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A B S T R A C T

Today, there are billions of connected IoT devices and their number continues to grow as they contribute
to the digitalization of infrastructures. However, the deployment process of these smart wireless devices
when delivered to customer premises is slow and error prone as each of them needs to be provisioned with
authentication credentials to access the corporate network. In this paper, we propose HANNA, a human-
friendly provisioning and configuration framework for smart devices, that extends the zero-touch paradigm
to large IoT deployments by introducing voice assisted configuration in combination with large scale ad-hoc
communications to overcome the initial installation effort of IoT deployments. The most prominent role in
HANNA is played by the assisting device, which includes a voice assistant capable of correctly understanding
a minimum number of keywords required for initial provisioning and configuration of the devices. The device’s
role is to interact with the user and ensure that all provisioning details are received. These are then converted
into appropriate machine instructions for further use by the mass provisioning mechanism. We provide an
example prototype implementation of HANNA and evaluate the performance of the assisting device in the
human-to-machine communication phase and the performance of the selected communication technique in the
machine-to-machine communication phase. Our results show the potential of existing speech-to-text engines for
this application area and also reveal shortcomings with respect to the robustness of the engines in office-like
working environments as well as with respect to user’s gender and language proficiency level. Additionally
we show that the proposed machine-to-machine provisioning approach is always faster compared to manual
provisioning for cases with more than ten devices.
. Introduction

The Internet of Things (IoT) has been a recurrent theme since the
erm was coined in the late 1990s. The concept has evolved from
arly work on Radio Frequency Identifier (RFID) technology which
epresented a hardware-related breakthrough that aimed to connect
veryday objects to a network. This constituted the first wave of the
oT, which then developed beyond the initial hardware world inno-
ation, and focused increasingly on developing new types of sensors
nd sensing materials, as well as on developing new communication
echnologies and protocols. As a result, a wide variety of new com-
unication technologies emerged in the early years of the 21st century
hich were able to support the ubiquitous deployment of a wide variety
f sensors. We refer to this as the second wave of IoT. In the last decade,
he focus of IoT has shifted to data collection, processing, analytics and
ecurity aspects and this period is termed the third wave of IoT which
e are witnessing today.

∗ Corresponding author.
E-mail address: carolina.fortuna@ijs.si (C. Fortuna).

The large number of IoT devices being deployed on a daily ba-
sis makes device management a prominent issue for IoT platform
providers (Davies and Fortuna, 2020). For example, according to a
recent whitepaper from a device manufacturer, setting up ten thousand
smart light bulbs in a factory can take nearly 2 years before they
can actually commence data streaming (Wilhelm et al., 2017) with
the provisioning process taking up to 45 min to complete per device
when using traditional industry practices that currently provision each
device manually (John Wilhelm, 2017). According to another manufac-
turer, the deployment represents 30% of the costs of a smart metering
project (Pauzet, 2010). The main reason for such costs and overhead
was that the traditional way of provisioning smart devices, i.e. con-
necting them to an access point, was a manually intense process where
a universal serial bus (USB) or joint test action group (JTAG) cable
was needed to connect the smart device to a computer. This physical
connection was then followed by manual configuration using wireless
credentials. Then, once connected to the local network, not necessarily
https://doi.org/10.1016/j.engappai.2023.106745
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Fig. 1. Actors in the process of digitization of a factory infrastructure.

to the Internet, the devices are flashed and/or a configuration file
with network credentials is transferred to them over a secure shell
(SSH) connection. Finally, the access to the local network and/or to
the Internet is tested (Boskov et al., 2020).

IoT platform providers increasingly wish to migrate from cur-
rent device management processes, which are labour-intensive, error-
prone (Berggren, 2018) and time-consuming activities (John Wilhelm,
2017), requiring individual provisioning of each device for a new
solution or a new customer; and move towards automated provisioning
and remote management. With the current state of the art, the physical
connection is replaced by a wireless connection that the devices allow
upon boot-up and the configuration files are automatically fetched.
This process is referred to as zero-touch provisioning (ZTP) and initial
studies have shown an up to 4 times faster provisioning time compared
to the traditional ways (Boskov et al., 2020).

However, further automation could be achieved by removing the
need to provision smart devices one by one. Assume a scenario such
as depicted in Fig. 1 where technicians deploy and provision smart
devices on the factory floor using an assisting device that intermediates
the process of connecting the devices and machines to the inter/in-
tranet through a gateway device. The assisting device can be seen as
a domain-specific cobot (Weiss et al., 2021) that collaborates with hu-
mans forming a team. Instead of interacting with the assisting devices
via a touch screen and a graphical user interface, which is a machine-
centric interaction imposed on humans (Zhu et al., 2023), a more
human-centric approach based on voice-based interaction can be used.
Once deployed and configured, a regular physical and software mainte-
nance regime commences through the network, data centre and DevOps
thus smart devices get integrated into the industrial work process
enabling more efficient and sustainable production processes (Sisinni
et al., 2018).

It is well-known that provisioning and configuration of numerous
devices, for example on a factory floor, can be a cumbersome and
tedious process due to hazardous equipment/robots/cables and hard-
to-reach areas (factory ceiling) (Boskov et al., 2020). Therefore, one
critical need is to provision and configure these numerous and spatially
separated devices in a quick and efficient manner without physical
human interaction. This is a critical issue to be addressed because
concurrent zero-touch mass provisioning and configuration reduces the
need for technical expertise and helps manage and allocate human
resources better due to significantly reduced deployment time. Since
it is an automated and sequenced process that is carefully scripted
with fail-safe procedures, human-induced configuration errors are pre-
vented. Therefore, we aim at devising a zero-touch provisioning and

configuration platform leveraging a voice assistant-equipped device,

2

namely assisting device, with which a technician interacts to identify
the relevant command for the provisioning and configuration tasks.
Then, having identified the intended command, the assisting device ex-
pands the provisioning and configuration process towards other devices
for mass-provisioning and -configuration through a communication
protocol, namely 6TiSCH.

Broadly, we propose a new framework for human-friendly mass
provisioning and configuration of smart devices which extends the
state-of-the-art zero-touch provisioning (Boskov et al., 2020) paradigm
and takes a new, fresh look at human-friendly large-scale provisioning
and configuration through a human-centric voice-based interaction. We
refer to this framework throughout the paper as Human-Friendly Pro-
visioning and Configuration of Smart Devices (HANNA). To reiterate,
the most prominent role in HANNA is taken by the assisting device that
includes a voice assistant able to correctly understand a minimal set
of keywords required for the initial provisioning and configuration of
the devices. The device’s role is to interact with the user and ensure
that all provisioning details are received. These are then converted into
appropriate machine instructions for further use by the mass provision-
ing mechanism. Through a reference implementation of HANNA, we
evaluate the performance of voice configuration technologies and the
scalability of the mass provisioning proof-of-concept.

The contributions of this paper are:

• HANNA, a human-friendly scalable mass-provisioning and
-configuration framework that can speed up the deployment times
and lower the skill level needed from deployment technicians.
Our simulations show that for 100-node deployment, the pro-
posed method can save up to 258 min on average in configuration
time.

• A small domain-specific vocabulary that can be used in conversa-
tions according to a sequence diagram describing the configura-
tion and provisioning process.

• We provide an example prototype implementation of HANNA and
evaluate the performance of the assisting device in the human-
to-machine communication phase and the performance of the se-
lected communication technique within the machine-to-machine
communication phase.

• We uncover the potential of existing speech-to-text engines for
this application area and also reveal the shortcomings with re-
spect to the robustness of the engines in office-like working envi-
ronments as well as with respect to the user’s gender and English
language proficiency level. Additionally, we show that the pro-
posed mass-provisioning approach always outperforms manual
provisioning for cases with more than ten devices.

Such automation using an assisting device as depicted in Fig. 1 is
becoming feasible especially due to the recent breakthroughs in AI,
i.e. image and speech recognition, that facilitate a different level of
human-to-machine interaction, best illustrated by the plethora of avail-
able voice assistants (Kim et al., 2019). This interaction will further
continue to become ever more seamless (possibly also using gesture
or brain signals) as the devices will get ever smaller yet able to sup-
port increasing processing complexity. Increased automation for smart
devices involves recent advances in the areas of cloud computing and
AI, in addition to expertise in industrial electronics, embedded devices,
wireless communications and targeted application domain (Fortuna
et al., 2022), thus the findings of this paper are relevant to a broad
community.

The rest of the paper is structured as follows. Section 2 discusses
the related work while Section 3 elaborates on the proposed HANNA
framework. Section 4 presents the evaluation of the framework and
Section 5 concludes the paper.

2. Related work

We group the related work into three subsections, the first con-
cerned with voice assistants, the second with provisioning and initial
configuration and the third with mass provisioning.
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2.1. Voice assistants

Recently, voice recognition advanced to a level where speakers
can be identified (Hansen and Hasan, 2015), their speech features
can be utilized for biometric authentication and secured with privacy-
preserving speech recognition techniques (Inthavisas and Lopresti,
2012), and voice assistants, such as Siri and Google are used daily. Ad-
ditionally, specific vocabularies to be used for automatic network con-
figuration purposes have also been investigated (Fortuna and Mohorcic,
2009). There are two distinct approaches to automatic speech recogni-
tion (ASR), language dependent and language independent (Watanabe
et al., 2017). The first group is based on linguistic information and
pronunciation dictionaries and the second is a language-independent
design based on neural network architecture. The most influential
online as well as offline ASR tools and APIs are reviewed and evaluated
in Kim et al. (2019), Georgila et al. (2020) and Alibegović et al.
(2020) revealing Google Speech-to-Text (STT) having a very good
performance.

Interaction with computers based on voice is envisioned to take over
increasingly demanding tasks such as computer programming (Cabal-
lar, 2021). There are many capable cloud-based ASR solutions such
as the ones described in Kim et al. (2019). Besides online solutions,
there are also many offline ones suitable for embedding into devices.
Various online and offline solutions were previously evaluated in terms
of the word error rate (WER) (Georgila et al., 2020). The results show
that online ASR generally performed better than offline ones. However,
for the special purpose of initial provisioning and configuration, an
ASR solution trained specifically on a limited and more domain-specific
vocabulary can perform reliably.

More recently, AI-based ASR engines are being applied in various
areas such as for developing helper agents for IoT (Longo et al.,
2021), enabling voice-driven configuration of software-defined net-
works (Chaudhari et al., 2019) and investigating the role of voice
assistants with respect to productivity (Marikyan et al., 2022). More
recently, the potential contribution of AI to increase efficiency and cut
the cost of the initial deployment of smart devices has been recognized
in Fortuna et al. (2022). A few studies related to the adoption of
human-centric voice-based interactions have been recently proposed.
The authors of Zhu et al. (2023) proposed a denoising technique in view
of voice control for Industry 5.0 while in Chen et al. (2023) they study
aspects of enabling voice-based interaction with consumer electronics.
In Yan et al. (2021) they study the feasibility of injecting inaudible
voice commands into voice assistants.

2.2. Provisioning and initial configuration

With the current industry practices, the technician uses a special
or general purpose computer as assisting device and connects it via a
universal serial bus (USB) or joint test action group (JTAG) cable to a
computer (Boskov et al., 2020). This physical connection is then fol-
lowed by the manual configuration of required wireless authentication
credentials. Then, once connected to the local network, not necessarily
to the Internet, the devices are flashed and/or a configuration file is
transferred to them over a secure shell (SSH) connection. Finally, access
to the local network and/or to the Internet is tested.

State-of-the-art methods also referred to as zero-touch provisioning
(ZTP) are eliminating the physical configuration and part of the pa-
rameter configuration from the process. This is done by developing
standards in which the smart devices boot up in a listening mode. A
hand-held device provides an input option in the form of a touch screen
or keyboard and serves as an assisting device that connects wirelessly
o the listeners and provisions them, often using automation scripts
ith minimal required user input (Boskov et al., 2020). For WiFi-
ased networks, the software-enabled access point (soft-AP) has been
roposed, where a device to be provisioned can be booted temporarily

n soft-AP mode as a WiFi hotspot (Lee et al., 2019). Then, a user

3

attempts to connect to this soft-AP hotspot using a mobile device
either with the help of the underlying operating system or by directing
the technician to manually connect. Then, the technician enters the
required credentials (SSID, passkey) of his/her private gateway into a
web form served from the temporary soft-AP via a browser or mobile
application and this way allows access to the private WiFi network and
the Internet. However, this provisioning method is time-consuming and
can introduce human-made errors due to the manual input of creden-
tials, especially when multiple gateways for large-scale deployment are
considered (Lee et al., 2019).

Other provisioning methods proposed in the literature are based on
near field communication (NFC), quick response (QR) code, ultrasound
or are manufacturer specific (Boskov et al., 2020). However, both
NFC- and QR-based provisioning methods are short-range solutions and
cannot be leveraged for provisioning of large-scale deployment, since
the interaction with each device is time-consuming. More recently, a
proposal to improve the provisioning procedure in a mesh network
has been put forth. Their implementation allows Bluetooth non-mesh
devices to be provisioned and to take part in a Bluetooth mesh network,
making it possible to continue using current devices (Hortelano et al.,
2021). Other recent provisioning works are concerned with manag-
ing the computational loads automatically (Grasso et al., 2022) and
enabling multi-tenant access networks (Bonati et al., 2023).

Only Martini et al. (2022) and Ridhawi et al. (2022) are concerned
with increased automation of the provisioning and configuration pro-
cess. The first one proposed an intent-based zero-touch service chaining
layer that provides the programmable provision of service chain paths
in edge cloud networks; while the second highlights and proposes
potential solutions towards zero-touch networks for tactile internet. To
date, a study on the potential improvements from increasing automa-
tion enabled by AI is yet to be performed, therefore the motivation for
this work.

2.3. Mass configuration

The zero-touch configuration has its origin in 1997 and was in-
troduced by Stuart Cheshire under the term ‘‘Zeroconf’’ in a post of
Net-Thinkers emailing list (Cheshire, 2005-2006). Ultimately, this term
was renamed ‘‘Bonjour’’ by Apple in 2002. The main idea of Zeroconf
was to automatically provision a network by enabling the devices
to obtain a dynamic host configuration protocol (DHCP) address and
making a request to a remote server for maintaining the latest software
configuration data (Cheshire and Aboba, 2005). However, one issue
with Zeroconf was the assumption that the devices are automatically
assigned an IP address. Later, the authors of Anon (0000) circumvented
this assumption by providing a solution with link-local addressing,
which is perhaps one of the most significant steps towards a true zero-
touch provisioning method. A link-local address is a network address
that is assigned solely for communications within the network segment
to which the host is connected. These addresses are often only utilized
in circumstances, when no external address configuration exists, such
as DHCP.

Nonetheless, a new standard, namely WiFi Aware, also known as
neighbour awareness networking (NAN) is being standardized in the
WiFi Alliance enabling the certified devices to continuously discover
nearby services, applications and devices while operating in the back-
ground with less energy consumption (Camps-Mur et al., 2015). The
concept of Wi-Fi Aware enables real-time, energy-efficient discovery,
ranging and connectivity for peer-to-peer connections and multicast
applications (Camps-Mur et al., 2015). There is only a paucity of con-
tributions in the literature that address zero-touch provisioning using
Wi-Fi Aware. For example, unintended connection request arriving
from neighbour devices is one of the inherent characteristics of Wi-
Fi Aware and is addressed in Cheshire (2005-2006). NAN-based IoT
solutions including mass-provisioning of IoT devices are still in their

infancy despite the fact that they can be greatly beneficial for the
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Fig. 2. The four functional components of HANNA: configuration vocabulary, voice assistant, configuration parser and mass provisioning.
zero-touch provisioning of massive IoT devices owing to their rapid
connectivity (quick discovery and ranging procedures) and ease-of-use
characteristics.

Perhaps 6TiSCH (Kalita and Khatua, 2022) and its various imple-
mentations are the most used approach for industrial IoT. Whisper (Mu-
nicio et al., 2018), one such implementation, has already exploited the
idea of adding an external node to automatically configure the network
in terms of routing and scheduling. Scalability, especially in industrial
environments is still being improved (Orozco-Santos et al., 2022) as
their wireless nature and autonomous operation are challenging. While
most of the current 6TiSCH security implementation relies on the secure
joining mechanisms defined in Vučinić et al. (2019), also such aspects
are being improved in terms of authentication in view of industrial
applications (Haj-Hassan et al., 2022).

3. HANNA framework: Design and realization

In the following, we propose a human-friendly mass provisioning
and configuration framework HANNA which consists of four main
blocks, namely the configuration vocabulary, the voice controller, the
configuration parser and the mass provisioning as depicted in Fig. 2.
The first three blocks are embedded in the assisting device and ensure
human-friendly machine communication while the last one involves
both assisting and smart devices ensuring scalable machine-to-machine
communication.

3.1. Configuration vocabulary

The configuration vocabulary requires the definition of domain-
specific vocabulary which is significantly more technical than general-
purpose vocabulary (Fortuna and Mohorcic, 2009). The vocabulary
needs to be defined in such a way as to cover all the settings needed for
efficient configuration and provisioning. However, the emphasis needs
to be on human friendliness hence making it less intimidating in terms
of technical knowledge, so that non-expert users with minimal or no
training are able to use it. The vocabulary has to be consistent between
the user and the assisting device as also visually represented in Fig. 2
since the device expects certain keywords that the user needs to specify
in order to be able to trigger the provisioning.

A vocabulary for automatic speech recognition can be classified into
three groups depending on its size i.e. the number of words it uses. The
vocabulary is considered small if it uses less than 100 words, medium
if it uses between 100 and 1000 words and large if it uses more than
1000 words (Sneha et al., 2018).

As no domain-specific vocabulary is available, we propose a small
vocabulary since it uses mostly use-case-specific words, therefore it
can provide very high detection accuracy (Qiao et al., 2010). First,
in Table 1 we propose a list of configuration keywords that cover all
aspects of IoT provisioning and configuration. It can be seen from the
last three columns of the table that the keywords are grouped in three
4

Table 1
Configuration settings keywords.

Power Network Credentials

ON ✓ ✗ ✗

OFF ✓ ✗ ✗

standby ✓ ✗ ✗

Reset ✓ ✓ ✗

Connect ✗ ✓ ✗

Scan ✗ ✓ ✗

Address ✗ ✓ ✗

Distribute ✗ ✗ ✓

depending on their scope. According to the first column of the table,
the first four keywords address operations regarding the powering of
devices, then according to the second column of the table the fourth
to seventh keywords address network-related operations, while the last
keyword is dedicated to credentials-related operations as per the last
column of the table. These keywords should be recognized with high
fidelity by the voice controller as they are essential in triggering the
automated scripts for mass configuration.

The first is powering the device which includes settings ‘‘ON’’,
‘‘OFF’’, ‘‘standby’’ and the response to the user when the setting
changes. The second important setting is related to the network which
can also be restarted in case of errors. However, the most important is
the ‘‘connect’’ which enables the user to connect to the internet based
on voice command which returns ‘‘success’’ or ‘‘fail’’ to the user. The
last setting is reserved for mass provisioning and is concerned with
the distribution of the network credentials once the assisting device
is connected. It also returns ‘‘success’’ or ‘‘fail’’ depending on how the
provisioning is finished.

Based on the configuration keywords, we propose the following
natural language dialogues between the technician and the assisting
device for each of the three scopes identified in Table 1: power, network
and credentials. In the following command/response sequence boxes
(natural language dialogues), C denotes the commands expected from
the technician while R abbreviates the responses of the assisting device
as a follow-up of the execution of the command instructions.

First, we provide vocabulary related to power operations:

C1: HANNA power ON/OFF / reset/standby.
R11: Success: The power setting ON/OFF / reset/standby was

successful.
R12: Fail: The power configuration ON/OFF / reset/standby was

not successful. Proceed with a manual check.
C2: HANNA reset the power of device with address FF.
R21: Success: The reset was successful.
R22: Fail: Reset was not successful. Proceed with a manual check.
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Next, we provide an example list of vocabulary related to networks:

C3: HANNA scan/connect / reset the network.
R31: Scan: The following networks are available. Chose the one

to connect.
R32: Success: Connection to the network was successful
R33: Fail: Connection to the network was not successful. A pos-

sible reason is that the authentication credentials did not
match. Try choosing a different network or resetting the
network controller.

C4: HANNA reset the network of device with address FF.
R41: Success: The reset was successful.
R42: Fail: Reset was not successful. Proceed with a manual check.

Finally, we provide an example list of vocabulary related to connec-
ion credentials:

C5: HANNA distribute the connection credentials between
devices.

R51: Success: The connection credentials were distributed suc-
cessfully.

R52: Fail: The distribution of connection credentials was not suc-
cessful for devices with the following addresses FF, EE. Try
resetting the network and power on these devices or proceed
with a manual check.

3.2. Voice assistant

The voice assistant is a fundamental building block of HANNA and
it is incorporated in the assisting device as depicted in Fig. 2. Its
purpose is to translate the voice commands of the user to computer-
generated text which can be then parsed by the configuration parser to
identify the requested command based on the configuration vocabulary.
Additionally, it needs to be adapted to noisy industrial environments
where there may be background noise from both humans and machines
during the smart device deployment process.

In principle, a voice controller uses ASR techniques that trans-
late the analogue acoustic signal into computer-generated text. The
typical ASR architecture consists of four main building blocks (Saon
and Chien, 2012; Kumar and Singh, 2019): (1) feature extraction, (2)
acoustic model, (3) language model and (4) decoder. Feature extraction
is responsible for acoustic signal processing and the translation into
feature vectors. The acoustic model forms a statistical representation
of sounds that correspond to words. The language model is a list of
words including their probabilities of appearing in the detected order
while the decoder is responsible for matching the detected sounds with
the words from the language model.

For the realization of the voice controller we selected Google
Speech-to-Text1 as the best performing ASR according to the evalu-
ations in Kim et al. (2019) with a 4.1% WER. Additionally, we also
evaluate CMU Sphinx (Lamere et al., 2003) (Open source solution,
offline), Wav2Vec (Baevski et al., 2020) (Open source solution based on
transformers, offline) and TextFromToSpeech2 (Commercial solution,
online) as alternative engines able to transcript audio and then pass
the transcript to the configuration keyword parser.

1 https://cloud.google.com/speech-to-text/
2 https://www.textfromtospeech.com/
5

3.3. Configuration parser

Assuming that manual configuration scripts and tools already exist,
the only missing link is the configuration mapping from the natural lan-
guage commands interpreted from the user’s voice to the system tools
and scripts. We envision using static configuration keyword parsers
form the transcript based on ASR as well as recently introduced more
advanced solutions based on AI capable of learning based on the
context and thus significantly reducing WER by adding vectorized
contextual learning capabilities to ASR (Pundak et al., 2018). The
text-to-script mapping, which can take the shape of a declarative lan-
guage, gets automatically parsed by the infrastructure automation soft-
ware (i.e. embedded software) and triggers mass provisioning and/or
configuration as depicted in Fig. 2.

The configuration parser was realized as a mapping between the
keywords identified in Table 1 and Unix-compatible tools and scripts.
The specific parameters for these commands are provided by the tech-
nician during the conversation with the voice assistant for instance
exemplified in C3 above. To better emphasize the described approach
we provide an example which illustrates the specific system command
executed under a Unix-compatible OS when a network reset command
C3 is transcribed from the users voice:

$ / e tc / i n i t . d/networking r e s t a r t

3.4. Mass provisioning with 6TiSCH protocol

The mass provisioning block is concerned with distributing provi-
sioning and configuration-related information from the assisting device
to all the smart devices on site thus realizing the scalable machine-
to-machine functionality of HANNA. A compliant realization of the
framework requires that the assisting device as well as all smart devices
utilize the same communication protocol that ensures mass provision-
ing. Therefore, the most suitable protocols to realize mass provisioning
are the ones in the category of ad-hoc, multi-hop communication
protocols (Broch et al., 1998). It is important that the authentication
parameters reach all smart devices, even the ones not having a direct
communication link with the assisting device.

For the mass provisioning mechanism used by the assisting device
nd smart devices, we choose 6TiSCH as one of the most adopted
ndustrial-grade IoT technologies currently available. We choose
TiSCH since the Time Slotted Channel Hopping (TSCH) mode is
esigned to provide reliable, low-latency communication in a multi-
op and scalable Industrial Internet of Things (IIoT). The TSCH link
ayer protocol allows nodes to change their physical channel after
ach transmission to eliminate interference and degradation due to
ultipath fading. It builds upon the IEEE 802.15.4 PHY layer, normally
sing the 2.4 GHz license-free band.3 Within 6TiSCH, some approaches

like Whisper (Municio et al., 2018) have already exploited the idea
of adding an external node to automatically configure the network
in terms of routing and scheduling. For security provisioning, most
of the current 6TiSCH implementation relies on the secure joining
mechanisms defined in Vučinić et al. (2019).

To give an overview of the functional structure of Fig. 2, once the
user has spoken a particular command from the predefined vocabulary,
it is received by the voice assistant and translated into computer-
generated text that can then be parsed by the configuration parser to
identify the requested command based on the configuration vocabulary.
Once the requested command is received, the associated configuration
file is transmitted from the assisting device to other devices to be
configured in a multi-hop manner owing to the 6TiSCH protocol.

https://cloud.google.com/speech-to-text/
https://www.textfromtospeech.com/
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Fig. 3. HANNA reference implementation sequence diagram using the proposed vocabulary, the selected commercially available voice controller, custom parser and 6TiSCH as the
selected mass-provisioning protocol.
3.5. HANNA communication diagram and fail-safe procedures

The communication diagram used in HANNA is presented in Fig. 3
in the form of a sequence diagram explaining the interaction between
the actors and selected techniques for the realization of the proposed
framework.

The process in Fig. 3 starts by initiating a voice command to power
on the assisting device C1 which responds with ‘‘Success’’ R11 or
‘Fail’’ R12 as proposed in the vocabulary in Section 3.1. Next, if
here is no network connectivity in the assisting device, the user can
ssue a command C3 to scan available networks which results in the
ist of available networks provided within R31. The user then selects
he network connection which instructs the device to connect to the
ateway over WiFi or Bluetooth depending on the underlying system.
hen the device successfully connects to the gateway it responds to

he user with ‘‘Connected’’ R32. Alternatively, the device can reply
ith connection failed R33 in case something went wrong during the

onnection and advise the user to retry. The next command C5 instructs

3 The 868/915 MHz bands are also available at different bit rates.
6

the assisting device to distribute the connection credentials to smart
devices based on a multi-hop wireless mesh network for IoT devices
6TiSCH. When the smart devices receive the connection credential from
assisting device, they can connect to the main network and are now
fully operational. After the smart devices were successfully connected
to the gateway the assisting device responds with ‘‘Credentials ready’’
R51 to the user. Alternatively, in the case that the distribution of
credentials fails, the voice assistant with the response R52 suggests
resetting or manually checking some devices. Therefore, the next step,
restarting smart devices with commands C2 or C4 is optional. The last
step is to put the assisting device to standby with the command C1 until
there are more configuration settings to perform.

Additionally, only when a spoken command is matched with the
predefined vocabulary, it is transmitted to other devices to be config-
ured. Otherwise, the user has to speak the command again until it is
matched with one of the vocabularies. Due to this fail-safe procedure,
it is quite unlikely that a spoken command from the known command
list, such as reset, may be understood as another predefined command,
such as connect. Whichever device receives a command, it initiates the

provisioning and then the configuration.
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Table 2
Voice recordings summary.

Parameter Value

Use Cases (UC) 5 background noise types
(baseline, factory, office, talking, traffic)

Users 5 female, 5 male
Language English (all accents)
Recordings 50
Encoding WAV
Sampling rate [Hz] 48000

A device can crash or encounter a failure/conflict/error in the logic
bove 6TiSCH or within 6TiSCH itself. Assuming the issue (crash/con-
lict/error) happens in the logic above 6TiSCH (e.g., when reading the
onf and trying to connect to the WiFi), the solution is to re-send a
rovisioning message (with the connection credentials) in unicast (in
multi-hop manner) to those nodes that failed as per C5 in Fig. 2. It

s known which nodes failed because they issue a Fail command over
TiSCH, or they do not issue a command at all (are silent). If a device
rashes or is unresponsive, then it auto-reboots after a certain amount
f duration and may require a manual check.

If the failure/conflict/error happens in 6TiSCH, the protocol-specific
rocedures are triggered. For instance, a bootloader triggers a process
hat restarts automatically the 6TiSCH radio upon failure and re-joins
he network autonomously (it will receive the credentials in the joining
hase from the gateway). Also, a keepalive message that is sent every
min to every 6TiSCH node can be configured. If any of the nodes

o not respond on 3rd attempt, the user is notified that the node is
alfunctioning and needs to be manually checked.

. Experimental evaluation

In order to evaluate HANNA, we focus on two aspects. Firstly, we
ssess the performance of the assisting device in interacting with the
ser and generating the configurations needed for triggering the mass
rovisioning. For this, we defined five use cases (UC) in which the user
i.e. technician) from Fig. 1 may be male or female and may talk to
he device under various noise conditions. The first UC represents the
aseline and assumes a quiet room where the user interacts with the
ssisting device.

For UCs 2–5, four types of representative noisy environments were
elected. In the second UC, we assume the devices are provisioned
nd configured around a metalworking factory background noise and
re intended to evaluate usage in industrial environments. In the third
C, we consider that the devices are being provisioned and configured

n a large office environment with background noise containing quiet
ackground talk, phones ringing, people walking etc. In the fourth UC,
e assume talking in the background acquired from an informational
ideo, which tests the engines’ ability to isolate the correct speaker.
inally, for the fifth UC, we assume a busy street traffic that represents
mart city-like deployment scenarios with sounds of motorized vehicles
nd pedestrians.

Recordings of all the conversations proposed in Section 3.1 accord-
ng to the sequences proposed in Section 3.5 were recorded for UC1-5
ith different background noises for different speakers, five male and

ive female. The recordings were all recorded in English from subjects
hat are native speakers to subjects that have mild or stronger accents4

ith parameters as summarized in Table 2. The noise was injected as
random slice from a prerecorded audio file and overlaid over the

riginal audio with volumes normalized in such a way that SNR = 3 dB.
his was done 50 times for every combination of recording and noise,
o increase the reliability of the performance evaluation.

4 Recordings, noise and generation scripts, https://zenodo.org/record/
933500#.ZGAJYC8RqvU
7

Table 3
Detection performance for speech-to-text engines averaged over all users and all UCs.

Engine
Metric SR SP KD WER

Google 0.45/0.24 0.47/0.24 0.60/0.28 0.43/0.27
Sphinx 0.01/0.03 0.01/0.03 0.06/0.07 0.68/0.16
TFTS 0.28/0.26 0.33/0.30 0.49/0.37 0.25/0.19
Wav2Vec 0.17/0.16 0.21/0.19 0.47/0.24 0.42/0.21

The performance of the four speech-to-text engines selected in
Section 3.2 was evaluated on these recordings to assess their suitability
for powering the assisting device according to the following metrics.
The word error rate (WER) shows how many words were correctly
recognized in a sentence and was used to evaluate the correct iden-
tification of the words in the human-to-machine conversations listed in
Section 3.2. The keyword detection rate (KD) measures the recognition
performance as the ratio of correctly identified keywords presented in
Table 1. The sentence recognition rate (SR) measures how often full
sentences were correctly recognized. For a sentence to be considered
fully correct all keywords and parameters must be recognized. To
remove inconsistencies due to pronunciation, a parser was used for
eliminating common mistakes such as standby being interpreted as
stand by, power off as power of, address as a dress etc. The last metric,
sentence recognition rate after parser fixes (SP) determines how many
sentences are fully recognized after mistakes were fixed by the parser
described in Section 3.3. All metrics are provided as both mean and
standard deviation values calculated across the entire group relevant
to the given experiment in the form of ‘‘mean/STD’’.

Secondly, we evaluate the average provisioning time required by the
mass provisioning mechanism selected in Section 3.4 against the tra-
ditional manual provisioning and the state-of-the-art zero-touch tech-
nique proposed in Boskov et al. (2020).

4.1. Evaluation of the human-to-machine provisioning

A. Overall findings. Table 3 presents the performance of different
speech-to-text engines across all four metrics: SR, SP, KD and WER.
This data aggregates across all users and all UCs.

Google STT and TFTS exhibit the best KD and SP values, which are
the most critical metrics for evaluating the usability of such a provi-
sioning and configuration system. These metrics gauge the efficacy of
recognizing the necessary keywords and parameters for provisioning.
Google STT yielded a KD of 0.60 and an SP of 0.47, with standard
deviations of 0.28 and 0.24, respectively. TFTS presented a KD of
0.49 and an SP of 0.33, with standard deviations of 0.37 and 0.30,
respectively. The relatively high variance of results can be attributed
to synthetically added noise, introducing additional complexity to the
recognition problem.

Wav2Vec exhibited somewhat worse performance, with a KD of
0.47 and an SP of 0.21. The significant standard deviation again reflects
the influence of synthetically added noise on the system’s performance.

CMU Sphinx demonstrated a very low KD of 0.06 and an SP of 0.01.
To anticipate, these results suggest that CMU Sphinx may not be robust
to noise, affecting its ability to be deployed across a wide range of UCs.
This is also reflected in its high WER, which indicates the overall poor
performance and is confirmed by the following tables in this section.

Comparing the values for SR and SP highlights the parser’s impact
on the overall performance. The parser noticeably enhanced perfor-
mance in all cases, scoring an additional 2–5 percentage points, except
for CMU Sphinx, where it did not significantly improve the outcome.
This performance could potentially be further amplified by designing a
more effective parser.

https://zenodo.org/record/7933500#.ZGAJYC8RqvU
https://zenodo.org/record/7933500#.ZGAJYC8RqvU
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Table 4
Effect of working environment on speech-to-text engines performance.

Use case Baseline Factory Office Talking Traffic

Engine KD SP KD SP KD SP KD SP KD SP

Google 0.76/0.27 0.64/0.28 0.75/0.24 0.58/0.23 0.55/0.25 0.43/0.20 0.36/0.20 0.27/0.15 0.75/0.24 0.60/0.23
Sphinx 0.30/0.13 0.08/0.09 0.03/0.04 0.00/0.02 0.04/0.05 0.01/0.03 0.08/0.07 0.01/0.03 0.08/0.07 0.01/0.03
TFTS 0.85/0.12 0.55/0.21 0.56/0.38 0.42/0.31 0.46/0.38 0.31/0.30 0.56/0.31 0.34/0.25 0.36/0.38 0.25/0.30
Wav2Vec 0.75/0.14 0.49/0.18 0.49/0.25 0.22/0.17 0.50/0.23 0.23/0.18 0.31/0.18 0.08/0.12 0.59/0.21 0.30/0.20
t
e

Table 5
Effects of gender on speech to text engine performance.

Gender Male Female

Engine Baseline KD Noise KD Baseline KD Noise KD

Google 0.90/0.12 0.73/0.14 0.62/0.31 0.53/0.24
Sphinx 0.36/0.10 0.10/0.07 0.24/0.13 0.04/0.06
TFTS 0.88/0.05 0.54/0.38 0.82/0.16 0.35/0.31
Wav2Vec 0.81/0.06 0.60/0.10 0.69/0.17 0.39/0.24

B. Effect of background noise. Table 4 displays the performance of the
elected speech-to-text engines, each listed row-wise, in different work-
ng environments, presented column-wise. The environments include
he baseline, factory, office, talking, and traffic noise conditions. The
able provides the keyword detection (KD) and sentence recognition
ate after parser fixes (SP) metrics for each engine in each noise setting.

In the baseline setting, TFTS exhibits the best performance with a
D of 0.85 and an SP of 0.55. Both Google and Wav2Vec show similar
erformance, with Google having a KD of 0.76 and an SP of 0.64, and
av2Vec presenting a KD of 0.75 and an SP of 0.49. CMU Sphinx, on

he other hand, demonstrates a relatively low performance with a KD
f 0.30 and an SP of 0.08.

When exposed to factory noise, Google maintains its higher SP with
KD of 0.75 and an SP of 0.58, while TFTS has a KD of 0.56 and an

P of 0.42. Wav2Vec’s performance drops slightly in this environment,
ith a KD of 0.49 and an SP of 0.22. CMU Sphinx’s performance further
ecreases, with a KD of 0.03 and an SP of 0.00.

In the office noise setting, Google’s KD and SP scores drop to 0.55
nd 0.43, respectively, while TFTS has a KD of 0.46 and an SP of 0.31.
av2Vec presents a KD of 0.50 and an SP of 0.23, and CMU Sphinx’s

erformance remains low with a KD of 0.04 and an SP of 0.01.
Under the talking noise condition, TFTS demonstrates better perfor-

ance with a KD of 0.56 and an SP of 0.34, while Google’s performance
ecreases further, with a KD of 0.36 and an SP of 0.27. Wav2Vec has
KD of 0.31 and an SP of 0.08. CMU Sphinx exhibits a KD of 0.08 and

n SP of 0.01.
Finally, in traffic noise, Google’s performance returns to near base-

ine levels with a KD of 0.75 and an SP of 0.60. Wav2Vec exhibits a KD
f 0.59 and an SP of 0.30, while TFTS presents a KD of 0.36 and an SP
f 0.25. CMU Sphinx maintains its low performance with a KD of 0.08
nd an SP of 0.01.

Based on the results presented in Table 4, it can be observed that
he performance of the speech-to-text engines is affected differently
y different types of noise. Statistical analysis revealed significant
ifferences in the keyword detection rates for different noise condi-
ions. Specifically, the p-values for the t-tests comparing the no noise
ondition to the traffic noise, office noise, talking noise, and factory
oise conditions were 8.87e−05, 1.06e−07, 2.72e−15, and 0.00038,

respectively. These results indicate that the presence of noise has a
significant impact on the performance of speech-to-text engines, with
talking noise having the strongest effect and traffic and factory noise
having the least impact.

C. Effect of gender. Table 5 illustrates the effects of gender on the
performance of various speech-to-text engines. The table presents the
mean baseline keyword detection (KD) scores and the mean KD scores
under noisy conditions for both male and female speakers.
8

For male speakers, Google STT achieved a baseline KD of 0.90 and
a noise KD of 0.73. TFTS followed closely with a baseline KD of 0.88
and a noise KD of 0.54, with a notably high standard deviation of
0.38 under noisy conditions, consistent with results from 4. Wav2Vec
exhibited a baseline KD of 0.81 and a noise KD of 0.60, while CMU
Sphinx had a baseline KD of 0.36 and a noise KD of 0.10.

For female speakers, TFTS displayed the best performance with a
baseline KD of 0.82 and a noise KD of 0.35, similarly with a relatively
high standard deviation of 0.31 under noisy conditions. Wav2Vec
followed with a baseline KD of 0.69 and a noise KD of 0.39. Google
STT achieved a baseline KD of 0.62 and a noise KD of 0.53, while CMU
Sphinx had the lowest performance, with a baseline KD of 0.24 and a
noise KD of 0.04.

The table demonstrates a noticeable disparity in performance be-
tween male and female speakers, with speech-to-text engines generally
exhibiting higher KD scores for male speakers in both baseline and
noisy conditions. The t-test performed to compare the performance
of speech-to-text engines across genders resulted in an extremely low
𝑝-value of around 9.92e−110, indicating a statistically significant dif-
ference between male and female users in terms of keyword detection
rates. This highlights the importance of considering gender as a factor
when evaluating the performance of speech-to-text engines and the
need for further research to improve their performance for female users.

D. Effect of accent. Table 6 presents the performance of speech-to-text
(STT) engines with respect to users’ language proficiency levels, which
are categorized as native, proficient, and inexperienced. The results are
reported in terms of keyword detection (KD) rates under both baseline
and noise conditions.

For native speakers, Google’s STT engine exhibits the highest perfor-
mance in both baseline (KD: 0.96, STD: 0.00) and noisy conditions (KD:
0.76), followed by TFTS (baseline KD: 0.93, noise KD: 0.76), Wav2Vec
(baseline KD: 0.89, noise KD: 0.54), and Sphinx (baseline KD: 0.48,
noise KD: 0.13).

Among proficient speakers, TFTS performs best in both baseline
(KD: 0.89) and noisy conditions (KD: 0.64), followed by Wav2Vec
(baseline KD: 0.82, noise KD: 0.54) and Google (baseline KD: 0.78,
noise KD: 0.61). Sphinx has the lowest performance (baseline KD: 0.32,
noise KD: 0.07).

For inexperienced speakers, TFTS has the highest baseline KD rate
(0.81), followed by Google (KD: 0.71), Wav2Vec (KD: 0.67), and Sphinx
(KD: 0.24). In noisy conditions, Google outperforms the other engines
with a KD rate of 0.56, followed by Wav2Vec (KD: 0.40), TFTS (KD:
0.31), and Sphinx (KD: 0.04).

4.2. Discussions on the performance of the voice-assistant

Overall, the performance of all engines is negatively affected by
the presence of noise and decreases with the users’ English proficiency
level. The 𝑝-value for comparing native and proficient speakers is
8.12e−11, indicating a statistically significant difference between the
wo groups. Similarly, the 𝑝-value for comparing native and inexperi-
nced speakers is 1.45e−66, indicating a highly significant difference

in performance between the two groups. These results demonstrate that
language proficiency has a significant impact on the performance of
speech-to-text engines.

The quality of recording considerably affects the accuracy of detec-
tion, i.e. the signal-to-noise ratio (SNR) needs to be at a certain level for
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Table 6
Effects of language proficiency on speech to text engines detection performance.

Proficiency Native Proficient Inexperienced

Engine Baseline KD Noise KD Baseline KD Noise KD Baseline KD Noise KD

Google 0.96/0.00 0.76/0.13 0.78/0.16 0.61/0.25 0.71/0.36 0.56/0.32
Sphinx 0.48/0.00 0.13/0.08 0.32/0.10 0.07/0.06 0.24/0.13 0.04/0.05
TFTS 0.93/0.00 0.76/0.06 0.89/0.03 0.64/0.33 0.81/0.16 0.31/0.35
Wav2Vec 0.89/0.00 0.54/0.17 0.82/0.02 0.54/0.20 0.67/0.15 0.40/0.26
Table 7
6TISCH mass provisioning protocol simulation param-
eters.
Parameter Value

Area 1 km2

Frequency 2.4 GHz
Num. nodes 10-100
Topology Random
Avg. number of hops 1.7
Min PDR 0.8
Num. channels 16
Time slot duration 10 ms
Slotframe lenght 101
EB probability 33%
TX queue size 10 pkts
SF MSF
RPL OF OF0
DAO period 60 s

detection to work adequately. Moreover, the speed of pronunciation,
as well as the speaker’s volume, are important factors for accurate
detection. The errors typically appear either because of an incomplete
transcript or phonetically similar words i.e. connected instead of con-
nect. There are still some random unusually transcribed words left after
parser error correction i.e. a dress or Edwards instead of address, which
would be very difficult to statically correct in advance since there are
too many possible outcomes. However, this could be greatly improved
by calculating a vectorized distance between the configuration settings
and recordings i.e. using the Hamming distance or enhancing the
detection by adding contextual learning capabilities to ASR (Pundak
et al., 2018).

4.3. Evaluation of machine-to-machine mass provisioning

In order to compare how our proposed mass provisioning method
would behave when integrated with existing provisioning approaches,
the following approaches have been evaluated and simulated:

Multi-hop. 6TiSCH protocol stack as the mass provisioning method is
used to present results on automatic mass provisioning triggered in
one single node in a multi-hop network. To evaluate the provision
time we have used the 6TiSCH Simulator (Municio et al., 2019), using
the parameters described in Table 7. Some simulation parameters in-
clude Packet Delivery Ratio (PDR), Enhanced Beacon (EB) probability,
6TiSCH Minimal Scheduling Function (MSF), RPL Objective function
(OF) Zero and Destination Advertisement Object (DAO) messages pe-
riod. We also assume that the 6TiSCH provisioning guidelines are
similar to those in Boskov et al. (2020).

The provisioning time in 6TiSCH networks can be divided into three
components: a) synchronization time, which is the time it takes for a
node to receive a first EB and synchronize with the TSCH schedule,
b) joining time, which is the time it takes for a node to securely join
the network using shared cells following Vučinić et al. (2019), and c)
ready-to-send time, i.e. the time it takes for a node to allocate its first
dedicated cell and is able to send data packets. For different network
sizes, we show the evolution of the average time of each component in
Fig. 4(a). The main takeaway of these results is that for network sizes
of 100 nodes or lower, the Node Ready time is always under 30 min for
he 99.7% of the nodes, while 50% of the nodes are always ready and
rovisioned within 11.2 min as seen in Fig. 4(b).
9

Fig. 4. Machine-to-machine based provisioning time improvements.

Zero-touch provisioning. ZTP provisioning methods improve the provi-
sioning times through the use of zero-touch mechanisms using both
WiFi and BT. However, it also requires an assisting input device for pro-
visioning, and thus the evolution of the provision time with the number
of devices can also be assumed linear. The provisioning time considered
for both technologies is 37.13 s and 21.12 s, respectively (Boskov
et al., 2020). The numbers represent averages for each technology
separately performed under two distinct communication conditions,
i.e. line-of-sight (LOS) and non-LOS (NLOS).

Manual provisioning. The manual provisioning method is used as a
benchmark and includes two types of manual provisioning: one per-
formed by a non-expert operator and one by an expert operator.
The average provision time is calculated linearly, assuming 131.87
s and 46.88 s per device respectively for each mode (Boskov et al.,
2020). Manual provisioning is a baseline evaluation method to ex-
plicitly understand the performance improvements that the automated
ZTP solutions introduce, where the device was provisioned by one
expert over 15 times that was familiar with the provisioning pro-
cedures, and by 15 other non-experts with no previous knowledge
following step-by-step provisioning guidelines, as provided by Boskov
et al. (2020).

To date, there are no directly and fairly comparable works in the
literature, which also reveals the novelty of our platform. This is why
we opt to compare current results with our previous paper findings
in Boskov et al. (2020) as a benchmark on provisioning duration.
Assuming the command recognition functionality works well (evalu-
ated in Section 4.1 and discussed in Section 4.2), Fig. 5 compares the
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Fig. 5. Provisioning time comparison of each solution for each network size.

estimated time to provision to configure a 100 node network using a
manual approach (Boskov et al., 2020), using a ZTP approach (Boskov
et al., 2020) and using HANNA.

A comparison of the provision time of each approach for differ-
ent network sizes is presented in Fig. 5. While for networks with
less than 10 nodes under some conditions such as early after startup
approaches like the ZTP BT and WiFi can outperform the mass pro-
visioning while 6TiSCH based mass provisioning approach is always
faster than others (Manual and ZTP) when there are more than 10
nodes in the network. The simulation in Fig. 5 shows that for 100
nodes, the proposed method can save up to 258 min on average in
configuration time. This is mainly due to the linear behaviour of the
manual approaches that do not leverage multi-hop broadcasting mech-
anisms as the 6TiSCH mass provisioning does. These results evidence
the convenience of using our proposed human-friendly voice-assisted
provisioning mechanisms together with automated multi-hop provision
mechanisms (e.g., 6TiSCH) to realize a full end-to-end human-friendly
voice-assisted mass provisioning system.

5. Conclusions and open challenges

In this paper, we addressed the problem of massive IoT deployments
specifically the initial provisioning of authentication parameters as well
as the initial configuration of smart devices. We introduced the HANNA
framework which addresses the problem in a human-friendly manner
by proposing the voice-based interaction in natural language and the
distribution of authentication parameters using large-scale ad-hoc com-
munications. Furthermore, we provided a reference implementation to
illustrate the benefits of HANNA which indicate that HANNA-compliant
frameworks can be realized using current state-of-the-art protocols and
tools. Finally, we performed the evaluation of the HANNA reference
implementation.

For human-to-machine communication, the results show the po-
tential of existing speech-to-text engines for this application area and
also reveal shortcomings with respect to the robustness of the en-
gines in office-like working environments as well as with respect to
user’s gender and English language proficiency level. Out of four en-
gines, the Google STT and Amberscript engines perform the best in
all considered use cases. The parser that succeeds the STT engine,
provides a meaningful increase in performance scoring an additional
3–4 percentage points. The keyword detection performance on traffic
and factory background noises is generally within 10 percent of the
baseline with a silent background. The office noise is handled slightly
worse and a performance degradation of around 15% can be noticed. In
our experiments, all the engines show inferior performance on females
regardless of the type of noise considered for the respective use case,
dropping around 15 percentage points in detection performance. Our
results also show a noticeable drop in performance between native and
non-native speakers, with Google STT and CMU Sphinx engines drop-
ping almost 20 percentage points. The differences between proficient
10
and inexperienced are comparatively much lower: around 5 percentage
points on average.

With respect to machine-to-machine communication, the results
suggest that our proposed approach performs better than the traditional
sequential approaches of initial provisioning i.e. ZTP, in all evaluated
categories, especially in situations where a large number of devices
need to be provisioned and configured simultaneously. The proposed
mass provisioning approach always outperforms manual provisioning
for cases with more than ten devices.

Given the findings of this paper, as a future work, it would be
interesting to develop a specialized domain-specific speech-to-text tool
that is configurable or able to adapt to various background noises
and capable of solving the gender robustness and language proficiency
barriers by enabling multilingualism or training the engine on a more
extensive set of language levels.
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