-variable correlations, and
data labeling. DGMs include models such as generative adversarial networks (GANs),
variational auto-encoders (VAEs), flow-based models, and deep Boltzmann machines.
Further information about DGMs can be found in [100]. The number of journal publications
per year regarding DGM-based SPS generation is shown in Figure 9. It is evident that
there is an increasing trend of DGM-based models, especially since only publications from
January and February are considered for 2023. However, to the authors’ knowledge, no
systematic review of DGM-based scenario generation exists in the context of power systems
and RES. Hence, this section reviews proposed DGMs for SPS generation.
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tive models.

4.1. Generative Adversarial Networks
4.1.1. Definition

GANs are the most popular DGMs used for SPS generation. The main advantages
of GANs are their scalability, unsupervised training, and data-driven nature, as well as
their ability to infer cross-variable correlations. The general structure of GANs is shown
in Figure 10a. GANs are based on two deep learning structures, the generator G and
the discriminator D. During training, random noise z is sampled from the latent space
and provided as input to the generator, which tries to transform it to create fake samples
G(z) that resemble real historical observations. The discriminator takes as its input either
generated samples G(z) or real observations x, sampled from a historical dataset. The
objective of the discriminator is to be able to identify whether its input is a real or a
generated observation. The higher the output of the discriminator, the closer the input
sample is to a real observation.

Wasserstein GANs (WGANs) have been introduced as an improved version of tradi-
tional GANs. WGANs employ the Wasserstein distance metric to measure the resemblance
between the generated and the historical samples. The higher the output of the discrimina-
tor, the closer the generated samples are to the historical observations. For the remainder
of this paper, WGANs will be simply referred to as GANs.
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The loss function of GANs is formed as a two-player minimax game. The objective of
the generator is to minimize the difference between generated and real samples. The higher
the output of the discriminator, the closer the generated sample is to a real observation;
thus, the generator should be updated to maximize the expectation of D[G(z)] (or minimize
the additive inverse of D[G(z)]):

minLG = −EZ[D(G(z))] (3)

where LG represents the loss function of the generator, D(G(z)) is the output of the dis-
criminator when provided a generated sample G(z), and EZ is the mean expectation over
different random noise samples z. On the other hand, the objective of the discriminator is to
be able to fully differentiate between real and generated samples. Thus, the discriminator
should be updated to maximize its output when provided with real samples, and minimize
it when provided with generated samples:

minLD = −EX [D(x)] +EZ[D(G(z))] (4)

where LD represents the loss function of the discriminator, D(x) is the output of the
discriminator when provided with a real sample x, and EX is the mean expectation over
different real samples x. The two-player minimax game is then formulated as follows:

min
G

max
D

V(G, D) = EX [D(x)]−EZ[D(G(z))] (5)

where V(G, D) is the combined loss function of the GAN, consisting of the loss functions
described in (4) and (5). The GAN is trained to simultaneously satisfy both objectives, i.e.,
generate realistic scenarios and discriminate between the real and the synthetic scenarios,
until a Nash equilibrium is reached. More information about GANs can be found in [101].

4.1.2. Literature Review

Several different GANs have been proposed for SPS generation. Table 4 summarizes
their respective advantages and limitations. A GAN was first proposed for SPS generation
in [78], considering conditionality. With conditional GANs (CGANs), conditions are incor-
porated in the training procedure to allow event-based scenario generation by assigning
user-defined labels to the outputs of the generator. The generated scenarios shared the
same statistical properties with historical samples and successfully captured spatiotemporal
correlations between multiple sites. Monthly labels were given to the CGAN to generate
SPSs for each month. The results showed that monthly variations of SPG were successfully
captured, with a small difference in average daily production between historical and gener-
ated scenarios. A similar CGAN was proposed in [85] with risk-averse labels to generate
PV power generation scenarios used for the planning of a hybrid ESS. In [91], a combined
weighting method (CWM) was proposed for CGANs. However, the proposed approach is
heavily dependent on the availability of weather data.
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Traditional GANs, as well as CGANs proposed in [78,85,87,90,91], suffer training
instability and mode collapse. To address mode collapse, a GAN with variational inference
(GAN-VI) was proposed in [80]. GAN-VI includes an encoder to map historical samples x
to the hidden space by generating variables E(x). Unlike traditional GANs, the input to
the discriminator of GAN-VI is two-dimensional. The real input batch consists of the pair
(x, E(x)), while the fake batch consists of the pair (z, G(z)). The structure of GAN-VI is
shown in Figure 10b. GAN-VI was used to generate spatiotemporal WPSs and SPSs for
the optimal operation of a hybrid hydro-wind-solar energy system. In general, variational
inference allows for more complex representations of distributions; however, the proposed
GAN-VI was not compared to the CGAN proposed in [78].

Table 4. Advantages and limitations of proposed GAN-based methods for solar power scenario
generation.

Reference Date of
Publication Model Advantages Limitations

[78] May 2018 CGAN • Seasonal classification
• Training instability
• Mode collapse
• Unclear latent space

[85] April 2019 CGAN • Risk-averse classification • Same as [78]

[80] September 2019 GAN-VI • Complex representations
• Training stability

• Unclear latent space
• Uncontrollable generation

[81] November 2019 GAN-GP • Training stability
• Mode collapse
• Unclear latent space

[84] August 2020 ctrl-GAN
• Training stability
• Controllable generation
• Seasonality

• Computational cost
• Data dependence

[83] December 2020 GAN-GP • Same as [81] • Same as [81]

[20] July 2021 Fed-LSGAN
• Decentralized method
• Training stability

• Unrealistic circumstances
• Unclear latent space

[88] February 2022 ctrl-GAN • Same as [84] • Same as [84]

[91] February 2022 CWM-CGAN • Weather classification
• Same as [78]
• Weather data dependency

[89] April 2022 C-StyleGAN2-SE

• Weather classification
• Training stability
• Controllable generation
• Complex representations

• Computational cost
• Difficult fine-tuning
• Weather data dependency

[87] November 2022 CGAN • Same as [78] • Same as [78]

[90] January 2023 GAN • GAN advantages • Same as [78]

[16] January 2023 StyleGAN-ADA-ESR

• Parallel scenarios
• Training stability
• Controllable generation
• Complex representations

• Computational cost
• Difficult fine-tuning

[26] February 2023 CCRGAN
• Weather classification
• Captures long-term temporal

correlations

• Same as [78]
• Does not capture

spatiotemporal correlations

A common method to address training instability issues, such as exploding or vanish-
ing gradients, is to add regulation terms in the objective functions of the generator and the
discriminator. For example, in [81], a gradient penalty (GP) term was added to the objective
function of the discriminator. The improved GAN-GP was used to generate extended
datasets of integrated energy systems’ rare control and operation data. Other proposed
regularization terms can be found in [80,83].
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Another drawback of traditional GANs is the inability to control the generation
process. The relationship of the latent space, i.e., the low-dimensional space where the
random input noise is generated and the output data are unclear. This issue is addressed
to some extent with CGANs, however, the maximum number of conditions that can be
used is limited. Furthermore, it is impossible to add new features without retraining.
A controllable GAN with transparent latent space (ctrl-GAN) was proposed in [84] for
WPS and SPS generation. In ctrl-GAN, an extra feature extraction model F, e.g., a CNN,
is added to the overall framework to find relationships between output labels y and the
latent space variables z. It is proven that understanding the behavior of the latent space
can lead to controllable scenario generation. The feature extraction model was coupled
with the generator and was first trained with sample pairs (x, y). Then, each generated
scenario was assigned a label, which was mapped to the latent space using a generalized
linear regression model to create sample pairs (z, y). Schmidt orthogonalization was
employed to un-correlate the features and enable moving independently in each feature
axis. Furthermore, regularization terms and spectral normalization were employed to avoid
training instabilities. The proposed ctrl-GAN was compared to a simple GAN and GAN-GP.
It was shown that the proposed method converged faster and better while generating the
highest-quality scenarios. Seasonal scenarios can be generated with ctrl-GAN; however, the
proposed model was not tested against CGAN to compare their conditionality capabilities.
Furthermore, scenario generation can be controlled based on features, e.g., duration of
daily SPG; however, to fully exploit the advantages of controllable generation, massive
amounts of historical data are needed. The additional computational cost of the proposed
method is unclear. Nevertheless, the proposed ctrl-GAN is highly accurate and flexible,
making it ideal for SPS generation for stochastic power system applications. Latent space
transparency in the context of RES scenario generation was further investigated in [88].

A framework for SPS forecasting with GANs was first proposed in [83]. Unlike previ-
ous studies, which simply exploited GANs to generate SPS sets, the proposed framework
exploited meteorological point forecasts p̂ to generate scenario forecasts for a specific lead
time. The point forecasts were transformed to latent space variables z, which were then
fed to a pre-trained generator to generate scenario forecasts. The proposed methodology is
characterized by high flexibility, as scenario forecasts can be generated for multiple sites
and temporal horizons.

Generating SPSs with GANs for multiple sites in a centralized way can lead to sev-
eral data-related problems, such as demand for excessive computational resources, data
overhead, and data security threats. In [20], a federated learning framework was proposed
to generate WPSs and SPSs for multiple sites in a decentralized manner. Furthermore, to
address training instability issues and mode collapse, a least square GAN (LSGAN) was
used. The results showed that the proposed Fed-LSGAN model generated higher-quality
scenarios than traditional GAN models while maintaining data privacy and security. How-
ever, ideal conditions were considered regarding data losses, communication delays, and
available computational resources, which indicate that in more realistic circumstances, the
generated scenarios would be of lower quality.

An attempt to overcome all GAN-related limitations mentioned above was made
in [89]. The StyleGAN2 architecture was proposed to enhance the representation of complex
distributions and improve the transparency of the latent space to enable controllable
scenario generation. Conditionality was implemented to generate scenarios for different
weather types in each month. A mini-batch standard deviation layer and regularization
terms were added to the discriminator and the generator, respectively, to ensure training
stability. Furthermore, a sequence encoder (SE) comprising convolutional LSTMs was
added to generate day-ahead WPS and SPS forecasts. The proposed C-StyleGAN2-SE
model generated scenarios with superior characteristics based on a variety of different
evaluation metrics and effectively solved the day-ahead stochastic UC problem. On the
other hand, the significant complexity of the model hindered the optimal configuration of
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its parameters. Nevertheless, the proposed model was sufficiently scalable with a relatively
reasonable training duration.

The StyleGAN architecture was also used in [16] for SPS forecasting. The proposed
model implemented Gramian angular field transformations to generate scenarios for multi-
ple sources in parallel. Training stability was significantly improved by adaptive discrimi-
nator augmentation (ADA), a technique to dynamically challenge the training procedure
of the discriminator as it becomes better at discriminating real and generated scenarios.
Furthermore, enhanced super-resolution (ESR) was introduced for feature extraction and
construction of multi-model ensembles. The proposed StyleGAN-ADA-ESR improved the
controllability of the latent space and generated high-quality short-term scenario forecasts.
As in [89], the computational complexity of the model was significant; however, the overall
computational time was acceptable for day-ahead forecasting horizons.

Studies [16,20,78,80,81,83–85,87–91] implemented generators and discriminators as a
combination of multiple CNNs and MLPs (convolutional GANs). Other deep learning struc-
tures have also been proposed for SPS generation with GANs. In [26], a cross-correlated
conditional recurrent GAN (CCRGAN) was proposed for seasonal solar and load scenario
generation. Both the generator and the discriminator comprised three LSTM layers to
capture long-term temporal dependencies. The proposed model generated efficient solar
and load scenarios that captured temporal dependencies. However, the proposed model
was not tested against other state-of-the-art DGM-based SGMs.

4.2. Other Deep Generative Models

Besides GANs, other types of DGMs have been proposed for SPS generation. In [79,82],
modular denoising VAEs (MDVAEs) were proposed for SPS generation. The structure of
VAEs is depicted in Figure 11a. With VAEs, historical samples are encoded into distributions
to regularize the latent space and avoid overfitting. The latent space is then sampled,
and new samples are generated with variational inference. Encoding and decoding are
done probabilistically. It was found that MDVAEs were able to capture complex data
interdependencies and cross-variable correlations. Furthermore, MDVAEs were able to
generate extreme-case scenarios with fewer data compared to other conventional SGMs.

Energies 2023, 16, x FOR PEER REVIEW 21 of 29 
 

 

evaluation metrics and effectively solved the day-ahead stochastic UC problem. On the 
other hand, the significant complexity of the model hindered the optimal configuration of 
its parameters. Nevertheless, the proposed model was sufficiently scalable with a rela-
tively reasonable training duration. 

The StyleGAN architecture was also used in [16] for SPS forecasting. The proposed 
model implemented Gramian angular field transformations to generate scenarios for mul-
tiple sources in parallel. Training stability was significantly improved by adaptive dis-
criminator augmentation (ADA), a technique to dynamically challenge the training pro-
cedure of the discriminator as it becomes better at discriminating real and generated sce-
narios. Furthermore, enhanced super-resolution (ESR) was introduced for feature extrac-
tion and construction of multi-model ensembles. The proposed StyleGAN-ADA-ESR im-
proved the controllability of the latent space and generated high-quality short-term sce-
nario forecasts. As in [89], the computational complexity of the model was significant; 
however, the overall computational time was acceptable for day-ahead forecasting hori-
zons. 

Studies [16,20,78,80,81,83–85,87–91] implemented generators and discriminators as a 
combination of multiple CNNs and MLPs (convolutional GANs). Other deep learning 
structures have also been proposed for SPS generation with GANs. In [26], a cross-corre-
lated conditional recurrent GAN (CCRGAN) was proposed for seasonal solar and load 
scenario generation. Both the generator and the discriminator comprised three LSTM lay-
ers to capture long-term temporal dependencies. The proposed model generated efficient 
solar and load scenarios that captured temporal dependencies. However, the proposed 
model was not tested against other state-of-the-art DGM-based SGMs. 

4.2. Other Deep Generative Models 
Besides GANs, other types of DGMs have been proposed for SPS generation. In 

[79,82], modular denoising VAEs (MDVAEs) were proposed for SPS generation. The struc-
ture of VAEs is depicted in Figure 11a. With VAEs, historical samples are encoded into 
distributions to regularize the latent space and avoid overfitting. The latent space is then 
sampled, and new samples are generated with variational inference. Encoding and decod-
ing are done probabilistically. It was found that MDVAEs were able to capture complex 
data interdependencies and cross-variable correlations. Furthermore, MDVAEs were able 
to generate extreme-case scenarios with fewer data compared to other conventional 
SGMs. 

  
(a) (b) 

Figure 11. Other DGM structures. (a) VAE; (b) IMLE-based model structure. 

In [92], solar, wind, and load scenarios were generated using implicit maximum like-
lihood estimation (IMLE). IMLE-based models distinguish themselves from other DGMs 
by incorporating a simple minimization-based training procedure. IMLEs do not explic-
itly estimate the PDF of the data and are characterized by high training stability. While 
the loss function of IMLE-based models ensures that the generated samples resemble the 
historical samples, the training procedure is not based on minimizing the difference 

Figure 11. Other DGM structures. (a) VAE; (b) IMLE-based model structure.

In [92], solar, wind, and load scenarios were generated using implicit maximum
likelihood estimation (IMLE). IMLE-based models distinguish themselves from other
DGMs by incorporating a simple minimization-based training procedure. IMLEs do not
explicitly estimate the PDF of the data and are characterized by high training stability.
While the loss function of IMLE-based models ensures that the generated samples resemble
the historical samples, the training procedure is not based on minimizing the difference
between generated and historical samples. The general structure of an IMLE-based model
is depicted in Figure 11b. Convolutional layers were used in [92] to generate scenarios that
highly resembled historical scenarios. However, conditionality was not introduced in the
overall procedure.
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In [86], normalizing flows (NFs) were proposed for solar, wind, and load scenario
generation. NFs significantly differ from other DGMs, as they are basically a sequence of
transformations that transform a known distribution into a complex target distribution.
The proposed NF-based model generated promising scenarios, and its performance was
compared with the performances of simple GANs and VAEs. Each method exhibited
several advantages and limitations, which are discussed in Section 4.3.

4.3. Summary

Even though DGMs are still in a relatively early stage of development, their increasing
rate of utilization for SPS generation, combined with the extreme advancements in deep
learning, indicated the necessity of a literature review to summarize up-to-date findings
and provide possible future research directions. For long-term temporal horizons, it
has been proven that DGMs generate higher accuracy SPSs compared to copula-based
and parametric sampling-based SGMs [78]. Furthermore, in [80], DGMs outperformed
a copula-based SGM for a short-term temporal horizon. However, the copula used as a
benchmark was simple, and further comparisons are necessary to prove that DGMs are
more efficient than copulas for short-term temporal horizons. Nevertheless, for long-term
temporal horizons, in which copula-based methods lose their efficiency, DGMs seem to be
the optimal choice as long as the necessary computational resources are available.

The choice of the optimal DGM depends on several factors, such as the temporal
horizon, available computational resources, and target domain. GANs are the most popular
DGMs, as they provide the most diverse SPSs. The main disadvantages of GANs are their
training instability and mode collapse, which are overcome by the improvements described
in Section 4.1.2. VAEs are efficient choices for SPS generation, with simple implementation
and training procedures. However, VAEs can easily result in over-simplistic scenarios due
to the assumptions made regarding the latent space. Improved GANs were compared to
VAEs in [80] and generated higher-quality SPSs for short-term temporal horizons. IMLE-
based and NF-based methods have also shown promising results. Once NFs are built,
they are easier to fine-tune and generate scenarios that highly differ from those generated
by GANs and VAEs. In [92], the proposed IMLE-based method outperformed a GAN
and a VAE in generating SPSs. Similarly, in [86], the proposed NF-based method showed
superior performance compared to the GAN and VAE used as benchmarks. However, only
simple versions of GANs and VAEs were used in both studies. It is evident that more
comprehensive comparisons are needed to draw safe conclusions. Furthermore, non-GAN
DGMs lack systematic research compared to GANs.

Regarding GANs, some general conclusions can be drawn: GANs with convolutional
layers are able to generate high-quality SPSs that capture spatiotemporal and other cross-
variable correlations. To minimize the possibility of training instabilities and mode collapse,
it is suggested to integrate GANs with techniques such as variational inference and GP, as
the additional computational cost is insignificant. Furthermore, it is highly beneficial to
control the scenario generation process by using latent space transparency techniques. If
the necessary amount of data is not available, or the computational complexity ought to be
limited, CGANs could be used as alternatives to partially control the scenarios with data
labeling. Improvements, such as StyleGANs and ADA, further increase the quality of the
generated scenarios while simultaneously adding to the overall computational complexity.

5. Discussion and Future Research

Scenario generation has become increasingly attractive in recent years due to its ap-
plicability to a wide range of power system decision-making problems through stochastic
optimization. At the same time, the share of SPG in the total energy mix has significantly
increased and is expected to grow further due to the rapid development of PV technologies,
cost reductions, and the transition towards more flexible, distribution-level power genera-
tion. SPS generation has been implemented in many studies in various forms during the
last decade; however, it is safe to say that scenario analysis in the context of power systems
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is still at an early stage. It is essential to address certain aspects of SPS generation in future
research efforts, to further adapt to solar power characteristics and improve existing models
in terms of accuracy, versatility, and computational complexity.

5.1. Hybrid Models and Other Deep Learning Techniques

Deep learning has been excessively used recently for SPS generation, especially in the
form of DGMs. Thus, it is essential to systematically assess different network structures, as
well as compare and standardize suitable regularization terms. Furthermore, little focus
has been given to developing hybrid models comprising multiple deep learning methods,
data pre-processing techniques, and optimization algorithms. As discussed in Section 4,
each individual method comes with certain advantages and limitations. Hybrid models
combine several different methods (components) that complement each other in a way that
the limitations of each component are mitigated as much as possible. Furthermore, other
deep learning techniques, such as deep reinforcement learning, should be incorporated in
SPS generation models and tested against the existing state-of-the-art.

5.2. Computational Complexity

DGMs, and especially GANs, have been proven effective for SPS generation owing
to their various advantages, listed in Section 4. However, several DGM-related issues
need to be addressed, such as computational complexity and parameter configuration.
DGMs incorporate complex deep-learning models that require certain computational
resources and excessive training durations. Furthermore, parameter fine-tuning becomes
challenging as the number of parameters increases significantly in complex multi-layered
models and high-dimensionality optimization problems. Advanced, fully adaptive models,
specifically developed for the corresponding target domain, could address these issues, as
their parameters are dynamically determined during training according to the state of the
optimization procedure.

5.3. Global Searching

All models reviewed in Section 4 are optimized by traditional back-propagation
algorithms, which are prone to local optimum entrapment. More complex optimization
algorithms, e.g., metaheuristics and hill-climbing algorithms, could be coupled with DGMs
to enhance global searching or even decrease the overall training time.

5.4. Copula-Based Solar Power Scenario Forecasting

While the focus on scenario generation methods has shifted towards DGMs, it is
essential to further develop existing copula-based forecasting approaches. Copulas are
particularly efficient for short-term scenario forecasting as long as quality probabilistic
forecasts can be obtained. However, unlike wind power, where multiple copula types have
been investigated, there is a lack of systematic evaluation of copula types for the description
of SPG.

5.5. Complex Physical PV Models

Research efforts should also be directed towards further adapting scenario forecasting
to the specific characteristics of SPG. Complex physical PV models, such as the one used
in [102], could be incorporated into hybrid methodologies, as they have proven to better
capture solar power characteristics and obtain more realistic distributions for sampling.
These models will enable deterministic scenario generation and, as a result, facilitate other
aspects of SPG, such as control of PV power output via different maximum power point
tracking techniques [103]. Thus, deterministic scenario generation will further increase the
compatibility of SPG with power system target domains.



Energies 2023, 16, 5600 24 of 29

5.6. Weather Classifications

More focus should be given to weather classifications, which can significantly improve
the quality of the generated scenarios, as discussed in Section 3. For example, finer weather
classes could be derived from different cloud types, defined by cloud formation and move-
ment. Days with dynamic cloud conditions are the most challenging in terms of forecasting
uncertainty; thus, it is essential to better exploit existing meteorological classifications
used in other scientific fields to reduce the stochasticity of SPG. Airflows also significantly
affect PV power, as they unevenly distribute the temperature on the surface of the PV
module [98,99]. Furthermore, climatic phenomena such as El Niño and La Niña, monsoons,
and variations of the warm Gulf Stream, are usually neglected in weather classifications for
SPS generation. Such phenomena can significantly affect the prevailing weather conditions
of a region; thus, taking them into consideration would improve the quality of the derived
weather classes.

5.7. Applicability to Power System Decision-Making Problems

Increasing the applicability of SPSs to power system decision-making problems is also
important. Forecasting horizons are constantly decreasing as power systems are becom-
ing more flexible to allow higher penetrations of variable RES. Furthermore, forecasting
uncertainty is considered in more optimization stages, even with intra-hour lead times.
Thus, it is essential to develop simple and effective solar power SGMs to increase their
implementation in short-term forecasting horizons, such as intra-day or even intra-hour
forecasting. Ultra-short-term forecasting is becoming increasingly relevant in power sys-
tems for energy loss minimization via real-time control of grid stability, load demand,
and storage management [104,105]. Furthermore, exploiting sky images for SPF in such
small forecasting horizons is essential, as sky images capture the dynamic real-time motion
of clouds [104]. Sky images are excessively used in ultra-short-term deterministic SPF
and should also be introduced to scenario forecasting to reduce forecasting horizons and
enhance weather classifications.

6. Conclusions

This paper presents an overview of the current state-of-the-art methods used for SPS
generation, compares different SGMs on several key aspects, and introduces taxonomies
based on weather classifications and temporal horizons. It compares the current state of
solar power scenario generation to that of wind power and highlights differences between
the stochasticity of solar and wind power while also investigating existing gaps and
limitations. Furthermore, it comprehensively reviews DGMs proposed for SPS generation
and provides several possible research directions to enhance the efficiency and applicability
of scenarios.

The main insights are summarized again now. The choice of the optimal SGM for
solar power depends on several aspects, such as the temporal horizon, computational
complexity restrictions, data availability, and flexibility issues. Copula-based SGMs are
suited for short-term temporal horizons, where they seem to be the optimal choice as long
as realistic copulas can be effectively obtained. Parametric sampling-based methods are
the simplest and can be sufficiently accurate if good distributions are known upfront, and
cross-variable correlations do not necessarily need to be captured. DGMs are the most
popular choice for long-term scenario generation while still showing promising results in
shorter temporal horizons. However, they can be computationally demanding and difficult
to handle, especially when improvements such as regularization terms and latent space
controllability are added to optimize the training procedure. Nevertheless, the development
of DGMs is still at an early stage, and significant advancements are expected to be made in
terms of learning techniques, global searching, adaptivity, and computational efficiency.

SPS generation based on weather classifications can significantly improve the accuracy
of the scenarios while reducing the variance of each weather class scenario set. However,
the most common sunny/cloudy classification is relatively coarse-grained and fails to
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uncover the full potential of weather classification analysis. It is essential to introduce
finer-grain weather classes, mainly based on sky conditions and different cloud types,
but also on other parameters closely correlated to SPG, such as temperature and wind
flow. Furthermore, more sophisticated data-driven classification techniques would result
in optimal weather classes and thus enable higher-level scenario generation.

The continuous advancements in solar power technology and integration will signifi-
cantly affect the overall power system uncertainty, increasing the necessity of uncertainty
modeling and stochastic optimization. The applicability of SPSs needs to be improved
with the introduction of advanced models, shorter temporal horizons, and data such as sky
images. Nevertheless, the current status and development rate of SPS generation indicates
that significant advancements will be made in the near future, capable of mitigating the
challenges derived from the increasing integration of uncertainty sources in electric power
systems.
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