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ABSTRACT Wind power generation is characterized by high intermittency and volatility owing to the
stochastic nature of wind. In addition to forecasting accuracy, forecasting uncertainty quantification can
have a major impact on power system energy management and operations planning. In this paper, a new
fully co-optimized hybrid short-term probabilistic Wind Power Forecasting (WPF) model is proposed for
the construction of Prediction Intervals (PIs) in a spatiotemporal framework. A Multi-Objective Improved
Adaptive Particle Swarm Optimization (MOIAPSO) algorithm is developed to optimize the model’s param-
eters. PIs are generated by nonlinear autoregressive networks with exogenous inputs (NARX) using the
Lower Upper Bound Estimation (LUBE) method. Unlike previous related work, the components of the
proposed hybrid NARX-LUBE-MOIAPSO model, as well as the initial settings and the configuration of
the parameters, are determined based on a full co-optimization approach. The co-optimization is performed
from a forecasting quality and training time trade-off perspective. Furthermore, a spatiotemporal framework
is introduced to improve forecasting performance and comprehension of regional spatiotemporal uncertainty
dynamics. The spatiotemporal framework comprises a novel conditional spatiotemporal forecasting method-
ology and the modeling of spatiotemporal dependencies based on a binary Probabilistic Forecasting Error
(PFE) metric. The proposed model and spatiotemporal framework are tested on publicly available datasets
consisting of turbine-specific measurements and generate accurate forecasts with efficient uncertainty
quantification, while maintaining computational complexity at relatively low levels compared to other state-
of-the-art hybrid probabilistic WPF models.

INDEX TERMS Co-optimization, improved adaptive particle swarm optimization (IAPSO), multi-objective
optimization, prediction intervals (PIs), spatio–temporal, wind power forecasting (WPF).

NOMENCLATURE

Acronyms & Abbreviations

AI Artificial intelligence.
ACF Autocorrelation function.

The associate editor coordinating the review of this manuscript and

approving it for publication was Isaac Triguero .

CCELM Chance constrained extreme learning machine.
CDF Cumulative distribution function.
CRPS Continuous ranked probability score.
CWC Coverage width-based criterion.
ELM Extreme learning machine.
GRU Gated recurrent unit.
IAPSO Improved adaptive particle swarm

optimization.
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KDE Kernel density estimation.
LSTM Long short-term memory.
LUBE Lower upper bound estimation.
MLP Multi-layer perceptron.
MOIAPSO Multi-objective improved adaptive particle

swarm optimization.
NARX Nonlinear autoregressive network with

exogenous inputs.
NSGA-II Non-dominated sorting genetic algorithm II.
PFE Probabilistic forecasting error.
PI Prediction interval.
PICP Prediction Interval Coverage Probability.
PINRW Prediction Interval Normalized

Root-mean-squared Width.
PL Pinball Loss.
PSO Particle swarm optimization.
VMD Variational mode decomposition.
RES Renewable energy sources.
WPF Wind power forecasting.
WPP Wind power plant.
WT Wind turbine.

Sets & indices

P Set of WPP turbines, indexed by g.
S Swarm of particles, indexed by p.
T Training set, indexed by t.
U Set of NARX weight connections and biases,

indexed by j.
g Index of WTs.
j Index of NARX weight connections and biases.
p Index of particles.
t Index of time intervals.

Parameters

I Total iterations.
N 1
WT ,N 2

WT Total number of WT in case studies I and II,
respectively.

Nt Test set size.
Ntr Training set size.
R Range of actual output values.
Xkt Exogenous input kat time t.
ci1, c

i
2 Acceleration coefficients of PSO.

cl PIs nominal confidence level ϵ [0, 1].
h Penalty parameter for CWC calculation.
i Iteration number.
lag1, lag2 Amount of lagged time intervals for output

feedback to NARX input.
mi Mutation rate (possibility) at iteration i.
n Number of exogenous inputs.
ndim Number of search space dimensions.
r1, r2 Random numbers ϵ [0, 1].
wiin Inertia weight at iteration i.
yt Actual wind power output at time t.

Variables

Zg Z-score of forecasting results related to WT g.
ct Binary PFE metric indicating whether yt lies

inside its corresponding PI.
dt Error metric used for the calculation of PL.
lt/ut Lower/upper bound of PI at time t.
vijp Velocity of particle p corresponding to weight

or bias j at iteration i.
wijp Weight or bias j of NARX, for particle p at

iteration i.
wi,bestj,swarm Weight or bias j of NARX, of best position

encountered in swarm up to iteration i.
wi,bestj,p Weight or bias j of NARX, of best position

encountered by particle p up to iteration i.
zt Average of lower and upper bound of PI

at time t.

I. INTRODUCTION
In an attempt to limit the consequences of global climate
change and fossil fuel depletion, research focus has shifted
towards RES over the past few years [1]. Wind power is
one of the most popular RES; hence the contribution of
wind power towards meeting global energy needs is increas-
ing [2]. However, wind power generation is highly volatile
and intermittent owing to the stochastic nature of wind fields.
Increasing integration of wind power into electric power
systems results in multiple challenges regarding grid stabil-
ity and energy management operations [3]. Such operations
range from long-term system upgrades and day-ahead reserve
planning to real-time operation of smart microgrids, where
intra-hour forecasting is essential to balance energy pro-
duction, storage, and local loads. In any case, accurately
forecasting wind power generation is of vital importance.

WPF models are based on physical, statistical, or hybrid
approaches [3]. Physical approaches are suitable for
long-term forecasting and involve computationally expen-
sive models that rely heavily on expertise and high-quality
data. On the other hand, statistical approaches are intended
for short-term forecasting and use time series methods or
machine learning. In recent years, machine learning methods
have dominated research in WPF mainly because of their
ability to identify complex, nonlinear relationships between
data [4].

WPF usually relies on forecasted weather data which
causes additional errors in addition to the already highly
volatile WT operation. Forecast uncertainty quantification
can have a major impact on energy management and oper-
ations planning through stochastic power flow analysis,
reserve planning optimization, unit commitment, and eco-
nomic dispatch [5]. Deterministic forecasting does not pro-
vide information about forecast uncertainty; thus, research
focusing on probabilistic forecasting has increased [3].
Probabilistic forecasting includes parametric and nonpara-
metric methods. Owing to the difficulty of accurately assum-
ing predictive distributions of wind power, nonparametric

84886 VOLUME 11, 2023



M. A. Kousounadis-Knousen et al.: New Co-Optimized Hybrid Model Based on Multi-Objective Optimization

methods have attracted wide attention, even though they
can be computationally demanding. Typical nonparametric
methods include quantile regression, kernel density estima-
tion, bootstrapping, LUBE, and ensemble methods [3], [6].
Multiple probabilistic WPF models have been proposed over
the years for PIs generation, following different approaches
to address the challenges derived from the volatile, complex
nature of wind. Several studies have suggested probabilistic
WPF models based on metaheuristic algorithms, to improve
the identification of nonlinear relationships, often at the
expense of computational complexity, convergence maturity,
or even convergence assurance [7], [8]. In recent years, many
researchers have shifted their focus to hybrid probabilistic
WPF methods. In hybrid methods, several components are
put together in an effort to mitigate each other’s disadvan-
tages [3]. Various hybrid methods have been suggested, that
combine metaheuristics, deep learning, multi-objective opti-
mization, and data preprocessing techniques. Further infor-
mation regarding state-of-the-art hybrid probabilistic WPF
models is provided in Section II.

Co-optimization of the components of a hybrid model
can have a beneficial impact on forecasting accuracy [9].
Determining the type of components and their corresponding
parameters with respect to each other’s characteristics can
further mitigate their respective disadvantages. However, few
studies have focused on the co-optimization of the individual
components of hybrid probabilistic WPF models [10], [11],
[12], [13], [14], [15], [16], [17], [18]. Optimal probabilis-
tic forecasting performance entails global searching, suit-
able model structures, well-balanced probabilistic forecasts
(multi-objective optimization), and data interdependencies
extraction. None of [10], [11], [12], [13], [14], [15], [16], and
[17] have fully addressed and co-optimized the aforemen-
tioned probabilistic forecasting aspects. On the other hand,
a full co-optimization is performed in [18]; however, com-
pletely disregarding computational complexity. Increased
training time is often undesirable, particularly in online train-
ing and short-term forecasting horizons. Moreover, these
studies ignore spatial wind patterns and hence do not take
advantage of spatiotemporal dependencies among neighbor-
ing units. Forecasting performance is often improved in a
spatiotemporal forecasting framework, while optimal fore-
casts generated by an efficient probabilistic WPF model
facilitate interdependence structure modeling and enhance
the comprehension of regional spatiotemporal dynamics.

This paper proposes a fully co-optimized hybrid WPF
model that generates short-term probabilistic forecasts in a
spatiotemporal framework. The proposed model introduces a
MOIAPSO algorithm to enhance global search while main-
taining a high convergence rate and training speed. All
the parameters in IAPSO, i.e., the inertia weight and the
acceleration coefficients, are fully adaptive. MOIAPSO is
further improved by incorporating an adaptive grid, binary
tournament selection, and Nguyen-Widrow initialization.
NARX networks are used to capture time series dependencies
in data while maintaining low computational complexity.

Probabilistic forecasts are issued in the form of PIs using
the LUBE method [19]. The choice of each individual com-
ponent and the determination of its parameters are based on
full co-optimization. In the full co-optimization approach, all
hybrid components and their parameters are simultaneously
tuned such that they complement each other, and individual
weaknesses are mitigated. Furthermore, co-optimization is
performed from a forecasting quality and training time trade-
off perspective. The spatiotemporal framework consists of
conditional spatiotemporal forecasting and modeling of the
spatial dependencies of the PFE.

The main contributions of this paper are the following:

a. The introduction of a fully co-optimized hybrid proba-
bilistic WPF model consisting of multi-objective opti-
mization, advanced metaheuristics, the LUBE method,
and NARX networks. The fully adaptive MOIAPSO
algorithm enhances global search while ensuring fast
and sufficient convergence. In contrast to existing
co-optimized hybrid probabilistic WPF models, the
proposed hybrid NARX-LUBE-MOIAPSO model is
fully co-optimized from a forecasting quality and train-
ing time trade-off perspective.

b. The development of a novel conditional spatiotempo-
ral forecasting methodology. The proposed approach
is only applied to outliers in the forecasting results,
to improve the overall forecasting performance while
limiting the additional computational burden. Further-
more, spatiotemporal data are added in two waves,
to avoid unnecessary additional information. To the
authors knowledge, this is the first time a spa-
tiotemporal framework is co-developed with a fully
co-optimized hybrid probabilistic WPF model.

c. The modeling of the interdependence structure of
WPPs, to enhance the comprehension of regional
spatiotemporal dynamics, and potentially reduce the
number of forecasts necessary for the target region.
Interdependence structure modeling is based on a
binary PFE metric, which is used for the first time to
estimate the spatial dependencies of the PFE.

The remainder of this paper is organized as follows. A brief
literature survey regarding state-of-the-art hybrid probabilis-
tic WPF models and spatiotemporal methodologies is pre-
sented in Section II. Section III describes the proposed
forecasting methodology, the evaluation metrics, and the spa-
tiotemporal framework. Section IV provides a description
of the case studies. Experimental results are presented and
discussed in Section V. Concluding remarks are provided in
Section VI.

II. LITERATURE SURVEY
Various hybrid probabilisticWPFmodels have been proposed
in recent years. In [10], point predictions were generated
using LSTM networks and k-means clustering of the input
data. Nonparametric PIs were constructed using the KDE
method. Several Gaussian process regression models were
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used to construct combined PIs in [11]. VMD was applied
to the input time series, and the weights of the combined
models were determined based on area grey correlation.
In [12], ELMs generated forecasts corresponding to the lower
and upper bounds of noncentral PIs. The PIs were opti-
mized using a chance-constrained optimization framework.
A hybrid model comprising VMD and GRUs was used with
the LUBE method in [13] to generate PIs. In [14], LSTM
networks were combined with the LUBE method to generate
PIs. The hybrid model was optimized using a fuzzy frame-
work. Wavelet transformation was applied to the input time
series of a hybrid PSO-LUBE-based model in [15]. In [18],
multi-objective optimization was used to train the LSTM
networks of a LUBE-based WPF model. NSGA-II was cho-
sen as the optimization algorithm. A bidirectional GRU was
used with LUBE for probabilistic WPF in [16]. In [17], two
support vector machines were developed in a competitive
fuzzy framework to generate PIs using the LUBE method.
A distribution-free model was suggested in [20], for proba-
bility distribution function estimation. A parametric model
was used to estimate the base distribution of wind power
generation, which was then transformed using a spline-based
normalizing flow.

Spatiotemporal dependencies regarding wind field pat-
terns, forecasting error propagations, and uncertainty cor-
relations, have also been exploited in several probabilistic
WPF-related studies to improve forecasting performance and
comprehension of regional spatiotemporal dynamics. In [21],
spatiotemporal feature graphs were constructed, reflecting
correlations among the data for different WPPs. The feature
graphs were fed into a hybrid neural network to generate
aggregated direct regional forecasts based on quantile regres-
sion. In [22], convolutional neural networks were trained
with 2D images constructed using spatiotemporal wind field
propagations, to generate deterministic and probabilistic fore-
casts. In [23], a k-nearest neighbor and conditional KDE
were used to derive aggregated day-ahead probabilistic wind
power forecasts over a region. The aggregated probabilistic
forecasts were generated in the form of predictive densi-
ties, using the spatiotemporal correlations of the individual
decentralized forecasts. The interdependence structure of five
regions in western Denmark regarding forecasting uncer-
tainty wasmodeled in [24]. The probabilistic predictions used
were in the form of quantiles. In [25], two spatiotemporal
forecasting methods were developed to exploit additional
turbine-specific data. The first method was based on feature
engineering whereas the second method implemented a hier-
archical bottom-up approach.

None of the studies mentioned above performed a full
co-optimization of all aspects of optimal hybrid probabilis-
tic WPF. Some studies ignored certain aspects, such as the
multi-objective nature of probabilistic forecasts optimiza-
tion. In [18], where all components were co-optimized to
some extent, co-optimization was performed with complete
disregard for the computational complexity and training
time required. Furthermore, the co-optimization of hybrid

TABLE 1. Summary of literature survey including the proposed model,
regarding the key aspects concerning this study.

probabilistic WPF has never been co-developed with a spa-
tiotemporal forecasting framework. In this paper, a hybrid
probabilistic WPF model is fully co-optimized with respect
to all aforementioned aspects, including computational com-
plexity, and is co-developed with a holistic spatiotemporal
framework including spatiotemporal forecasting and interde-
pendence structure modeling. Table 1 summarizes the liter-
ature mentioned above in terms of the key aspects of this
paper: full co- optimization, forecasting quality and training
time trade-off, and spatiotemporal forecasting.

III. FORECASTING METHODOLOGY
A. CO-OPTIMIZED HYBRID PROBABILISTIC WPF MODEL
This subsection presents each component of the pro-
posed hybrid probabilistic NARX-LUBE-MOIAPSO WPF
methodology. The choice of each component is based on
finding the global optimum of the probabilisticWPF problem
while maintaining the computational complexity as low as
possible. Furthermore, the components’ structure and main
parameters are co-optimized, with respect to each other’s
advantages and disadvantages.

1) MULTI-OBJECTIVE METAHEURISTICS-BASED
OPTIMIZATION
WPF is a problem that consists of complex objective
spaces with multiple local optima [26]. The choice of an
appropriate optimization algorithm is crucial to avoid pre-
mature convergence to a local optimum. The traditional
gradient descent-based backpropagation algorithms used in
machine learning are prone to local optimum entrapment [7].
On the contrary, some metaheuristic algorithms employ
search mechanisms that avoid premature convergence. Thus,
a hybrid approach that combines machine learning and meta-
heuristics is appropriate for WPF.

In this paper, probabilistic forecasts are issued in the form
of PIs. Optimal PIs are characterized simultaneously by max-
imum coverage and sharpness [5]. Ideally, PIs should cover
all the corresponding observations while being as narrow as
possible. However, coverage and sharpness maximization are
two objectives in conflict. Thus, PI optimization is naturally a
multi-objective optimization problem. Instead of converting
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it to a single-objective optimization problem, maintaining the
original multi-objective nature of PIs optimization has the
advantage of reducing the overall bias, as it eliminates the bias
introduced by artificial fixups used for fusing the optimiza-
tion objectives into a single-objective optimization problem.
Metaheuristic algorithms tend to be more efficient when less
bias is introduced [7]; thus, a multi-objective optimization
framework is chosen for the proposed hybrid model.

The multi-objective optimization framework is formulated
as follows:

OBJ .1 :max
1
Ntr

Ntr∑
t=1

ct (1a)

OBJ .2 :min
1
R

√√√√ 1
Ntr

Ntr∑
t=1

(ut − lt )2 (1b)

S.T . :
1
Ntr

Ntr∑
t=1

ct ≥ cl (1c)

ct =

{
1, if lt ≤ yt ≤ ut
0, else

(1d)

0 ≤ lt < ut ≤ 1 ∀t ∈ T . (1e)

The problem objectives are given by (1a) and (1b),
which represent the maximization of coverage and sharp-
ness, respectively. Specifically, (1a) corresponds to PICP, i.e.,
the average coverage of the PIs, while (2a) corresponds to
PINRW, which calculates the normalized root of the average
squared width of the PIs [27]. The smaller the width of the
PIs, the sharper they are. The multi-objective formulation
of the problem consists of three constraints: The average
coverage of the PIs should be greater than or equal to the
pre-defined nominal confidence level (1c). Parameter ct is a
binary variable that indicates whether an actual observation
lies inside the corresponding PI (1d). PI bounds are restricted
between 0 and 1, corresponding to zero and nominal wind
power generation, respectively. Furthermore, the upper and
lower bounds of each PI should not be identical, to avoid
generating point predictions (1e).

2) LUBE-BASED NARX NETWORK
The generation of optimal PIs for probabilistic WPF depends
on the chosen PI generation approach. A nonparametric,
direct PI generation method with little added bias to the
overall forecasting procedure suits the metaheuristics-based
optimization approach, described in subsection III-A.1. The
LUBE method is a direct, simple, and fast PI genera-
tion approach, independent of strict mathematical formula-
tions [19]. LUBE only requires a machine learning structure
with two output units, representing the lower and upper
bounds of the PI.

However, the LUBE method depends heavily on the
parameters of the model. More parameters must be
determined when dealing with complex machine learning
structures, making it more difficult to optimize the LUBE

method, while the computational complexity is significantly
increased. Furthermore, metaheuristics and multi-objective
optimization have already built a computationally expensive
foundation for the overall framework.

Research focus has shifted greatly towards recurrent deep
learning structures, such as LSTMs and GRUs, owing to their
ability to capture long-term interdependencies in time series.
However, an increase in dimensionality on its own does
not necessarily avoid local optimum entrapment. Although
hybrid deep learning – metaheuristics methods have been
proven to work well, they require significant amounts of
computational time and resources. In this paper, focus is
driven towards finding a global optimization algorithm that
fits the pursued objective of reaching a trade-off between the
forecasting quality and training time.

The NARX network is a simple machine learning structure
that maintains low complexity levels while still capturing
temporal interdependencies in the time series. Thus, the
NARX network is a suitable option for the proposed co-
optimization approach. The core architecture of NARX is
similar to that of feed-forwardMLPs; however, lagged output
feedback is provided to the input alongside other exogenous
inputs.

The architecture of the NARX network, shown in Fig. 1,
was chosen based on the co-optimization of the hybrid
multi-objective metaheuristics – LUBE model. Extensive
testing was performed to verify the optimal structure of the
NARX network. A second hidden layer is necessary to assist
the network inmodelingmore complexWPF input and output
features. Further addition of hidden layers slightly improves
the network’s performance in some cases; however, it also
significantly increases computational complexity. Feedback
is provided by both outputs instead of fusing them into a
single value, to facilitate the LUBE method with only a slight

FIGURE 1. Optimized narx architecture for hybrid multi-objective
metaheuristics - lube model.
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computational increase. Furthermore, less bias is added to
the model, which benefits metaheuristics-based optimization.
Feedback is provided at two different lagged timesteps, which
sufficiently captures the temporal interdependence of the
wind power generation time series.

3) CO-OPTIMIZED IMPROVED ADAPTIVE PARTICLE SWARM
OPTIMIZATION
Optimal PIs are reached by properly adjusting weights
and bias connections of the NARX network. The choice
of a suitable metaheuristic optimization algorithm is cru-
cial for the optimal performance of the overall framework.
PSO is known for its high convergence speed [28], which
balances an already complex multi-objective optimization
framework. Furthermore, PSO has relatively few parameters
compared to other metaheuristics [7], which suits the highly
parameter-sensitive LUBE method. According to PSO, each
particle of the swarm represents a solution, i.e., a set of
weights and biases connections. The positions of the particles
correspond to sets of weights and biases, while the particle
velocities indicate the step size and direction in the search
space. For each particle, the weights and biases are updated
based on the following equations:

wi+1
j,p = wij,p + vi+1

j,p ∀j ∈ U; ∀p ∈ S (2)

vi+1
j,p = winvij,p + c1r1

(
wi,bestj,p − wij,p

)
+ c2r2

(
wi,bestj,swarm − wij,p

)
∀j ∈ U; ∀p ∈ S. (3)

However, PSO often suffers from premature convergence
when dealing with complex objective spaces, such as those
in the WPF problem [28]. An improved PSO algorithm is
necessary to enhance global search while maintaining a high
convergence speed and convergence rate.

A Gaussian mutation operator is applied to the positions
of the particles to improve global searching capabilities. The
mutation rate is co-optimized with the parameters of the
hybrid model’s components mentioned in subsections III-A.1
and III-AIII.A.2, and is given by the expression:

mi =

 0.25 −
i
3I

, i ≤ 0.75I

0, i > 0.75I .
(4)

Initially, the mutation rate is sufficiently high to enhance
stochastic search and avoid premature convergence. Specifi-
cally, 25% of the model’s dimensions are mutated during the
initial iteration. As the optimization proceeds, the mutation
rate decreases linearly to allow convergence of particles.
Mutation is eliminated after 75% of the total iterations to
enhance local search.

Increasing global searching capability usually comes at the
expense of the convergence rate. Adaptive determination of
the algorithm’s parameters helps ensure sufficient conver-
gence while maintaining global searching and convergence
speed at high levels. A fully adaptive metaheuristic algorithm
tends to operate better because the parameters are optimally
adjusted according to the optimization state.

Many studies have suggested methods for adaptively
changing PSO parameters. In this paper, the adaptive inertia
weight formula suggested in [29] is used for each particle in
each iteration, which is given by the following expression:

wiin = w0
in

1 −

√∑n_dim
j=1 (wi,bestj,swarm − wi2j,p)

maxj(w
i,best
j,swarm − wij,p)

 (5)

where w0
in is a random number in interval [0.5, 1]. This

formulation directs the particles towards the swarm’s best
position when they move too far away from it, to ensure suffi-
cient convergence. Furthermore, the acceleration coefficients
of each particle are adaptively determined in each iteration
for each weight connection based on the following sigmoid
function f, as suggested in [8]:

f (D) =
0.5

1 + e−aD
+ 1.5 (6)

ci1,j = f
(
wi,bestj,p − wij,p

)
∀j ∈ U (7)

ci2,j = f
(
wi,bestj,swarm − wij,p

)
∀j ∈ U . (8)

In (6), a is equal to 0.0035 % of the search range. The
adaptive strategies described in (5)-(8) are chosen owing to
their ability to further improve the convergence rate while
maintaining global searching capabilities.

4) MULTI-OBJECTIVE IMPROVED ADAPTIVE PARTICLE
SWARM OPTIMIZATION
The MOIAPSO adopted in this paper is based on the clas-
sic multi-objective PSO proposed in [30], which is further
improved by employing an adaptive grid [31] and binary
tournament selection. These improvements are crucial for
achieving a trade-off between forecasting quality and training
time. The adaptive grid encourages global search by increas-
ing the diversity among the stored non-dominated solutions,
while the binary tournament method for the selection of
the swarm leader per iteration reduces the overall training
time.

The overall process of the MOIAPSO algorithm is shown
in Fig. 2. Weights and biases are initialized using the
Nguyen – Widrow technique. After the evaluation, a repos-
itory is created to store the non-dominated solutions. In the
case of repository overflow, the least diverse solutions are
discarded. The repository solutions are mapped according to
their performance for each objective. The adaptive grid is
created, covering all solutions, to determine their diversity.
A crowding index is assigned to each hypercube of the grid
based on the total number of solutions inside the hypercube.
A high crowding index indicates that solutions inside the
hypercube are less diverse. The grid dimensions change adap-
tively to cover all repository solutions. Binary tournament
selection is applied to the repository solutions to select the
current swarm leader based on the crowding index. Mutation
is applied to the new positions, updated using (2) and (3).
The personal best position of a particle is updated if it is
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FIGURE 2. Flow chart of proposed MOIAPSO algorithm. Processes in
yellow correspond to the general improvements of PSO while processes
in green correspond to the improvements of the multi-objective version
of the algorithm.

dominated by its current position. If non-domination occurs
between the current position and the personal best position of
a particle, the personal best position is chosen randomly.

B. EVALUATION METRICS
Reliable evaluation metrics are necessary to assess the fore-
casts generated by the proposed hybridmethod efficiently. PIs
should be evaluated not only in terms of coverage and sharp-
ness but also based on their proximity to actual observations.
Therefore, it is preferable to use all-around probabilistic eval-
uation metrics.

A widely acknowledged probabilistic evaluation metric,
often used in WPF, is CRPS [32]. CRPS evaluates the dis-
tribution of forecasts in terms of both shape and location,
by measuring the distance between the forecast probabil-
ity distribution and the distribution of the observations. For
the entire test set, CRPS is calculated using the following
equation:

CRPS =
1
Nt

Nt∑
t=1

+∞∫
−∞

(F (zt) − l (zt − yt))2 dz (9)

where F is the CDF of the generated forecasts and l is the
Heaviside step function. The generated PIs are represented by
variable z,which, in this paper, is calculated as the average of
the lower and upper bounds of each PI.

Another all-around probabilistic evaluation metric is
PL [32]. PL is mainly used to evaluate quantiles, by measur-
ing the distance between the actual value and the forecasted
quantile, weighted by the target quantile. PL can also be
employed for PI evaluation using the following formula:

PL =
1
Nt

Nt∑
t=1

dt (10a)

dt =


(l t − yt )cl, yt < lt
|zt − yt | (1 − cl) , lt ≤ yt ≤ ut
(yt − ut) cl, yt ≥ ut .

(10b)

PL for PIs calculates the weighted distances between
the actual observations and some point of the correspond-
ing PIs. The weight values and points of the PIs chosen
depend on whether the actual observations lie within their
corresponding PIs.

A probabilistic evaluation metric often used in related lit-
erature is CWC. CWC considers the coverage and sharpness
of the PIs, but not the shape of their distribution. CWC is
calculated as follows:

CWC =
1
Nt

Nt∑
t=1

(ut − lt ) + γ e
−h

(
1
Nt

Nt∑
t=1

(ct )−cl

)
(11)

where γ equals 1 when the average coverage of the PIs is less
than the nominal confidence level; otherwise γ equals 0.
Certain concerns have been expressed regarding the suffi-

ciency of CWC [33], mainly because of its inability to assess
the distribution shape of PIs. On the other hand, PL is more
sensitive to data outliers than CRPS. Furthermore, PL is a
probabilistic evaluation metric that is difficult to interpret.
Thus, while all these metrics (CRPS, PL, and CWC) are used
to assess the generated PIs, CRPS is considered the main
evaluation metric.

C. SPATIOTEMPORAL FRAMEWORK
1) SPATIOTEMPORAL FORECASTING
WPF in a spatiotemporal framework has proven effective
for improving forecasting results [34]. However, additional
spatiotemporal information does not always have a benefi-
cial impact on the overall performance. The spatiotemporal
forecasting performance depends on various factors, such as
data quality, the WPF model used, feature engineering, and
geographical characteristics.

In this paper, spatiotemporal data are only used to eliminate
cases with extremely poor forecasting performance. Fore-
casts are generated multiple times to verify the inability of
the corresponding WPF model to converge to a sufficiently
good local optimum. These outliers in the forecasting results
are mainly a consequence of either poor-quality data or the
inability of the model to navigate through the search space
because of the complex shape of the objective space. In these
cases, spatiotemporal data can potentially provide additional
useful information.
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FIGURE 3. The proposed spatiotemporal forecasting methodology.

The spatiotemporal forecasting methodology is illustrated
in Fig. 3. Initially, forecasts are generated for each WT of
the WPP using only the corresponding turbine-specific data.
The hybrid probabilistic WPF model is trained using the
MOIAPSO algorithm presented in Fig. 2. PIs are generated
and evaluated for eachWT of theWPP. To identify outliers in
the forecasting results, the z-score of each WT is calculated
as follows:

Zg =
CRPSg − EP(CRPS)

SP(CRPS)
∀g ∈ P (12)

where CRPSg is calculated from (9) and EP(CRPS),
SP(CRPS) are the mean and standard deviation of crps values
respectively, for all wts in the wpp. WTS WITH Zg > 3, are
considered outliers. next, a reference wt is assigned to each
outlier based on the correlation of their data. the data of the
reference wts are added to the corresponding outlier wts (first
wave of additional spatiotemporal input). pis are generated
again, this time only for outlier cases. After evaluation, out-
liers are identified (if any), and the spatiotemporal process is
repeated. Correlation is measured on another feature if avail-
able, otherwise, the second highest-correlated wt, based on
the feature selected in the first wave, is chosen as reference.
The new datasets are formulated (second wave of additional
spatiotemporal input), and pis are generated and evaluated for
the remaining outlier cases.

The spatiotemporal forecasting methodology is designed
with the aim of eliminating outliers in the forecasting results
while keeping the computational complexity of the overall
framework relatively low. Outliers have a significant negative
effect on overall forecasting accuracy; hence, it is crucial to
limit them as much as possible. Furthermore, spatiotemporal

data are added in two waves to reduce the amount of over-
all data required. More waves of additional spatiotemporal
data could be used; however, this would further increase the
computational complexity without necessarily improving the
results.

2) SPATIAL DEPENDENCE IN PFE
Modeling the interdependence structure of a WPP can sig-
nificantly improve the comprehension of the spatiotemporal
dynamics of the region. Furthermore, in regions with high
dependencies between units, the overall number of forecasts
necessary to estimate the aggregated energy yield can poten-
tially be reduced.

In this paper, the spatial dependence between the WTs of
the WPP is modeled based on the PFE. The chosen PFE
metric is ct of 1(d), and dependence is calculated using the
Pearson correlation coefficient. To the best of our knowledge,
this PFE binary metric has never been used to model the
interdependence structure of WPPs.

IV. CASE STUDIES
The proposed NARX-LUBE-MOIAPSO WPF forecasting
model and spatiotemporal methodology are tested in two
different case studies to ensure efficient evaluation. Each case
study consists of turbine-specific measurements of the WTs
located in the same WPP. The datasets for both case studies
are publicly available.

A. CASE STUDY I
The first case study consists of data regarding 200 ran-
domly selected WTs of a WPP and three meteorological
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masts. The WTs are located in a flat field in the United
States [35]. Hourly wind speed and power output data are
provided for each WT. Similarly, hourly wind speed and
direction measurements are provided for each meteorological
mast. The measurements were conducted over one year, from
September 2010 to August 2011.

The relative positions of theWTs andmeteorological masts
are shown in Fig. 4. All coordinates are shifted from their
actual values, to keep the WPP’s real location confidential.
However, the layout of WTs inside the WPP reflects their
actual relative positions. To simplify the modeling of spatial
dependence in the PFE, theWPP is divided into eight clusters
using the k-means clustering technique. The clustering results
are shown in Fig. 4.
In the temporal-only framework, the wind speed and power

output measurements of each WT are used as inputs to its
corresponding NARX network. In the spatiotemporal fore-
casting framework, additional data are added as exogenous
inputs to the NARX networks. The first wave of additional
spatiotemporal data consists of wind directionmeasurements,
to provide different types of information to the NARX net-
works. Specifically, for eachWT, the wind directionmeasure-
ments of the closest meteorological mast are added as input.
Since no other meteorological feature is available, the second
wave of additional spatiotemporal data consists of wind speed
measurements. For each WT, the wind speed measurements
of the highest correlated reference WT are added as input.
The Pearson correlation coefficient is used to calculate the
correlations between the wind speed datasets of the WTs.

B. CASE STUDY II
The second case study consists of SCADAmeasurements of a
coastalWPP located in the United Kingdom, with an installed
capacity of 28.7MW [36]. The WPP consists of 13 WTs,
the relative positions of which are shown in Fig. 5. The
dataset containsmeasurements from 2016 to 2021 provided in
10-minute intervals.

Similar to case study I, wind speed and power out-
put measurements of each WT are used as input to the

FIGURE 4. Relative positions of WTs and meteorological masts as well as
clustering results of case study I.

FIGURE 5. Relative positions of WTs of case study II.

corresponding NARX network in the temporal-only frame-
work. Wind direction and wind speed data measured at the
location of WTs, which are highly correlated with the target
WT, are added as inputs in the spatiotemporal forecasting
framework. Specifically, the first wave of additional spa-
tiotemporal data consists of wind direction measurements
that have the highest correlation with the wind direction mea-
sured at the location of the target WT. Correspondingly, the
third wave of additional spatiotemporal data consists of the
highest correlated wind speedmeasurements. All correlations
are calculated using Pearson’s correlation coefficient.

V. RESULTS AND DISCUSSION
A. EXPERIMENTAL SETTINGS AND COMPARISON
MODELS
This subsection provides indicative structure and param-
eter optimization results that prove the efficiency of the
co-optimization choices presented in Section III. Further-
more, it describes the benchmark probabilistic WPF models
used. All runs were conducted on an Intel(R) Core (TM)
i7-8700 CPU (3.20GHz, 6 cores) desktop computer
with 8 GB of RAM and all WPF models were developed in
Python.

1) PARAMETERS OPTIMIZATION
The results for different versions of the PSO algorithm are
presented in Table 2. Specifically, PSO with mutation only
(mPSO), mutated PSO with adaptive inertia weight (mAIW-
PSO), mutated PSO with adaptive acceleration coefficients
(mAACPSO), and fully adaptive mutated PSO (proposed
IAPSO) are compared. All versions of PSO are based on
single-objective optimization and the results are generated
for one WT of both case studies. The results are generated
20 times for each case study, and the empirical CDF of the PIs
is constructed for CRPS calculation. The adaptive selection
of PSO parameters improves the results of the mutated PSO,
while the proposed fully adaptive PSO generates the most
accurate results.

Indicative comparative results of the optimization pro-
cedure of a WT of case study I, between the proposed
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TABLE 2. Indicative results for 1 WT of each case study for different
versions of single-objective PSO.

MOIAPSO and single-objective IAPSO, are presented in
Fig. 6. The solution of the repository with the smallest
CRPS value is chosen in each iteration for MOIAPSO.
While single-objective IAPSO converges faster, the proposed
MOIAPSO performs slightly better at searching globally.
The convergence rates of both the models are similar. Fur-
thermore, the proposed MOIAPSO algorithm generates a set
of solutions instead of a single solution, thereby offering
additional flexibility to the system operator.

Both time lags for the feedback of the NARX network are
selected based on the ACF of the wind power generation time
series. The ACF values of lags of up to 72 hours for one
WT in each case study are presented in Fig. 7. In both cases
studies, the smaller the time lag for the first 24 hours, the
higher the ACF value. Thus, the first feedback value is only
lagged 1 timestep. The second peak of the ACF values differs
between the case studies. In case study I, the second peak is
observed after 72 hours, whereas in case study II, the second
peak is observed after 38 hours. Thus, the second feedback
is lagged by 72 and 38 timesteps for case studies I and II,
respectively.

2) COMPARISON MODELS
The proposed NARX-LUBE-MOIAPSO model is compared
with several other hybrid probabilistic WPF models to ensure
efficient evaluation, such as the LSTM-basedmodel proposed
in [10]. The LSTM-based model uses k-means clustering for
the input features and forms PIs by applying KDE to the point
predictions generated. TheCCELMmodel proposed in [12] is

FIGURE 6. Comparative results of optimization procedure between
single-objective IAPSO and the proposed MOIAPSO.

FIGURE 7. ACF values of the wind power generation time series of a WT
for both case studies.

also selected for comparison. CCELM comprises two ELMs
representing the lower and upper bounds of the PIs, opti-
mized using a chance-constrained optimization framework.
Furthermore, the hybrid model suggested in [18] is selected
as a benchmark. The model is based on LSTMs and LUBE
for the construction of PIs, which are optimized using a
multi-objective optimization framework with NSGA-II.

B. TEMPORAL-ONLY FRAMEWORK
All input variables are normalized to the interval [−1, 1]
while the wind power output is normalized to the inter-
val [0, 1]. The datasets used in both case studies are year-
long. Initially, results are generated for both case studies
without considering the spatiotemporal forecasting method-
ology, to compare the performance of each probabilisticWPF
model. The multi-objective optimization models generate a
set of final solutions, which are all evaluated. The solution
with the lowest CRPS value is selected for comparison with
the solutions generated by the rest of the models. Fig. 8
presents an example of the final repository solutions gener-
ated byNARX-LUBE-MOIAPSO, for 1-hour ahead forecasts
and a 90% confidence level, for case study I. The solutions
are mapped according to the performance of their objective
functions. The solution with the lowest CRPS evaluation
value is represented as the red particle.

Perfect wind speed forecasts and power output measure-
ments are provided as input to the models for 1-hour ahead
forecasting. All the input data are turbine-specific, and no
spatiotemporal reference data are used. The confidence level
is set to 90%. The average value of CRPS throughout each
WPP is calculated in both case studies as follows:

CRPSjavg =
1

N j
WT

N j
WT∑
g=1

CRPSg, j = 1, 2. (13)

The average values of PL and CWC are calculated simi-
larly. The CDF for calculating CRPS of each WT in (9) is
constructed by assuming a normal distribution of the PIs.
In each timestep t , the mean of the distribution is equal to zt ,
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FIGURE 8. Final repository solutions of NARX-LUBE-MOIAPSO, for a WT of
case study I. The solutions are mapped according to their objective
functions’ scores. The solution represented by the red particle is the
solution that generates PIs with the smallest CRPS value. The forecasting
horizon is 1 hour, and the confidence level is set to 90%.

and the standard deviation is calculated as:

st =
ut − lt

2·zcrit (cl)
(14)

where zcrit (cl) represents the critical value of cl in the normal
distribution. The aggregated results for both the case studies
are presented in Table 3. The proposed model clearly outper-
forms LSTM-KDE and CCELM in both case studies for all
evaluation metrics. LSTM-KDE and CCELM are the main
competitors of the proposed model, because of their relative
proximity regarding their computational complexity. Com-
pared to LSTM-LUBE-NSGA-II, the proposed model gener-
ates slightly worse results. Specifically, the proposed model’s
performance regarding CRPS is 6.7% and 1.03% worse than
the performance of LSTM-LUBE-NSGA-II for case stud-
ies I and II respectively. However, the average training time
required for the proposed model is approximately 75% less
than that required for LSTM-LUBE-NSGA-II. Furthermore,
the proposed model outperforms LUBE-LSTM-NSGA-II in
case study II in terms of PL and CWC. Provided with the
higher time-resolution data of case study II, the proposed
model has a performance similar to that of the state-of-the-
art. Only CCELM outperforms the proposed model in terms
of required training time, owing to the extremely fast nature
of ELMs. Compared to all other benchmarks, the proposed
model requires much less training time. Therefore, from a
forecasting quality and training time trade-off perspective, the
proposed model shows superior performance.

The VIKOR method [37] is used to further verify the fore-
casting quality and training time trade-off analysis. VIKOR
is a popular multi-criteria-decision-makingmethod that ranks
alternatives according to their performance for each criterion
and selects the closest alternative to the ideal solution. The
results of the VIKOR analysis are shown in Fig. 9. Different
combinations of the relative weight values are tested for the
two criteria. The sum of the forecasting quality and train-
ing time weights is always equal to one. The metric Q is
a normalized aggregating function of the group utility and

TABLE 3. Aggregated results in temporal-only framework.

FIGURE 9. Results of the VIKOR analysis. (a) case study I (b) case study II.

individual regret. Alternatives are ranked from worst to best
in decreasing order according to their Q values. The smaller
the value of Q is, the closer the alternative is to the ideal
solution.Multiple alternatives can be considered compromise
solutions. Further information on the VIKOR method can
be found in [37]. The encircled points in Fig. 9 indicate
the promising compromise solutions for each weight com-
bination. In both case studies, the proposed NARX-LUBE-
MOIAPSO model is considered a compromise solution for
all weight combinations in the interval [0.1, 0.9]. This proves
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that the proposed model achieves the desired forecasting
quality and training time trade-off. Furthermore, as shown
in Fig. 9, the proposed model achieves the best Q-score for
the majority of weight combinations. The only exceptions
are when training time or forecasting quality are considered
extremely dominant criteria (> 0.8). In the first case, CCELM
outperforms the proposedmodel in both case studies, whereas
in the latter case, LSTM-LUBE-NSGA-II outperforms the
proposed model in case study I.

C. SPATIOTEMPORAL FRAMEWORK
1) SPATIOTEMPORAL FORECASTING
In this subsection, the results are generated using the spa-
tiotemporal forecasting methodology shown in Fig. 3. The
z-score is calculated for both case studies for all models,
to identify outliers in the forecasting results of the temporal-
only framework. The z-score of all the WTs in case study I is
presented in Fig. 10. The points inside the circle are consid-
ered outliers. The number of outliers of each model in both
case studies, before and after the application of the spatiotem-
poral methodology, is presented in Table 4. It can be seen that
7 out of 200 forecasting cases of the proposed model are con-
sidered outliers in case study I, while one case is considered
as outlier in case study II. After applying the spatiotemporal
forecasting methodology, all outlier cases of the proposed
model are eliminated for both case studies. The improved
results after applying the spatiotemporal forecasting method-
ology are presented in Table 5. The proposed model improves
its overall performance and manages to outperform LSTM-
LUBE-NSGA-II in case study II while maintaining a limited
increase in required training time (4.53% AND 13.57% in
case studies I and II, respectively). The performance of
LSTM-KDE and CCELM is also significantly improved, and
only two outlier cases remain in case study I. It is evident
that the proposed spatiotemporal forecasting methodology
eliminates almost all outlier cases, significantly improving
the stability of the probabilistic WPF models. Furthermore,
the forecasting quality and training time trade-off perspective
is maintained, as only a limited additional computational

FIGURE 10. Z-score of WTs in case study I. The points inside the circle
represent the outlier cases.

TABLE 4. Outlier cases before and after the spatiotemporal forecasting
methodology application for both case studies.

burden is introduced. Even for CCELM, which has the most
outlier cases in case study I, the required training time is only
increased by 69.23%, preserving it as the fastest model.

Perfect meteorological forecasts (exogenous inputs) were
considered in all results presented above. However, this
assumption is unrealistic. Meteorological data used as input
are either measurements at time t when forecasts are issued,
or forecasts for time t + 1,2,. . . , depending on the fore-
casting horizon. In both cases, the actual meteorological
values realized on the forecasting horizon are unknown,
thus an additional error is inherited from the input of the
WPF model. Efficient WPF evaluation necessitates testing
the performance of the model under realistic circumstances.
Table 6 presents forecasting results considering the forecast-
ing horizon and the error inherited by the input data used.
Specifically, forecasts are issued at time t with a 1-hour
forecasting horizon, using only data known at time t. This
is the worst-case scenario since no information regarding
time t + 1 is available; thus, the inherited input error is
maximum. Only the results of the two best probabilistic WPF
models are presented, i.e., the proposed model and LSTM-
LUBE-NSGA-II. Again, the forecasting quality of themodels
is similar, obviously worsened compared to the case where
perfect exogenous input parameters are available. After the
application of the spatiotemporal forecasting methodology,
all outlier cases of the proposed co-optimized model are
eliminated. Furthermore, the proposed model outperforms
LSTM-LUBE-NSGA-II in both case studies.

The PIs of different confidence levels generated by the
proposed model are shown in Fig. 11. Specifically, PIs are
generated for 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%,
95%, and 99% confidence levels for 24 hours-ahead fore-
casting. This time, forecasts of exogenous meteorological
parameters are used as input. Fig. 11 illustrates the PIs gener-
ated for 1 WT of case study I on a relatively ‘‘difficult’’ day,
in which wind power fluctuations are frequent and intense.
The larger the forecasting horizon, the higher the uncertainty
of the forecast. This is mainly due to the inherited error of
the meteorological parameter forecasts, which is propagated
to the probabilistic WPF model. The proposed WPF model
captures the wind power time series behavior sufficiently up
to about an 8 hours-ahead forecasting horizon. Hence, the
proposed model is suitable for short-term forecasts, from one
to several hours ahead (intra-day forecasting).
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TABLE 5. Aggregated results in spatiotemporal framework.

TABLE 6. Results for 1-hour ahead forecasts issued for the case where no
information about future values of exogenous variables is available
(worst-case scenario).

FIGURE 11. 24 hours-ahead PIs generated for different confidence levels
in case study I, as well as the real power output of the corresponding WT.
Forecasted meteorological data are used as input.

2) SPATIAL DEPENDENCE IN PFE
The spatial dependence in the PFE estimation is based on
the results generated only by the proposed model. A PFE
occurs when the PI does not cover the corresponding actual
output value. The interdependence structures of theWPPs are

FIGURE 12. Correlation coefficient matrices regarding PFE. (a) Clusters of
case study I. (b) WTs of case study II.

modeled using PFE correlation coefficient matrices, as shown
in Fig. 12. In case study I, the percentage of PFE is calculated
in each cluster.

The average correlation coefficient values are 0.6145 and
0.4114 for case studies I and II, respectively. The relatively
higher average correlation coefficient value measured for
case study I is a result of the clustering aggregation effect.
Furthermore, the WPP of case study I is located in an inland
flat field, whereas the WPP of case study II is located near
the coastline where strong, volatile wind fields are common.
Thus, the interdependence structural complexity of the WPP
in case study II is higher, and higher-level statistical tools
are necessary to model it sufficiently. The highest correlation
coefficient values in case study II are measured for WT 2.
The area covered by turbines 2, 4, 5, and 6 is the area with the
highest interdependence, probably because of the prevailing
wind fields in the area. On the other hand, the interdepen-
dence structure in case study I is simpler, and the patterns
are easier to identify. The correlation between neighboring
clusters is higher. Clusters that lie in the center of the WPP
have higher correlations on average, compared to clusters
lying at the edges. Thus, the PFE propagates in a smoother
manner resulting in greater dependence between the units of
the WPP.

The interdependence structure modeling provides addi-
tional information to the system operator about the quality
of the forecasts. Uncertainty is further quantified since the
PFE-based spatiotemporal dependencemodelingwarns about
future PIs coverage or non-coverage in highly correlated
areas. In these areas, the total number of necessary forecasts
could potentially be reduced, since a single forecast would
provide information about several WTs. However, the focus
of this paper was to investigate whether the PFE metric
could sufficientlymodel the interdependence structures of the
WPPs. Developing a methodology to exploit spatiotemporal
dependencies is out of the scope of this study.

VI. CONCLUSION
Accurately forecasting wind power generation is essential to
ensure stable operation of electric power systems. Interest
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in hybrid probabilistic approaches that are able to capture
uncertainties, is increasing. In this paper, a co-optimized
hybrid model consisting of multi-objective optimization,
metaheuristics, LUBE, and NARX networks is developed for
short-term probabilistic WPF. The PIs generated are opti-
mized using an improved adaptive version of PSO. Further-
more, a conditional spatiotemporal forecasting methodology
and a spatial dependence in the PFE modeling approach are
suggested to improve forecasting performance and compre-
hension of spatiotemporal dynamics.

The experimental results indicate the superiority of the
proposed fully co-optimized hybrid model when viewed from
the perspective of a forecasting quality and training time
trade-off. A similar forecasting performance to that of deep
learning-based hybrid models can be achieved when focus is
driven towards co-optimization, while significantly less train-
ing time is required. The proposed spatiotemporal forecasting
methodology overall improves the forecasting performance
since it eliminates the majority of outlier cases. Further-
more, interdependence structures are sufficiently modeled by
a binary PFE metric, resulting in an enhanced understanding
of the regional spatiotemporal dynamics.

Future research efforts should consider including hybrid
versions of optimization algorithms in the full co-optimization
approach of probabilistic WPF. Combining different meta-
heuristic, evolutionary, or even gradient-descent based algo-
rithms can have positive effects on global optimization
capabilities. Moreso, some aspects of this paper could be
further investigated, such as the impact of the temporal res-
olution of data on the forecasting results, or the applicability
of the proposed spatiotemporal framework to real energy
management optimization tasks. Furthermore, it would be
useful to validate the spatiotemporal framework on datasets
that are more coarse-grained spatially, as well as on larger
regions that include more than a single WPP.
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