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Abstract—In this paper, non ranging-based cooperative po-
sitioning algorithms based on GNSS measurements, including
Absolute Position Differencing (APD), Single-Differencing (SD),
and Double-Differencing (DD), are used to estimate the inter-
vehicle distance (IVD). To reduce the uncertainty of IVD esti-
mates, the maximum volume algorithm (MVA) was employed
to determine the optimal geometric group composition of four
satellites as a multi-GNSS system, namely GPS, GLONASS,
Galileo, and BeiDou. Real-world experiments on two autonomous
vehicles using SD-based and DD-based algorithms demonstrate
that estimated IVD uncertainty is sub-centimetres, which is close
to sensor-based solutions but at a lower cost.

Index Terms—Inter-vehicle-distance (IVD), Absolute Posi-
tion Differencing (APD), Single-differencing (SD), Double-
differencing (DD), Multi-GNSS systems

I. INTRODUCTION

The development and mass manufacturing of autonomous
vehicles has the potential to change mobility and safety in
transportation. As a key component of autonomous vehicles,
advanced driver assistance systems play a critical role in in-
creasing road safety, which significantly relies on inter-vehicle
distance (IVD). Sensor-based technologies can accurately es-
timate the IVD by measuring the relative vehicle distances
with, e.g., a Radio detection and ranging (Radar) and Light
Detection Ranging (LiDAR) [1] or adopting a camera sys-
tem [2]. However, high cost, poor performance in the adverse
weather conditions, and limited perceptual fields remain major
issues. The restricted perceptual range of these sensor-based
approaches can be addressed via cooperative positioning algo-
rithms [3]–[5]. In general, cooperative positioning algorithms
are classified as either ranging-based or non ranging-based.
For IVD estimation in ranging-based solutions, signal strength
variations such as radio signal strength [6], Time of Arrival [7],
round trip time [8] or Time Difference of Arrival [9] can be
used. However, these approaches are often expensive since
they require additional infrastructure and hardware to be
implemented. The non ranging-based cooperative algorithms,
on the other hand, provides the most cost-effective solutions by
measuring the IVD directly from each vehicle’s pseudorange
information [3]–[5]. Since GNSS systems are undoubtedly low
cost and can be employed independently in cooperative con-
nected vehicles [3]–[5], several studies have been conducted as
non-ranging cooperative positioning. Müller et al. [4] analyzed

the use of GNSS double difference pseudoranges to estimate
the relative position of two vehicles using two Bayesian filters.
Yang et al. [10] proposed the weighted least squares pseudor-
ange double difference algorithm for accurate IVD estimation
in Dedicated Short Range Communications (DSRC) vehicular
networks. Tahir et al. [5] provided a theoretical framework
for measuring IVD using GNSS measurements exchanged
between vehicles. Recently, Wang et al. [3] examined the
performance of four non ranging-based cooperative algorithms
for IVD estimation including Absolute Position Differencing
(APD), Pseudorange Differencing (PD), Single Differencing
(SD), and Double Differencing (DD) in static and dynamic
experiments. Although the IVD estimation problem utilizing
GNSS measurements have been extensively studied in the
literature, they were limited to a single satellite system and did
not take into account the Multi-Constellation Multi-Frequency
system, despite the fact that these systems are becoming
increasingly available to reach centimetre-level accuracy [11]
and can increase the overall system robustness. In this paper,
we extend the Multi-Constellation Multi-Frequency system
with multiple satellites to increase the IVD accuracy and relia-
bility. More in-depth, we studied the IVD estimation problem
with real-world data coming from four satellites, including
GPS, GLONASS, BeiDou, and Galileo, and we employed
non ranging-based cooperative positioning algorithms that use
sharing GNSS measurements, namely APD, SD and DD.
Furthermore, the maximum volume algorithm (MVA), which
is well-studied in [12], was used to determine the optimal
configuration composition of four satellites with the lowest
geometric dilution of precision (GDOP) to provide the highest
IVD estimation accuracy.

This paper is built up as follows. Section II provides
the mathematical formulation of the IVD estimation problem
using the APD, SD, and DD algorithms. Section III describes
the real-world experiment’s configuration, including the study
interval and the Lagrange interpolation for calculating the
satellite positions. Section IV explains how to determine the
optimal configuration of four satellites in various systems
including one-, two-, three-, and four-systems of satellites
using the MVA algorithm. Section V compares the estimated
IVD among the best sets of satellites. Finally, conclusions are
drawn in Section VI.



II. PROBLEM SET-UP

The GNSS raw measurements considered, denoted by
ρ, are defined as the distance between a vehicle V ∈
{v1, v2, v3, .., vn} and a satellite S ∈ {S1, S2, S3, .., Sm} at
any time-step k, which are modeled as follows [3]:

ρSV (k) = RS
V (k) + tSV (k) + εc(k) + εu(k) (1)

where RS
V (k) = ||PS(k) − PV (k)|| is the true range

between the vehicle V and the satellite S, PS(k) =
[xS(k), yS(k), zS(k)]

T is the position vector of the satellite S,
PV (k) = [xV (k), yV (k), zV (k)]

T is the position vector of the
vehicle on the Earth-centered, Earth-fixed (ECEF) coordinate
system, tSV (k) is the time delay error between the receiver and
the satellite, εc(k) is the correlated uncertainty induced by the
ephemeris and the atmosphere, and finally, εu(k) denotes the
uncorrelated uncertainty, which includes the multi-path error
and the thermal noise.

A. Cooperative positioning algorithms

1) Absolute Position Differencing (APD): The GNSS re-
ceiver installed on each vehicle is able to compute an estimate
of its absolute position vector in ECEF coordinates after
acquiring and tracking the GNSS signal of at least four
satellites. The absolute position differencing (APD) method
calculates the distance between two vehicles at any time-step
k denoted by Dij(k) = ||Pv1(k)− Pv2(k)||, i.e.

Dij(k) =
√

(zv2 − zv1)
2 + (yv2 − yv1)

2 + (xv2 − xv1)
2

(2)
where (xv1 , yv1 , zv1) and (xv2 , yv2 , zv2) are the ECEF co-
ordinates of vehicle 1 and vehicle 2 obtained at time-step
k from the GNSS, respectively. We assume here that the
two autonomous vehicles equipped with the GNSS receivers
additionally have a Real-time kinematic (RTK) system that
calculates the distance between itself and the satellite which is
broadcasting. Therefore, utilizing the RTK data, the estimated
IVD by the APD approach is assumed to be the actual ground
truth between the two vehicles.

2) Single-differencing (SD): Fig. 1 depicts the single differ-
encing approach used for the IVD. The SD method estimates
the IVD by subtracting the pseudorange measurements of
two vehicles from the same satellite. This approach can
eliminate both the clock imperfect synchronization between
the vehicles as well as the atmospheric delay error. Given that
the satellite S is sufficiently far from vehicles, the pseudorange
measurements from each vehicle toward the satellite S are
considered to be parallel (see Fig. 1) [3], [5]. More precisely,
given (1) for two vehicles vi and vj , computing the difference
we have:

∆ρSvivj (k) = ρSvi(k)− ρSvj (k) =

= ∆RS
vi,j (k) + ∆tvi,j (k) + ∆εSvi,j (k)

(3)

where ∆RS
vi,j (k) defines the difference between the true

distance of vehicle vi and vehicle vj from the satellite S,
∆tvi,j (k) denotes the time delay error, and ∆εSvi,j (k) repre-
sents all the remaining uncertainties, usually dubbed unusual

Fig. 1. Single-Differencing (SD-based) algorithm and triangle concept

Fig. 2. DD-based IVD estimation algorithm

error [3], [5]. Due to the difference among the measured
pseudoranges, the unusual error appears to be increasing [3].
Since the true distances between the vehicles and the satellites
are much larger than the distance between the vehicles, we can
estimate the ∆RS

vi,j (k) as follows [3], [5]:

∆RS
vi,j (k) = [uS ]T

−→
Dij(k) (4)

where
−→
Dij(k) = Pvi

(k)−Pvj (k) whose norm is given by (2),
uS =

PS(k)−Pvi
(k)

||PS(k)−Pvi
(k)|| is the line-of-sight unit vector from

vehicle vi to satellite S, PS(k) represent the position of the
satellite S and Pvi(k) indicates the position of the reference
vehicle vi at time-step k (see Fig. 1 for reference). By
considering N common visible satellites for the two vehicles
and using (3), we can build the following measurement matrix

∆ρ1vivj (k)

∆ρ2vivj (k)
...

∆ρNvivj (k)

 ≈


[u1]T 1
[u2]T 1

...
...

[uN ]T 1


[ −→

D ij(k)
∆tvi,j (k)

]
(5)

yielding the SD estimates [3], [5].
3) Double-differencing (DD): In the SD-based algorithm

of (5), user clock offsets and uncorrelated errors are still
present. To mitigate this uncertainties, we can utilize a new
GNSS measurement and then computing the difference of the
SD estimates obtained from two distinct satellites, say SM

and SN . This is referred to as double-differencing (DD) and
depicted in Fig. 2. The DD-based algorithm assumes that both
vehicles can track satellites SM and SN at the same time.



Fig. 3. DD-based IVD estimation algorithm and triangle concept

Hence, we first apply an SD-based algorithm to each vehicle
toward the satellites SM and SN , denoted by ∆ρSM

vivj (k) and
∆ρSN

vivj (k), respectively, which are obtained from (3). Then,
the difference of such quantities is obtained as:

∇∆ρSMSN
vivj (k) = ∆ρSM

vivj (k)−∆ρSN
vivj (k) =

= ∆RSMSN
vivj (k) + ∆εSMSN

vivj (k)
(6)

where ∆RSMSN
vivj (k) = ∆RSM

vi,j (k) − ∆RSN
vi,j (k) and

∆εSMSN
vivj (k) = ∆εSM

vi,j (k) −∆εSN
vi,j (k). We can then estimate

∆RSMSN
vivj (k) using the same trigonometric idea of SD, that is

depicted in Fig. 3 [3]–[5].

∆RSMSN
vivj (k) = [uSM − uSN ]

−→
D ij(k) (7)

where uSM and uSN are computed as in (4). Using (6) is then
possible to calculate the distance and the relative positions
of two vehicles. Indeed, using the satellite M as reference,
the solution to the DD-based algorithm according to Fig. 3 is
given by the matrix form [3], [4]:

∇∆ρS1SM
vivj (k)

∇∆ρS2SM
vivj (k)

...
∇∆ρSNSM

vivj (k)

 ≈


[u1 − uM ]T

[u2 − uM ]T

...
[uN − uM ]T

−→
D ij(k) (8)

Notice that the IVD vector
−→
D ij(k) is projected in the direction

of the difference satellite unitary vectors −→u SMN = −→u SM −
−→u SN for each DD measurement ∇∆ρSMN

vivj (k). Assuming four
satellites, say SM , SN , SO, and SP , and considering SM as
the reference satellite, the following system of linear equations
derived from (8) can be obtained [4]:∇∆ρSMN

vivj

∇∆ρSMO
vivj

∇∆ρSMP
vivj

 =

uSMN
x uSMN

y uSMN
z

uSMO
x uSMO

y uSMO
z

uSMP
x uSMP

y uSMP
z

Dx

Dy

Dz

 =

= Huu
−→
D ij(k)

, (9)

where

−→u Sqr =
Sq(k)− Pvi(k)

||Sq(k)− Pvi(k)||
− Sr(k)− Pvi(k)

||Sr(k)− Pvi(k)||
=

=

u
Sq
x

u
Sq
y

u
Sq
z

−

uSr
x

uSr
y

uSr
z

 ,

where Sq and Sr, q, r ∈ {M,N,O, P} are the satellite
positions and Pvi is position of the vehicle vi, all evaluated
at the time-step k. Notice that 4 is the minimum number of
satellites needed to have a solution of the DD-based algorithm,
i.e., Huu (known as the geometry matrix) should be non
singular. Usually, if more than 4 satellites are available, a more
precise and effective Least Squares solution is adopted.

B. Geometric dilution of precision (GDOP)

To compute the GDOP as a figure of merit for the reachable
uncertainty [13], we first assume that all the GNSS measure-
ments are zero-mean and with equal variance σ2

ρ, which yields:

Cx = σ2
ρ(H

T
uuHuu)

−1 =


D11 D12 D13 D14

D21 D22 D23 D24

D31 D32 D33 D34

D41 D42 D43 D44

 (10)

Then GDOP is finally given by:

GDOP =
√

D11 +D22 +D33 +D44. (11)

III. OPTIMAL SATELLITE SELECTION PROCEDURE

The maximum volume algorithm (MVA), a four-steps
heuristic method for picking four satellites based on the form
of a tetrahedron, was proposed by Kihara et al. [12] as follows:

• Step.1: Select the visible satellite S1 with the largest
elevation angle relative to the position of the receiver.

• Step.2: Choose the visible satellite S2 having the angle
to S1, i.e., θS1S2

, close to 109.47◦.
• Step.3: Pick the visible satellite S3 that maximizes the

volume of the tetrahedron:

VA =
1− a3

6

[√
2(1− a2)(1 + a3)(1− a2a3 − b2b3)+

+ |b2c3|
]
,

(12)
where

a2 = cos θS1S2
, b2 = sin θS1S2

, a3 = cos θS1S3
,

b3 =
cos θS2S3

− a2a3
b2

, c3 = ±
√
1− a23 − b23.

Notice that the tetrahedron is formed by S1, S2, S3.
• Step.4: Select the satellite S4 from the remaining visible

satellites so that it maximizes the volume of the tetrahe-
dron

VB =
1

6
det(S) (13)

where S is the matrix that contains the line-of-sight
vectors corresponding to S1, S2, S3, and S4.

IV. REAL-WORLD EXPERIMENT CONFIGURATION

We conducted a real-world experimental test for two au-
tonomous vehicles collecting pseudorange data from different
satellites. We first considered all 1500 available epochs for
the two vehicles in our case study, while considering two
known satellite positions in the first and last epochs taking
from the NASA service data on April 26, 2022 at 12:55:00



and 13:00:00 UTC time [14]. Then, as shown in Fig. 4, we
employed the Lagrange interpolation approach to compute
satellite positions epoch-by-epoch across the whole study
interval. For this purpose, we consider Ls ∈ {l0, l1, l2, ..., ln}
be the values of the satellite locations, i.e., Ls = [xs, ys, zs],
in times at t ∈ {t0, t1, t2, ..., tn}. The first and final known
satellite positions taken from NASA service data are then used
as inputs for the Lagrange method to calculate the approximate
value of l, denoted by L(t) at any time of t as follows [15]:

L(t) = a0l0 + a1l1 + a2l2 + ...+ anln =

n∑
i=0

aili (14)

where:

ai =
(t− t0)(t− t1)...(t− ti−1)(t− ti+1)...(t− tn)

(ti − t0)(ti − t1)...(ti − ti−1)(ti − ti+1)...(ti − tn)
(15)

Now, by substituting t in Eq. 14 with {t0, t1, t2,..., tn}, we
obtain:

L(t0) = l0, L(t1) = l1, ...., L(tn) = ln (16)

According to [15], while dealing with Lagrange interpolation
for computing satellite positions, we typically have an error
in the beginning and ending points of the interpolation. Thus,
we considered a validity interval for dealing with Lagrange
interpolation errors in our satellite positioning by ignoring
the start and final 10% of the data-set, as proposed in [15].
To evaluate the performances, the root mean squared error
(RMSE) of the IVD is computed as:

RMSE =

√√√√ 1

N

N∑
k=1

[
Dij(k)− D̂ij(k)

]2
(17)

where Dij(k) is the true distance between the two vehicles
vi and vj at time-step k and D̂ij(k) is the estimated IVD
at time-step k. N is the number of total epochs during the
interval period, which is N = 250. It has to be recalled that
the ground-truth IVD Dij(k), which is computed as in (1),
is the one returned by the APD with the RTK system. In all
the following experimental results, this value is over the entire
study interval is 3.35 m.

A. One-system of satellites

The total number of common visible satellites in our case
study is 26 (see Fig. 5). In the first set of study, we consider
only one group of satellites, say GPS, GLONASS, Galileo,
or BeiDou. To select the four satellites, we used the MVA
algorithm previously depicted. For example, Table I subsumes
the optimal choice for the GPS satellite system with the
four steps of the MVA exemplified. In the end, among the
8 available satellites, G18, G05, G16 and G31 were chosen
in order. Table II subsumes the MVA results obtained for
all the available satellite systems, i.e., including GLONASS,
Galileo, and BeiDou. According to Table II and Fig. 6, the
Galileo satellite system has the lowest RMSE and the closest
IVD for both the SD and DD algorithms to the ground truth

Fig. 4. Structure of the study interval

TABLE I
OPTIMAL CONFIGURATION OF FOUR SATELLITES FROM ONLY GPS

One-system of satellites (GPS)
Satellite Step 1

Elevation angle
(deg)

Step 2
Angle to S1

(deg)

Step 3:
V3

Step 4:
V4

S2:G05 17.221 105.23 ———— ———
S3:G16 46.705 17.327 0.31456 ———
S1:G18 75.032 —— ——— ———

G23 23.833 111.26 0.10962 0.14394
G26 74.94 19.134 0.12668 0.016652
G27 20.485 15.836 0.29532 0.080569
G29 32.762 136.56 0.2463 0.022658

S4:G31 21.306 57.955 0.047787 0.168999

APD. Notice that, as mentioned previously, the DD gains the
highest performance. Moreover, the poor performance of the
GLONASS confirms our first statement that we cannot rely
only on one system of satellites for measuring the IVD due
to possible satellite visibility limitations.

Fig. 5. List of common visible satellites for the vehicles v1 and v2

B. Two-system of satellites

There are six scenarios to combine two satellite systems to
find the optimal geometry configuration of four satellites, in-
cluding GPS-GLONASS, GPS-Galileo, GPS-BeiDou, Galileo-
BeiDou, Galileo-GLONASS and BeiDou-GLONASS. As for
the one-system of satellites case, we used the MVA algorithm
to determine the optimal geometry of configuration in those
six cases. Table III provides a comparative analysis of the
performance for all groups from the two-system of satellites.



TABLE II
AVERAGE ESTIMATED IVD IN METERS FOR ONE-SYSTEM OF SATELLITES

System of
Satellite

Optimal
Configuration

APD DD SD RMSE

GPS G05,G16,G18,G31 3.35 2.7987 2.8168 1.5049
GLONASS R09,R15,R18,R19 3.35 28.326 28.326 25.489

Galileo E33,E31,E24,E26 3.35 3.294 3.3294 0.2761
BeiDou C35,C45,C13,C24 3.35 3.9477 3.9477 1.8117
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Set.8: R9-R15-R18-R19

Set.32: E33-E31-E24-E26

Set.33: C35-C45-C13-C24

Fig. 6. Estimated IVD by SD- and DD-based algorithms in one-system of
satellites

C. Three-system of satellites

There are three different satellite groups for the three-system
of satellites, including GPS-Galileo-BeiDou, GPS-Galileo-
GLONASS, and Galileo-BeiDou-GLONASS. Table IV sum-
marizes the analysis performance for these cases.

D. Four-system of satellites

Finally, Table V shows that the optimal group of satellites
when combining all the sources is C35, E24, G5, and R15.

V. RESULTS AND DISCUSSION

From the presented analysis, we first notice that basically
there is no difference between SD and DD when the number
of satellite systems increases. In other words, the systematic
effects affecting the pseudorange measurements appear to be
cancelled out. This is somehow expected since every satellite
systems suffer from different systematic uncertainties in the
measurements. As a second result, we may notice that mixing
together different satellite systems has indeed some benefits,
as depicted in Fig. 7. It may be noted that, even accounting
for system of satellites returning quite poor results (see the
GLONASS results in Table II), the combination with other
sources turns out to be a winning combination, as reported
in Fig. 7 and in the first row of Table V. In other words,
combining together multiple satellite systems surely increases
the estimation robustness (we are not constrained to a single
source of data) and, on the other hand, reaches similar target
uncertainties. For what concerns the robustness and the favor-
able satellite configuration when multiple systems are adopted,
we finally report in Fig. 8 the GDOP values as a function of

TABLE III
AVERAGE ESTIMATED IVD IN METERS FOR TWO-SYSTEM OF SATELLITES

System of
Satellite

Optimal
Configuration

APD DD SD RMSE

GPS
GLONASS

G18,G5,R9,R15 3.35 11.775 11.775 8.5636

GPS
Galileo

G18,G5,E24,E12 3.35 4.2927 4.2927 1.1764

GPS
BeiDou

C35,G5,C24,C45 3.35 2.9276 2.9276 1.4279

BeiDou
Galileo

C35,C45,C13,C24 3.35 31.623 31.623 32.413

Galileo
GLONASS

R18,R15,E24,E26 3.35 4.4782 4.4782 2.3952

BeiDou
GLONASS

C35,R15,C13,C24 3.35 3.7108 3.7111 1.6596

TABLE IV
AVERAGE ESTIMATED IVD IN METERS FOR THREE-SYSTEM OF

SATELLITES

System of
Satellite

Optimal
Configuration

APD DD SD RMSE

GPS
Galileo
BeiDou

C35,E1,G5,G27 3.35 2.8736 2.8736 0.6776

GPS
Galileo

GLONASS

G18,G23,E24,G5 3.35 5.5057 5.5059 2.2201

BeiDou
Galileo

GLONASS

C35,E1,E24,C29 3.35 31.632 31.623 32.413

the epoch time (i.e., the time step k). As clearly depicted, the
GDOP values decreases (hence, less ensuing uncertainty) from
one-system of satellite to four-system of satellites. It should be
noted that, while the performance of the one-system and four-
system of satellites in our case study is closely comparable,
the four-system of satellites has the lowest GDOP, as shown in
Fig. 8. Furthermore, we may notice that even when the GDOP
configuration worsen as a function of time (upper left picture
of Fig. 8), this effect is highly mitigated (actually, inverted)
when multiple systems are considered at once, thus further
verifying the main message of this paper: using multiple
satellite systems benefit the uncertainty related to the inter-
vehicle distance.

As a final comparison, let us consider the absolute error,
i.e., ∆d = |Dij(k)− D̂ij(k)|, from the camera-based solution
proposed in [16]. With such a solution, the estimated IVD in
the best case of a partly occluded environment or in a fully
occluded situation is 6.2 cm and 18.9 cm, respectively, which
is comparable to the analysis proposed here but at a higher
computational cost.

VI. CONCLUSION

This study proposed and experimentally validated that
the use of a multi-GNSS system using either the Single-
Differencing (SD) or the Double-Differencing (DD) algo-
rithms can provide lower uncertainties in the determination
of the inter-vehicle distance. Indeed, it has been shown with



TABLE V
AVERAGE ESTIMATED IVD IN METERS FOR FOUR-SYSTEM OF SATELLITES

System of
Satellite

Optimal
Configuration

APD DD SD RMSE

BeiDou
Galileo

GLONASS
GPS

C35,E24,G5,R15 3.35 3.47201 3.47312 1.035

GPS
Galileo

GLONASS
BeiDou

C35,E1,G5,R19 3.35 4.6550 4.6555 2.4007

GLONASS
Galileo
GPS
BeiDou

R18,C13,G23,E24 3.35 5.5900 5.5999 2.2893

GPS
Galileo
BeiDou

GLONASS

C35,E1,G5,G27 3.35 2.8736 2.8736 0.6776
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Set.74: C35-E24-G5-R15 (Four-system of satellites)

Fig. 7. Estimated IVD by the DD-based algorithm in the best configuration
of satellites

experimental evidence that relying on multiple satellite sys-
tems benefits the reachable uncertainty (as expressed with the
GDOP) and the robustness. Moreover, it also have computation
time reduction since both the SD and DD behaves similarly.
In future research, we will focus on the application of the
method on multiple vehicles (i.e., more than two) and in the
improvement of the algorithmic solution provided by the SD
or DD approaches.
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Estimation Based on Stereo Camera System with Implementation on
a Real ADAS Board,” 2022 International Conference on Software,
Telecommunications and Computer Networks (SoftCOM), 2022, pp. 1-
6, doi: 10.23919/SoftCOM55329.2022.9911360.

[3] F. Wang , W. Zhuang , G. Yin, S. Liu, Y. Liu and H. Dong,”Robust
Inter-Vehicle Distance Measurement Using Cooperative Vehicle Local-
ization”,Sensors 2021, 21(6), 2048; https://doi.org/10.3390/s21062048.

50 100 150 200 250

Epoch Time (t)

4.97

4.98

4.99

5

5.01

5.02

5.03

G
D

o
P

GDoP: One-system of satellites

GDoP_v1

GDoP_v2

50 100 150 200 250

Epoch Time (t)

2.468

2.469

2.47

2.471

2.472

G
D

o
P

GDoP: Three-system of satellites

GDoP_v1

GDoP_v2

50 100 150 200 250

Epoch Time (t)

2.874

2.876

2.878

2.88

2.882

G
D

o
P

GDoP: Two-system of satellites

GDoP_v1

GDoP_v2

50 100 150 200 250

Epoch Time (t)

2.0956

2.0958

2.096

2.0962

2.0964

2.0966

2.0968

G
D

o
P

GDoP: Four-system of satellites

GDoP_v1

GDoP_v2

Fig. 8. GDOP in the optimal configuration of satellites

[4] F. de Ponte Müller, E. M. Diaz, B. Kloiber and T. Strang, ”Bayesian
cooperative relative vehicle positioning using pseudorange differences,”
2014 IEEE/ION Position, Location and Navigation Symposium -
PLANS 2014, 2014, pp. 434-444, doi: 10.1109/PLANS.2014.6851401.

[5] M. Tahir, S. S. Afzal, M. S. Chughtai and K. Ali, ”On the Accu-
racy of Inter-Vehicular Range Measurements Using GNSS Observables
in a Cooperative Framework,” in IEEE Transactions on Intelligent
Transportation Systems, vol. 20, no. 2, pp. 682-691, Feb. 2019, doi:
10.1109/TITS.2018.2833438.

[6] N. Saeed, W. Ahmad and D. M. S. Bhatti, ”Localization of vehicular ad-
hoc networks with RSS based distance estimation,” 2018 International
Conference on Computing, Mathematics and Engineering Technologies
(iCoMET), 2018, pp. 1-6, doi: 10.1109/ICOMET.2018.8346313.

[7] J. Yin, Q. Wan, S. Yang and K. C. Ho, ”A Simple and Accurate
TDOA-AOA Localization Method Using Two Stations,” in IEEE Sig-
nal Processing Letters, vol. 23, no. 1, pp. 144-148, Jan. 2016, doi:
10.1109/LSP.2015.2505138.

[8] H. Cao, Y. Wang, J. Bi, S. Xu, M. Si, and H. Qi, “Indoor positioning
method using WiFi RTT based on LOS identification and range calibra-
tion,” ISPRS Int. J. Geo-Inf., vol. 9, no. 11, p. 627, Oct. 2020

[9] J. He and H. C. So, ”A Hybrid TDOA-Fingerprinting-Based Localization
System for LTE Network,” in IEEE Sensors Journal, vol. 20, no. 22, pp.
13653-13665, 15 Nov.15, 2020, doi: 10.1109/JSEN.2020.3004179.

[10] D. Yang, F. Zhao, K. Liu, H. B. Lim, E. Frazzoli and D. Rus, ”A
GPS Pseudorange Based Cooperative Vehicular Distance Measurement
Technique,” 2012 IEEE 75th Vehicular Technology Conference (VTC
Spring), 2012, pp. 1-5, doi: 10.1109/VETECS.2012.6240332.

[11] T. Kong, L. Ma, and G. Ai, ”Research on Improving Satellite Positioning
Precision Based on Multi-Frequency Navigation Signals”, Sensors 2022,
22(11), 4210; https://doi.org/10.3390/s22114210.

[12] M. Kihara and T. Okada, ”A Satellite Selection Method and Ac-
curacy for the Global Positioning System”, ION Navigation, spring
1984,https://doi.org/10.1002/j.2161-4296.1984.tb00856.x

[13] F. Shamsfakhr, A. Antonucci, L. Palopoli, D. Macii and D. Fontanelli,
”Indoor Localization Uncertainty Control Based on Wireless Ranging
for Robots Path Planning,” IEEE Trans. on Instrumentation and Mea-
surement, vol. 71, pp. 1-11, 2022.

[14] https://cddis.nasa.gov/index.html (accessed May. 10, 2022).
[15] M. Horemuz and J. V. Andersson, ”Polynomial interpolation of

GPS satellite coordinates”, GPS Solut (2006) 10: 67–72, DOI
10.1007/s10291-005-0018-0.

[16] T. Zhe, L. Huang, Q. Wu, J. Zhang, C. Pei and L. Li, ”Inter-Vehicle
Distance Estimation Method Based on Monocular Vision Using 3D
Detection,” in IEEE Transactions on Vehicular Technology, vol. 69, no.
5, pp. 4907-4919, May 2020, doi: 10.1109/TVT.2020.2977623.


