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ABSTRACT Analog in-memory computing (AIMC) has been utilized in convolutional neural net-
works (CNNs) edge inference engines to solve the memory bottleneck problem and increase efficiency.
However, AIMC analog-to-digital converters (ADCs) restricted resolution imposes quantization of output
activations that can reduce the accuracy without meticulous optimization. A study conducted output quanti-
zation calibration and obtained configurations with which low-resolution ADCs did not affect the accuracy.
The configurations were layer-specific. Therefore, a real-time quantization adjustment was required. AIMC
output quantization is adjusted by controlling analog gain entangling it with analog parameters and nonlinear
functions. AIMCdynamic output quantization control without interrupting its operation has been an unsettled
problem until now. This paper introduces a technique for imposing output quantization configurations
obtained from calibration processes on AIMC through circuit parameters setup. The technique permits on-
the-fly quantization adjustments enabling layer-wise calibration that increases achievable network accuracies
on AIMC platforms. As a case study, we deployed the method on the AIMC macro of an artificial
intelligence (AI) inference engine SoC platform with a RISC-V processor and hybrid DIgital-ANAlog
accelerators (DIANA). We related its controllable circuit parameters with the quantization configuration
in a look-up table. This case study has noteworthy side benefits in identifying platform limitations due
to nonlinearities and design imperfections. These limitations are investigated, and design advice that is
transferable to future AIMC designs is provided to avoid imperfections such as mismatch, bias voltage drop,
and interconnect delay. In addition, the study of output quantization from different levels of abstraction leads
to design guidelines to facilitate dynamic quantization control during the application phase.

INDEX TERMS Analog in-memory computing (AIMC), deep neural network (DNN), convolutional neural
network (CNN), application-specific integrated circuit (ASIC), artificial intelligence hardware acceleration,
modeling, characterization, quantization.

I. INTRODUCTION
Artificial intelligence (AI) has been recognized as ‘‘the new
electricity’’ for its potential to revolutionize the industry [1].

The associate editor coordinating the review of this manuscript and

approving it for publication was Vivek Kumar Sehgal .

It demonstrated vast applicability in various domains,
from natural language processing (NLP) [2], [3], image
classification and object recognition [4], [5] to stock market
trading [6], [7]. In computer vision applications, convolu-
tional neural networks (CNNs) showed outstanding ability
due to their spatial kernels [8].
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CNNs require a high computational load indicating par-
allelization possibility. A vast effort exists to fully harness
parallel computing architectures for higher efficiency [9].
GPUs [10], FPGAs [11], and application-specific integrated
circuits (ASICs) [12] can leverage a higher level of par-
allelism than conventional processors. Nevertheless, the
development cost and time, along with the performance and
efficiency, increase from GPUs to ASICs. In specific applica-
tions where energy and speed constraints are limited, ASICs
are the only viable solution. Research ismoving towardsmore
efficient and accurate systems to accelerate CNN at the edge.
A very promising acceleration method consists of computing
MAC operations in the analog domain directly in memory
cells.

The unmet need for efficiency by digital computing in edge
devices caused a resurgence in analog computing. Analog
computing can be exploited to increase efficiency at the cost
of accuracy reduction [13]. The analog domain represents a
number by a single signal without resolution restriction and
performs MAC operations with one device per input [14].
This characteristic makes analog accelerators strong candi-
dates for applications with limited energy budgets. Analog
in-memory computing (AIMC) combines analog efficiency
with in-memory computing (IMC) to overcome the memory
wall bottleneck by merging processor and memory units,
pushing energy efficiency by orders of magnitude [15]. How-
ever, device nonlinearities, mismatches, and noise impact the
analog computation’s accuracy. On top of that, analog circuits
lack flexibility as their behavior, as well as the data flow, are
fixed at design time. Thus, an analog macro engineered for a
particular workload or required precision may not be efficient
when the requirements change. CNNs show high resilience to
errors and reduced parameter precision but with limitations
and different output sensitivity to different layers in the
network [16]. These observations promise high accuracy and
efficiency with a hybrid digital-AIMC accelerator that can
split the workload in agreement with accuracy and efficiency
requirements.

Along this line, the DIANA SoC [17] integrates three cores
in a complete system: a RISC-V CPU, a digital accelerator,
and an AIMC-based accelerator [18]. The RISC-V processor
controls the system and allocates the workload among the two
accelerators. The AIMC accelerator is designed to achieve
high utilization and efficiency with moderate accuracy for
layers with a high number of channels. Layers with fewer
parallelization possibilities and more severe sensitivity to
accuracy are assigned to the digital accelerator. This structure
allows DIANA to achieve high efficiency without a decrease
in network accuracy by allocating the execution of different
layers in the digital or analog core. DIANA’s AIMC macro
is used as a case study in this paper while analyzing the
applicability of the technique presented here for other AIMC
platforms.

The AIMC paradigm can be implemented with various cell
technologies. Non-volatile memories (NVMs) form dense
crossbar arrays to perform parallel MAC operations [19].

NVMs are enabled with emerging technologies such as
resistive random access memory (RRAM), [20] phase-
change memory (PCM) [21], and spintronics [22]. How-
ever, NVM’s technological drawbacks, like read and write
non-idealities [23], low reliability, and temperature depen-
dency [19], make the design of AIMCmacro challenging and
motivate designers towards more standard technologies such
as CMOS-based SRAMs [24], [25], [26], [27]. This last type
of cell is the one used in DIANA.

ADCs are essential parts of AIMCs. They convert volt-
ages proportional to the MAC operation results to digital
data. Consequently, they quantize the output activations to
fewer levels than the MAC operation result requires. At this
stage, careful calibration is required to reach an accuracy
comparable with the baseline [28]. The quantization con-
figurations are set by selecting circuit analog parameters.
A methodology is missing to link the quantization configura-
tions obtained from thorough optimizations [28] to physical
circuits. This method should determine the mechanism by
which the quantization parameters, obtained at the software
level, are imposed on AIMC. It can be a modeling technique
that connects the circuit-level parameters to quantization con-
figurations.

There are some efforts on AIMC modeling. Spetalnick
et al. [29] combine system and circuit models and simulations
to analyze the SRAMAIMC design space and spot efficiency
gains and losses. Kein et al. [30] integrate an AIMC cell
model to gem5-x simulator for full-system simulation in the
design phase. However, to the authors’ knowledge, there is no
model that selects the circuit parameters according to output
quantization calibration.

The lack of a quantization imposition technique has hin-
dered the optimal use, in terms of computation accuracy,
of the AIMC. Moreover, non-idealities of the analog circuit
should be known for a correct accuracy evaluation and com-
pensation strategy. The characterized non-idealities can also
be mitigated in future AIMC designs.

In this paper, we contribute to the AIMC paradigmwith the
following developments:

• A technique is developed to link the AIMC circuit
analog parameters to its output quantization. It allows
on-the-fly implementations of layer-wise quantization
calibrations like [28] onAIMCs, significantly increasing
the achievable classification accuracy on the platform.
The study of the output quantization mechanism also
gives guidelines for AIMC designs to better exploit the
ADC output range.

• The method is applied to DIANA’s AIMC macro
as a case study. As a result, a linear model of the
DIANA’s AIMC is developed. The model can translate
the quantization parameters obtained from calibration
or training to controllable circuit parameters. The Con-
trollable parameters are an external bias voltage and a
programmable PWM unit time. Thus, the quantization
configuration is set by adjusting these parameters in
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a real-time manner. A look-up table summarizes the
model and eases its application.

• Important non-idealities for accuracy are characterized
and modeled. Methods are proposed to avoid, compen-
sate, and in future designs, improve non-idealities.

Section II discusses the technique required to impose the
quantization parameters on AIMC output. Section III briefly
introduces the DIANA’s AIMC macro. This SoC is used
in the rest of the paper as an example to apply the sug-
gested method. Section IV presents the experimental results.
Section V implements the method on DIANA as a model, and
section VI concludes the paper.

II. AIMC OUTPUT QUANTIZATION CONTROL THROUGH
CIRCUIT PARAMETERS
Quantization is used to reduce the computational cost of
CNN and match the edge applications restrictions [31]. The
quantization is applied to input activations and weights to
reduce their bit precision to ba and bw, respectively. The
output of a convolution should ideally be coded with lo levels:

lo = (2ba − 1) × (2bw − 1) × na + 1 (1)

where na is the number of accumulations in the MAC oper-
ation. Some works reported re-quantization at the activation
layer to directly produce quantized input activations for the
next layer [32], [33]. This output quantization is necessary for
AIMCs due to their restricted ADC resolutions. As an exam-
ple, a layer with 16 7-bit input channels and 3 by 3 kernels
with 2-bit weights would need 11-bit ADCs according to (1)
that are prohibitively power-hungry [34].

The output quantization should be calibrated according to
the CNN model and activation distribution in each layer or
even channel in order to achieve high network accuracy [31].
Calibration is the process of determining the clipping range
[α, β], a range that data out of it will be mapped to its limits
before quantization.

There are different calibration approaches. A straightfor-
ward way is to set the clipping range to the maximum and
minimum values of the to-be-quantized data. This method
increases the dynamic range and reduces the resolution. So,
other approaches, like using percentile [35] and optimizing
the data loss [36], take a smaller range to increase resolution
mitigating the effect of outliers. Another method is to learn
the quantization parameters during the training [28], [33].
Laubeuf et al. [28] conducted research on output quantiza-

tions with AIMCs. They showed improvement in accuracy
with a layer-wise output quantization calibration over the
network-wide counterpart. Their work used a DIANA-like
AIMC macro and did a Pytorch simulation to show dynamic
output quantization control with adjusting pulse width modu-
lation (PWM) unit time. Accuracies on par with the baseline
are achieved for Resnet-20 on CIFAR-10 and Resnet-18 on
ImageNet after output quantization optimization. The paper
showed the importance of AIMC output quantization cali-
bration and its enforcement possibility via circuit parameters
selection.

However, results from [28] are not directly applicable to
AIMCs, because first, their assumptions in the simulation are
different from the actual chip structure. Second, they only
analyzed the unit time adjustment for a fixed bias voltage
value. The bias voltage can be used for fine-tuning the quan-
tization parameters in DIANA, as its values are continuous,
unlike discrete unit time values. Also, using the combina-
tion of bias voltage and unit time increases the designers’
degree of freedom, so they can optimize the chip also for
power and performance vs. accuracy [17], for example. And
third, the nonlinear behavior and second-order effects of
AIMC are neglected in their linear Pytorch model. There
is a gap between their high-level study and the low-level
AIMC circuits. To fill the gap, it is required to investigate the
quantization from both network and circuit-level perspectives
to unveil the output quantization mechanism in AIMCs.

The ADC thresholds in AIMCs are usually uniform and
symmetric. Therefore, the output quantization is also uni-
form and symmetric from the high-level network perspective.
Under this assumption, the scale factor is defined as a floating
point number with which the data multiplies before dis-
cretization. As it should convert a data from [−β, β] to 2b−1
levels, scale factor can be calculated with:

S =
2b − 1
2β

(2)

in which b is the quantization (ADC) bitwidth. The quantiza-
tion output (O) with this scale factor is then obtained as:

O = int(S × Omac) (3)

where Omac is the MAC operation result.
From the circuit perspective, there is a gain (Av) that deter-

mines the voltages at the ADC input (Vadc) proportional to
the MAC operation result.

Vadc = Av × Omac (4)

This voltage is then converted to digital at the ADCs accord-
ing to the ADC quantization steps (δadc).

O = int(
Vadc
δadc

) (5)

Comparing (4) and (5) with (3) the scale factor from the
circuit perspective is

S =
Av
δadc

(6)

Therefore, there are two ways to control the AIMC output
quantizer, adjusting ADC quantization steps or AIMC analog
gain. ADC quantization steps are usually optimized and fixed
according to the voltage dynamic range and ADC bit preci-
sion. On the other hand, it is preferred to support quantization
dynamic control via analog gain.

To control the quantization via analog gain, one or
more parameters to change the analog gain have to be
devised during the design. These parameters should be
able to change easily to set different quantization set-ups

VOLUME 11, 2023 87191



I. Dadras et al.: AIMC Modeling and Parameter Tuning for Layer-Wise Optimal Operating Point

while executing different layers. In addition, the controllable
analog gain range should be adequately wide to support
different possible quantization configurations. The effect
of the gain-controlling parameters on other performance
figures should also be taken into account. Because the
gain-controlling parameters have effects on other perfor-
mance figures, it is beneficial to have more of these param-
eters. This gives more flexibility to optimize the affected
performance by tuning the correct parameter for specific
applications. Moreover, the relationship between the parame-
ters and quantization should be defined clearly. Due to analog
devices’ higher-order effects and non-idealities, it usually
cannot be done analytically. Thus, a measurement and char-
acterization campaign may be needed.

The parameters that can be used for analog gain control are
as diverse as AIMC structures. For example, in thememristor-
based [37], [38] architectures, the memristor value and the
DAC gain are related to the analog gain. Memristor values are
programmable, and there is a possibility to consider a scale
on them. In designs with PWM DAC [39], [40], the PWM
unit time is a potential parameter to be easily programmed to
control the gain and modulate the quantization. In DIANA,
there are PWM unit time and current limiting transistor bias
voltage for this purpose. The fact that DIANA SoC uses a
combination of two parameters that one, e.g. bias voltage, has
a non-linear relationship with the analog gain, and the other
is a commonly used parameter in time-domain AIMC makes
DIANA a good example to be a case study in this paper.

This section developed a technique for controlling the
AIMC output quantization. The relationship between gain
and quantization was defined, and it was shown that the
analog gain is preferred to set the quantization parame-
ters. Hence, gain-controlling parameters should be utilized
in AIMC to dynamically adjust quantization for each layer.
In the next section, DIANA’s AIMC will be introduced to
be used as an example for this technique. The parameters
involved in its analog gain will be identified, and their rela-
tionship with quantization parameters will be studied.

III. DIANA’S AIMC MACRO
This section first briefly describes the AIMC macro imple-
mentation integrated into DIANA. Then, it focuses on the
AIMC output quantization parameters control. It finds the
circuit parameters that can modulate the output quantization.
The effects of these parameters on quantization will be mod-
eled in the following sections.

A. AIMC MACRO STRUCTURE
The macro is an 1152 × 512 array of analog processing
elements (APE). When the macro is fully utilized, 1152 7-bit
activations are converted to PWMsignals. Then, each is fed to
all 512 APEs in a row. APEs multiply activations by ternary
weights (+1, 0, -1) stored in two standard 6T SRAMcells. The
product is accumulated at summation lines, which connect the
APEs in the same column. Finally, 512 6-bit ADCs convert

FIGURE 1. Block diagram of the AIMC macro; each of 1152 activations
goes to 512 APEs in a row (horizontal lines). Outputs of APEs are
accumulated in summation lines (vertical lines).

voltage on the summation lines to digital. Fig. 1 illustrates the
simplified diagram of the AIMC.

Fig. 2 shows the transistor-level schematic of an APE.
PWM DAC produces two active-low signals, Act- and Act+.
Each signal is used to modulate the activations with the
corresponding signs. Act+ and Act- are connected to the
source of two transistors. Two SRAMs store weight (W+)
and negated weight (W-); each is connected to the gate of two
transistors with different PWM signals at sources. The drains
of the transistors with concordant sign signals (W+ and Act+
orW- and Act-) go to the positive summation line; Sum+, and
the other two (discordant signs) go to the negative summation
line; Sum-.

At the beginning of a processing cycle, summation lines are
pre-charged to VDD. For non-zero weights and activations,
one transistor turns on and determines the connected sum-
mation line and, consequently, the product sign. PWM width
dictates the magnitude of the product. Outputs of APEs are in
the form of current. They discharge the connected summation
line proportional to the pulse width. Thus, accumulation is
conducted at the summation lines. The readout circuit deals
with Sum+ and Sum- as differential signals and sends the
results to ADCs.

Two current-limiting transistors connect each APE to the
summation lines. It adds more flexibility to the design and
mitigates the channel length modulation effect. The bias volt-
age of these transistors (hereafter Vbcs or bias) and PWM unit
time determine the quantization parameters and control the
resolution and dynamic range of the output activations.

B. DIANA’S AIMC OUTPUT QUANTIZATION
The ADCs’ voltage thresholds are fixed. Therefore, out-
put activations (O) are related to the summation line volt-
ages (Vadc) as (5). The summation line voltage is proportional
to the result of the MAC operation. We define the unit volt-
age (Vu) as the summation line voltage corresponding to the
result of a MAC equal to one. With the assumption that the
cell currents are DC, as the summation lines are capacitive,
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FIGURE 2. AIMC macro transistor-level schematic; active paths are shown with black lines. Activation and weight signs determine the
product sign. The result magnitude is controlled by that of the activation.

the summation line voltage is equal to:

Vu =
tu.Icell(Vbcs)

Cline
(7)

Icell is the cell current that is a function of bias voltage. tu and
Cline are respectively unit time and summation line capaci-
tance. Vadc corresponding to other MAC operation results are
proportional to the unit voltage:

Vadc = Vu.Omac (8)

combining (5), (7), and (8), we have:

O = int(
tu.Icell(Vbcs)
δadc.Cline

.Omac) (9)

With a comparison between (3) and (9) scale factor is
obtained.

S =
tu.Icell(Vbcs)
δadc.Cline

(10)

Cline and δabc are fixed. Thus, quantization scale factor con-
trol is possible through bias voltage and unit time. The bias
voltage is applied to DIANA externally, and the unit time
can be changed among 16 values by programming a register
runtime.

Unit time and bias voltage have different effects onDIANA
performance. So the designer has the freedom to make trade-
offs and optimize these two parameters with respect to each
other to achieve the desirable quantization setup and overall
performance. For example, unit time controls the AIMC’s
total cycle time and speed. Unit time affects power consump-
tion more than bias voltage does [17]. However, it is shown
in the next section that small unit times may cause scheduling

problems. Therefore, it is possible tomake tradeoffs on speed,
power, and scheduling sanity with these two parameters.

In this section, we introduced the DIANA’s AIMC cir-
cuit and showed the relation between output quantization
configurations and unit time and bias voltage. The AIMC
quantization control can now be achieved by a model that
connects bias voltage and unit time to the output quantization
parameters to enable the implementations of optimization
techniques like [28]. The relationship between quantization
and circuit parameters is not straightforward as it is nonlinear
and correlated. For example, bias voltage affects MOSFET
switching time, which changes the effective unit time. There-
fore, it is important to obtain the model via experiment rather
than theory.

The following sectionwill present the experimental results.
These results will be used to develop the model and also
to provide guidelines for the best chip setup and design
improvements.

IV. EXPERIMENTAL RESULTS
The characterization campaign aims to incrementally model
the AIMC behavior in order to connect output quantization
to circuit parameters. It also shows the non-idealities. Infor-
mation on non-idealities can be used for compensation or
improvement of the next AIMC generations.

In the experiment setup, DIANA is installed on a cus-
tom motherboard. A ZedBoard™ Zynq®-7000 ARM/FPGA
SoC development board is connected to the motherboard
via FPGA Mezzanine Card (FMC) Low Pin Count (LPC)
connector. The ZedBoard performs the DIANA’s booting
procedure and provides the clock signal. A PC programs and
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FIGURE 3. Measurement setup diagram; ZedBoard boots the chip,
PC programs and reads the results, and NI PXIe powers DIANA.

loads the inputs and weights into the chip through a JTAG
interface. The PC reads the results from DIANA through
the same interface. The motherboard and DIANA’s power,
as well as the bias voltage, is provided by two NI PXIe-4145
4-channel source-measure units mounted on a NI PXIe-1088
chassis. Fig. 3 shows the diagram of the experiment setup.

The first investigation examines the accumulation function
linearity. The summation linearity is crucial because it allows
the AIMC model to break down into the addition of small
models of APEs using the additive property.

Then, mismatches between APEs are evaluated. Two
design imperfections, bias voltage drop and interconnect
delay, are investigated later. These three experiments give
chip users guidelines to avoid non-ideality effects and provide
chip designers with suggestions for improvement.

The last experiment shows that nonlinearity error is a
function of the output rather than the input. This observation
is utilized to develop the linear and fine-grain models combi-
nation. Eventually, the results of this part are used to plan an
experimental exploration of unit time and bias that leads to a
linear model in section IV.

A. ACCUMULATION LINEARITY
AIMC performs multiplications inside APEs and accumula-
tions at the summation lines. If the accumulation operation is
linear, the AIMC model decomposes to the addition of APEs
models by utilizing the additivity property. So, before mod-
eling APEs in section V, we must show that the accumulator
is linear.

The number of activations is increased in an experiment
to analyze the linearity of addition. Fig. 4 shows the AIMC
output for different numbers of activations. In this specific
example, non-zero activations are set to 5, while weights are
all positive (1). Fixed APEs inputs isolate the experiment
from APE’s nonlinearities. However, their mismatches still
reflect in the results. In each experiment, 128 activations are
added. The set of iterations is then repeated for ten values
of unit time ([50ns: 140ns, 10ns]). The bias voltage in this
experiment is 0.61.

Fig. 4 visualizes the linearity of the accumulation operation
up to output saturation. As the ADCs output range is [-31:
+31], the AIMC output is saturated on 31. A part of the
nonlinearity is rooted in the APEs mismatches, as shown in
the following subsection.

Thus, the rest of the experiments try to demystify the APEs
assuming accumulation at the summation lines is linear.

FIGURE 4. Addition linearity; the number of activations and addends is
linearly proportional to the output.

B. APE MISMATCH
Dealing with device mismatches is a burdensome challenge
for analog designers, and DIANA’s AIMC is no exception.
Mismatches occur due to differences in devices that are
designed identically. Coping with mismatches after tape-out
is not possible. Their analysis needs a statistical approach
that is out of the scope of this paper. Fig. 5 illustrates the
mismatches as differences in the AIMC output for different
APEs with the same activation and weight. Here, 20 APEs are
examined in each experiment, as for a single APE, the output
might be weak and noisy.

Mismatches should be avoided as much as possible to
achieve good linearity. The best stage to deal withmismatches
is during the layout design. Matching guidelines can be found
in analog layout books including [41].

C. BIAS VOLTAGE DROP
Experiments show that, for bigger workloads, the sensitiv-
ity of the summation lines with higher indices decreases.
An experiment isolated the effect by feeding the whole array
with equal activations and weights. Fig. 6 illustrates the
output of the summation lines. The output decreases for
summation lines with higher indices.

The loading effect is related to the drop in the current
limiter transistors bias voltage in the AIMC macro. Although
MOSFET gates do not ideally draw any current, an array of
more than one million long-channel transistors introduces big
gate current leakage in scaled FDSOI technologies due to thin
oxide and direct tunneling effect [42].
The design level fix is to add more bias voltage contact on

the die in distant locations. At the application level, it is bet-
ter if high utilization is avoided. Otherwise, post-processing
compensation necessitates for chip users.

D. INTERCONNECT DELAY
The AIMC output is quantized in the range [-31,31]. So, the
output is saturated when it reaches 31. However, experiments
show that the outputs become saturated sooner when the
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FIGURE 5. APE mismatch; the outputs of the experiments with the same
inputs but on different APEs are slightly off due to the mismatch.

FIGURE 6. Current limiting transistor bias voltage (Vbcs) drop causes a
sensitivity reduction for high-index summation lines.

low-index APEs are utilized. The early saturation is shown
in Fig. 7. The effect is only visible for low-index APEs and
is proportional to unit time; the output becomes saturated in
lower values for smaller unit times.

Interconnect delay causes early saturation. The control and
timing unit (CTU) is located at the bottom of the AIMC
array, closer to the high-index APEs. There is an interconnect
delay (tid ) for the PWM DAC enable signal from CTU to the
top of the AIMC array where low-indexAPEs and their DACs
are located. Thus, these DACs start their operations later,
leading to a delay in low-index APEs’ PWM signals. When
unit time decreases, the total AIMC cycle time decreases
proportionally while the delay remains constant. So, for small
unit times and big activations, a big part of the PWM signal
does not overlap with the AIMC active time and is ineffective.
That leads to an early saturation. Fig. 8 shows the timing
diagram in a) high- and b) low-index APEs. Due to intercon-
nect delays, for big activations, the end of the PWM signal
does not overlap with the AIMC active time. So, the output
is saturated as increases in activation just increase the futile
part of the PWM signal.

FIGURE 7. Large outputs linearity; a) early saturation happens for
low-index APEs, and b) high-index APEs stay linear in [-31, +31].

Hopefully, it is possible to lengthen the AIMC active
window by setting DIANA’s control registers. So, the users
should make sure to set these registers correctly while using
small unit times. However, some buffers on control signals
improve the design, so increasing active window time will be
unnecessary. This will improve the chip’s speed and power.

E. ERROR AS A FUNCTION OF OUTPUT
Fig. 9 shows that error is a function of the output for different
unit times and bias voltages. It does not include errors rooted
in voltage drop or interconnect delay. It is utilized in the next
section to develop linear and fine-grain model serialization.

This section delivered observations used in the next section
to develop a linear model of AIMC, the non-idealities that one
should take into account during the application of the chip,
and an observation that will be used for model nonlinearity
adjustment. The following section will model the AIMC
macro with a look-up table that translates the quantization
parameters to unit time and bias voltage.

V. MODEL
This section proposes an approach to include nonlinearities
in a linear AIMC model. Then, we present a model for the
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FIGURE 8. Timing diagram of PWM and AIMC in a) high- and b) low-index
APEs. PWM signal slides off the AIMC active time due to interconnect
delay and causes early saturation.

DIANA’s AIMC macro that connects its circuit parameters
with scale factors and quantization configurations. At the end
of the section, the model is used to evaluate the DIANA’s
AIMC in the implementation of output quantization calibra-
tions from the literature.

A. NONLINEARITY ADJUSTMENT FOR LINEAR MODEL
In the previous section, the error of a linear model was
presented as a function of the output. Thus, one can model the
AIMC macro as a linear and nonlinearity adjustment model
in series if voltage drop and interconnect delay errors are
neglected. This approach is depicted in Fig 10.

The nonlinearity adjustment is sample-specific and cannot
be achieved generally.

B. MODEL PRESENTATION
The characterization was planned as an exploration of
DIANA’s operating points; bias voltage and unit time as their
effects on quantization are shown in Section II. Bias voltage
has values between 0.5V to 0.8V with steps of 0.01V. The
DAC conversion unit time ranges between 50 ns to 200 ns
with 10 ns step granularity. The experiment is conducted
on 40 APEs with the highest indices in each summation line.
APEs with high indices are selected to avoid the interconnect
delay effect. Forty APEs are used to average out the spatial
variations due to mismatches while avoiding the voltage drop
effects resulting from overloading. These effects should be
eluded by the user with suggestions provided in the previous
section or compensated in the post-processing.

The output quantization is fixed to 6-bit symmetric and
uniform by design. Only the quantization scale factor and
clipping range can be set during the application phase.
We couple each combination of unit time and bias voltage
with a quantization scale factor. For this purpose, activations
are swept from -63 to +63 for Each operating point. The
output is normalized by the number of APEs. A line is fit-
ted into the normalized output versus activation graph using
linear regression. As weights are one, the slope of the fitted
line is the scale factor. The linear regression standard error
is also calculated and provided as a measure of accuracy
in the look-up table. The user can apply this error along
with the observations from the previous section to favor one
combination over others.

If the clipping range is obtained from quantization calibra-
tion, the scale factor can then be converted to clipping range

FIGURE 9. Error is a function of the expected linear output for different
unit times and bias voltages.

FIGURE 10. Linear model can be followed with a fine-grained
sample-specific model for fine adjustment.

[−β, β] by the following equation.

β =
26 − 1
2S

(11)

The minimum value for the scale factor in the look-up table
is 0.00044, and the maximum is 0.0477. This means clipping
ranges between [-660, 660] and [-71590, 71590] are possible.
MAC operations results conducted on DIANA’s AIMC can
be in the range of [-72576, 72576] (1152 × 63) that almost
fit inside the wider clipping range. The smallest possible step
size equals 20.6.

TABLE 1 is a part of the model look-up table. Let’s assume
the calibration leads to a layer with a scale equal to 0.01.
If the layer can be fitted in high-index APEs, interconnect
delay is insignificant. Thus, the user can select combination 1,
which has a smaller unit time and consequently less power
consumption and higher speed [14]. However, small unit
times should be accompanied by large AIMC active windows
for layers that utilize the low-index APEs to mitigate the
interconnect delay error. Combination 5 is a good choice to
reduce the interconnect delay errors at the cost of lower speed
and higher power consumption for layers that use low-index
APEs if increasing the AIMC active window is not an option.

C. DIANA’S OUTPUT QUANTIZATION CAPABILITY FOR
ACCEPTING CALIBRATED PARAMETERS
To validate our method, we use quantization parameters
from [28] to execute ResNet-20 for CIFAR10 and ResNet-18
for ImageNet on AIMC. These parameters are obtained via
two quantization calibration approaches; network-wide and
layer-wise.

In the network-wide quantization, they selected a single
scale factor for the whole network by which the network
accuracy is maximized. The scale factors were 0.031 and
0.018 for Resnet-20 and Resnet-18, respectively. These scale
factors were implementable by DIANA with our model.
Nevertheless, they showed that with layer-wise quantization,
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TABLE 1. Model look-up table example.

in which the quantization setup is unique in each layer, a 0.5%
higher network accuracy is achievable (90.1% for Resnet
20 and 64.7% for Resnet18). Therefore, we analyze layer-
wise quantization in more detail.

For each layer, we use the look-up table to generate the
optimal unit time and bias voltage for efficiency in DIANA.
The first observation is that some scale factors are beyond the
hardware capabilities (e.g., need a higher unit time). There
are different solutions to this problem: during design, one can
either allow a wider range of legal unit times or make changes
at the circuital level, such as reducing the summation line
capacitance. Increasing the ADC resolution is also an option
that comes with the power cost. At runtime, it is possible to
execute the computation with half the required scale factor
andmultiply the result by two in the digital domain. There is a
post-processing SIMD unit in DIANA that can be utilized for
this purpose. Using post-processing is a power-efficient and
straightforward solution. However, it only mimics the scale
factor of the calibrated quantization setup, and its step size is
twice bigger, which can degrade the accuracy. To avoid this
degradation by consuming more power, a scaling unrolling
scheme can increase the obtainable scale factor; if weights
and activations are unrolled twice, it is like a gain of two,
and all scale factors in the look-up table are doubled. Finally,
it could be possible to constrain the neural network training
to lower scales, but the viability of this last option is out of
the scope of our work.

To further assess the benefit of using AIMC for ML
workloads, we measured the performance and power con-
sumption for the different workloads in the ResNet20 and
ResNet18, changing the unit time. Fig. 11 shows the relation-
ship between efficiency/performance and unit time. Longer
pulse widths result in higher power consumption and a slower
computation cycle. The dots on the line represent the mapped
scale factors for different layers. The dots on the extreme
right, marked with a star, exceed the macro operating limits
and have been mapped with the highest gain possible.

In the plots, we reported peak performance and efficiency
from the digital core of DIANA [17] and TinyVers [43],
a digital SoC that targets extreme edge and efficient inference,
to compare analog and digital computation paradigms for real
workloads. When considering efficiency, the DIANA analog
macro dominates its digital counterparts: only in limited cases
TinyVers is comparable with AIMC but with two orders of
magnitude degradation in performance. Focusing on perfor-
mance, TinyVers is bounded by a 10 MHz clock and low

FIGURE 11. Efficiency and performance of DIANA’s AIMC for different
layer structures along with the digital baselines and mapped output
quantization operating points from [28].

throughput, while DIANA digital core shows better perfor-
mance than analog on the early, small layers from ResNet20.
The comparison shows the performance, efficiency, and accu-
racy dilemma. The digital platforms exchange performance
and efficiency, TinyVers in favor of efficiency, and DIANA in
favor of performance. AIMC achieved higher figures in both
merits, however, by sacrificing deterministic computation
accuracy. We also noticed that unit time affects performance
and efficiency for the analogmacro in different degrees; while
performance can only degrade by a factor of 2, efficiency can
decrease by one order of magnitude when unit time increases
over its legal values.

The developed model can translate the calibrated output
quantization parameters into DIANA’s AIMC’s operating
points; bias voltage and unit time. Applying output quanti-
zation calibration is essential to achieve high accuracies. It is
shown that DIANA can implement network-wide calibrations
reported in the literature [28]. However, The current design
needs minor changes to support the higher scale factors that
are required for layer-wise quantizations that offer more accu-
racy. The overall standard error of the model is always below
3.4e−4, suggesting good linearity of the DIANA’s AIMC.
However, a nonlinearity adjustment model is proposed that
can be utilized to studyAIMC variability impact or in training
or compensation.
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VI. CONCLUSION
The primary purpose of this paper was to bridge the gap
between theoretical works on AIMC output quantization cal-
ibration and the practical difficulties of working with AIMC
analog circuits. Hardware imposition of optimized quanti-
zation parameters is important for achieving high accuracy.
The aim is fulfilled by studying the quantization from both
network and circuit perspectives. The analog gain in AIMCs
should be controlled in order to set the quantization param-
eters. As, a case study, the method is applied to DIANA’s
AIMC output quantization calibration. We coupled the cal-
ibrated quantization parameters with the chip’s operating
points that determine its analog gain in a look-up table. Thus,
a dynamic quantization control on DIANA for implementing
layer-wise quantization calibration is possible by using the
look-up table.

It is also learned from the case study that more AIMC
analog gain range improves the control over quantization
parameters, enables more quantization implementations, and
increases the achievable accuracies.

This paper also spots the design improvement points in
DIANA and suggests solutions. More bias voltage contacts
solve the voltage drop problem, and early saturation is reme-
died by interconnect delay reduction. These minor fixes can
benefit the chip performance by a significant amount. The
improvement points can be important for other AIMC designs
to avoid the trial and error phase.
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