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Abstract—The immense growth of data from the prolifera-
tion of Internet of Things (IoT) devices presents opportu-
nities and challenges for privacy engineering. On the one
hand, this data can be harnessed for personalized services,
cost savings, and environmental benefits. On the other hand,
(new) legislation must be complied with and privacy risks
arise from collecting and processing of such data. Distributed
privacy-preserving analytics offers a promising solution, pro-
viding insights while also protecting privacy. However, this
approach has new challenges and risks, such as key manage-
ment and confidentiality. When designing a data marketplace
which offers distributed privacy-preserving analytics, the key
management comes with different threats, which require a
solution adapted to the distributed architecture.

In this context, the paper presents a comprehensive, end-
to-end secure system called MOZAIK for privacy-preserving
data collection, analysis, and sharing. The article focuses
on the key management aspect of the secure multi-party
computation (MPC) component in a distributed privacy-
preserving analytics architecture and the specific challenges
created by introducing MPC. The proposed solution involves
temporary storage of (symmetric) key shares and public-
key encryption schemes to ensure secure key management
for privacy-preserving computation. Our solution has the
potential to be applied in other MPC-based setups, making
it a valuable addition to the field of privacy engineering. By
addressing key management challenges and risks, MOZAIK
enhances data protection while enabling valuable insights
from IoT data.

Index Terms—Key Management, Privacy-Preserving Com-
putation, Secret Sharing, Secure Multi-Party Computation,
GDPR, Data Intermediaries.

1. Introduction

Recently, versatile Internet of Things (IoT) systems
have been widely deployed in daily life, for example, in
health care [1] and smart cities [2], [3], which can generate
gigabytes of high-definition images, videos, and sensor
data every minute. Massive IoT data requires impractically
large storage and high-performance computation that an
average user or smart object within the IoT hardly sup-
ports. Cloud-assisted IoT is popularly applied to leverage
a cloud’s computation and storage capability for massive
IoT data. A cloud is a powerful platform that can provide
additional conveniences as a data intermediary.

However, the convenience that the cloud brings to IoT
comes at the cost of potential new security risks (e.g., data
loss or hacking), which have rarely been the focus of a
traditional IoT system. These risks are critical obstacles
when building any cloud-assisted IoT system. Moreover,
overcoming these security challenges is a big problem due
to the versatile functions of cloud-assisted IoT systems
and the versatile security requirements of users. Although
traditional security mechanisms can protect the security
of traditional IoT, they are insufficient to address the risks
associated with delegation to the cloud. Normally, a trust-
based approach is applied as a solution to those risks.
However, trust-based systems cannot provide adequate
security. They are susceptible to privacy risks for users
since unauthorized user profile creation and user data
processing by first or third parties is possible. Likewise,
companies face liability and reputational risks e.g. rogue
employees or external attackers may misuse their sys-
tems. As a data intermediary, companies face additional
compliance responsibilities under the Data Governance
Act(DGA) as well as the traditional requirements under
General Data Protection Regulation (GDPR) for personal
data. Moreover, it is impractical in IoT scenarios to apply
data anonymization and obfuscation to guarantee privacy
for dynamic operations (insertion or deletion). Especially
in the context of outsourcing storage and/or computation
to the cloud, these applied privacy measures yield no
provable security. [4]

The MOZAIK project [5] builds an end-to-end con-
fidential data storage and processing solution for IoT-
to-cloud scenarios. The data from an IoT device leaves
the user’s control encrypted, remains encrypted when
stored in the cloud, and is processed without revealing
the plaintext to any single entity in the system. Concretely,
this architecture supports secure (sensor) data collection
and data analysis via privacy-preserving machine learning
inference on the collected data.

The MOZAIK architecture comprises three main com-
ponents to ensure secure, privacy-preserving data collec-
tion, analysis, and sharing. The first component is one or
more sensors that generate data, which is then encrypted
on the device using a suitable secure, possibly lightweight
cipher. The second component is Obelisk [6], a secure data
store where the encrypted data is stored. The third and
most crucial component is a cluster of secure multi-party
computation (MPC) engines, which can perform secure
distributed calculations on the data without compromising
data privacy. To enable processing in MPC, the encrypted
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data is first decrypted within the MPC protocol. Since
this requires management of the decryption key (shares),
key management becomes an important part. We refer to
this setup when key management for MPC is mentioned.
With these three components, the MOZAIK architecture
provides a robust and end-to-end secure solution for han-
dling sensitive data from IoT devices.

The security and privacy issue in big data is an ongo-
ing challenge requiring continued research and develop-
ment. Particularly on the platform side, security measures
have been mainly limited to providing access control on
data sets, data analytics jobs, resource scheduling/sharing,
or setups [7], [8]. However, there is a pressing need to
address key management in a decentralized environment,
especially when utilizing MPC. Data privacy is lost if an
(internal or external) adversary can access the decryption
key. Secure key management is a critical issue in privacy
engineering solutions that needs to be addressed securely
and reliably.

1.1. Related work
Two ongoing projects, namely, H2020 KRAKEN

(BroKeRage and MArKet platform for pErsoNal data)1

[9], [10] and Agora: A Privacy-Aware Data Marketplace
[11] have some relevance to the discussed MOZAIK
project. KRAKEN aims at developing a secure and trusted
personal data sharing platform with privacy-preserving
analytics embedded while Agora aims to create a decen-
tralized data marketplace via smart contracts. Although
our goals in the secure data processing aspect are similar
to that of KRAKEN and Agora, MOZAIK stands out from
those projects in that it takes a holistic approach to secure
and scalable IoT data collection, transmission, storage and
processing, covering all aspects of a data life cycle. It is
in this synergy of the operations at each data cycle point
where MOZAIK comes with a unique value proposition.

Similarly, Veeningen et al. [12] also use MPC in three
pilot use-cases to perform privacy-preserving computation
in the medical domain on collected data. Their work
and the two projects include legal assessment and com-
pliance analysis for the GDPR. However, Veeningen et
al.’s analysis does not include secure data collection from
individual users. Instead the subject’s data is collected in
an ordinary, non-encrypted way by, e.g., the hospital, a
union representative or a family doctor, and then processed
such that it remains confidential for the analysis. Note that
the secure data collection of MOZAIK provides a stronger,
end-to-end confidentiality for the user data without the
need to trust the intermediary data collector.

The MyHealthMyData project [13] deploys medical
data sharing via distributed ledgers. The proposed archi-
tecture focuses on distributed storage and access control.
Secure data collection and privacy-preserving use, i.e.,
computation, on the shared data is not considered since
the authorized party obtains the shared data in the clear.

1.2. Contributions
The paper makes three key contributions:

• It analyzes the key management requirements for
MPC in a privacy-preserving architecture from a
European Union perspective (see Section 2).

1. https://krakenh2020.eu/

• It presents the MOZAIK architecture, which is de-
signed to provide a robust and end-to-end secure
solution for handling sensitive data from IoT devices
(see Section 3).

• It analyzes and evaluates several key management
approaches, highlighting their benefits and trade-offs
while ensuring compliance with the identified re-
quirements (see Section 4).

These contributions provide valuable insights and solu-
tions to the challenges of key management in a decentral-
ized environment, making an important contribution to the
field of privacy engineering.

2. System model and requirements
In the following sections, we detail the adversarial

model and describe the resulting requirements for a secure
key management solution in MPC.

2.1. System and adversarial model
The architecture comprises three main components:

users with sensors, Obelisk, and a cluster of MPC engines.
We assume that the IoT devices are not compromised

and behave honestly. The users behave honestly regarding
their own key material but may be dishonest by trying to
gain unauthorized access to other data. For this work, we
consider Obelisk to be corrupted by a malicious adver-
sary with the goal to access the sensor data. Regarding
the MPC parties, we assume the adversarial model of
the MPC setup used for the distributed data processing.
However, MPC parties may act maliciously when han-
dling key shares. The adversary may corrupt some users,
Obelisk and some MPC parties simultaneously to attack,
i.e., learn information about other user’s sensor data. Note
that unlike in federated learning and privacy-preserving
machine learning where (distributed) model training is
the main focus, the setting in this work concerns model
inference only where the service provider and MPC parties
are financially remunerated by the user for their service.

In this paper, we focus on confidentiality and integrity
of the sensor data throughout the whole process. We do
not consider Denial of Service attacks as they are out of
scope of this paper.

2.2. Requirements
A secure key management solution in this setup re-

quires first and foremost that the sensor data cannot be de-
crypted by unauthorized parties, e.g., other users, Obelisk
or corrupted MPC parties, to ensure the confidentiality of
data. This entails a requirement for strong keys which are
generated in a secure manner in line with data (protection)
legislation2 without increasing overhead significantly and
proportionate to the risk. Key backup is out of scope of
this paper and left for future work.

However, for the MPC engines to decrypt the en-
crypted data, they need access to the secret shares of the
encryption key. Hence, a secure mechanism is required
to enable IoT devices to share their keys with the MPC
engines. Further, the user should be empowered to exercise
control over the processing of their data i.e., the key

2. As set out in art. 5(1)(f), 25, 32 of the GDPR and art. 12 DGA.

https://krakenh2020.eu/


Figure 1. The MOZAIK architecture.

(share) distribution mechanism requires that only the user
can select which parties are involved in the processing
and the time when the processing occurs, as well as al-
lowing the user to revoke3 the encryption keys for further
processing.

3. MOZAIK architecture

A general overview of MOZAIK’s architecture is il-
lustrated in Figure 1. The main components of MOZAIK
are one or more IoT devices under the user’s control
(full control), MOZAIK-Obelisk – a MOZAIK-specific
version of Obelisk –, the cloud-storage entity with an
attached web server for client-side user interfaces and
a cluster of MPC computing instances for outsourced
privacy-preserving computation. An IoT sensor sends its
data to Obelisk in a secure way for storage. From all
MPC engines participating in the system, the user may
select those that match the user’s criteria, e.g., availability,
cost or their trust in the service, through a web interface.
The web interface is accessible by users who pushed IoT
data to the platform, or by users who were granted access
by another user. A user can only view its own data or
the data they received access to. MOZAIK-Obelisk then
makes the data available to the MPC engines involved in
the calculation request. In Section 3.1 we detail MOZAIK-
Obelisk, followed by an overview of the MPC-related
functionalities in Section 3.2 and of secure container
environments in Section 3.3.

3.1. Obelisk

Obelisk is a cloud-based IoT integration platform that
offers interoperability, multi-tenancy and scalability capa-
bilities and is used within the MOZAIK project to capture
and store the IoT data [6].

Obelisk allows secured data ingestion, storage, stream-
ing and retrieval through HTTPS REST (REpresentational

3. The user can retract their consent in line with art. 7(3) GDPR and
art. 11(m) DGA.

Figure 2. The extended Obelisk version for MOZAIK: MOZAIK-
Obelisk.

State Transfer) APIs (Application Programming Inter-
face). With regards to data transport, Obelisk ensures
server authentication, data confidentiality and integrity
towards its clients (IoT devices, applications, end users)
through the use of the Transport Layer Security (TLS)
protocol. Obelisk has been designed and implemented
by means of an event-based, asynchronous microservices-
based software architecture. [14]

In MOZAIK, an extra software layer is built around
Obelisk to create a MOZAIK-specific secure version
of Obelisk (i.e., MOZAIK-Obelisk), with the focus on
privacy-preserving properties. This includes the appropri-
ate encryption key management measures whose require-
ments were identified in Section 2. Storing (encrypted)
keys in the same entity where the data is stored is not
advisable, therefore a separate key store entity is intro-
duced, as shown in Figure 2. The key store is physically
isolated from Obelisk-core, by the means of node anti-
affinity rules, and cannot interact with Obelisk-core or its
data because of network policies. The key store can be
implemented as a secure database, where an automatic
deletion system for keys is preferred, effectively expiring
keys after a chosen amount of time.

To provide the user with an easy-to-use experience, an
overarching MOZAIK-Obelisk API is created. This newly
introduced API provides a stateless, i.e., no data is stored
at the API, and access controlled single point of access and
is the only publicly exposed service of MOZAIK-Obelisk.

3.2. Secure multi-party computation

Compared to other PETs that offer computation ca-
pabilities, MPC has a large communication overhead, but
an acceptable computational overhead [15], [16]. Secure
multi-party computation protocols are protocols to jointly
compute a known function on private input data in dis-
tributed systems in a privacy-preserving manner. The pro-
tocols guarantee that no subset of adversarial parties that
is not in the access structure A [17] can learn intermediate
values or input data from honest parties that are not in the
subset, even if the adversarial parties collude and share
information. The attacker and trust model in MPC can be



divided into the semi-honest (or passive security) model
and the active security model [16]. In the semi-honest
setting, the adversarial parties are allowed to collude and
share information but they cannot deviate from the proto-
col execution. This model is applicable if the MPC parties
trust each other not to cheat (e.g., by employing certified
software that may be verified by remote attestation) but
do not want to handle sensitive cleartext data for, e.g.,
legal or compliance reasons. In the active security setting,
the adversarial parties are allowed to collude and deviate
arbitrarily from the protocol, i.e., they may lie about inter-
mediate values or abort the execution preemptively. MPC
protocols with active security are usually more expensive
in terms of computation and/or communication.

In MOZAIK, MPC is used for the following two
steps. First, the MPC parties turn the symmetrically en-
crypted sensor data into secret-shares of the sensor data
via distributed decryption. Then, the sensor data shares are
used as input to the inference step in a privacy-preserving
machine learning model. Let n be the number of parties, d
denote the cleartext sensor data and JdK denote the secret
shared version. We use secret-sharing (see e.g., [18]–[20])
as a black-box with the following algorithms.
Share The share algorithm secret-shares a data item d

into shares JdK1, . . . , JdKn according to a specific
access structure A.

Recon The reconstruction algorithm reconstructs the
plaintext data item that is secret-shared if the set
of shares JdKa1

, . . . JdKaj
is in the access structure

{a1, . . . , aj} ∈ A. Thus it returns d.
Therefore, for all d, and all subsets a ∈ A,

Recon(JdKa1
, . . . , JdKaj

) = d ,

with JdK1, . . . , JdKn ← Share(d). And for all other sub-
sets a′ /∈ A, it is not feasible to recover d.

Further, let k denote the symmetric key. We use a
symmetric authenticated encryption with associated data
algorithm (AEAD) [21] as a black-box. The concrete
algorithm can be selected to suit the targeted IoT envi-
ronment, e.g., from the NIST Lightweight Cryptography
Competition4. We omit the nonce and associated data part
from the high-level description for conciseness. An AEAD
scheme consists of two algorithms.
Enc The encryption algorithm encrypts the sensor data d

under key k and produces a ciphertext c and tag t.
DecAndVerify The decryption algorithm decrypts the

ciphertext c to the plaintext d and verifies the authen-
ticity of d using the provided tag t using k. It returns
d or ⊥ if the ciphertext or tag have been modified.

For all d and k, we have

DecAndVerify(k,Enc(k, d)) = d .

In the MOZAIK architecture, we propose the follow-
ing algorithms to ensure end-to-end confidentiality of the
user’s sensor data.
KeyGen The key generation algorithm is run by the user

and returns the symmetric key k and an appropriate
number of shares JkK1, . . . , JkKn ← Share(k) for n
MPC parties.

4. https://csrc.nist.gov/Projects/Lightweight-Cryptography

DistDec The distributed decryption algorithm is run by
the n MPC parties with c and t as public input and
the key shares JkKi as private input. The algorithm
verifies the tag t and decrypts c into shares of the
plaintext JdK1, . . . , JdKn. It returns JdK1, . . . , JdKn or
⊥ if the tag did not verify. We instantiate DistDec by
running JdK← DecAndVerify(JkK, c, t) in MPC5.

Infer The privacy-preserving inference algorithm com-
putes the data analysis on the secret-shared input
data JdK1, . . . , JdKn and is run by the MPC parties.
It produces the inference result JxK1, . . . , JxKn. For
example, this can be a forward pass on a trained
neural network computed in MPC.

Correctness is defined as

Recon(Infer(DistDec(Enc(k, d), JkK1, . . . , JkKn)))
= Infer∗(d) ,

where k, JkK1, . . . , JkKn ← KeyGen() and Infer∗(d) is
the cleartext inference.

KeyGen is run by the user who sets the obtained
symmetric key k to be the encryption key in the IoT
device(s) and communicates the key share JkKi to MPC
party i. The IoT device collects the data d, encrypts it
using the symmetric key k and sends ciphertext c and tag
t to MOZAIK-Obelisk for storage. The MPC computation
parties retrieve c and t from MOZAIK-Obelisk and first
run DistDec to obtain shares JdK. Then, the MPC parties
run Infer to compute the domain-specific analysis on the
data and obtain shares of the result JxK. The shares are
communicated back to the user who recombines them to
obtain the result.

Assuming that the secret sharing scheme
(Share,Recon) and the AEAD mode
(Enc,DecAndVerify) are secure, neither the adversarial
MPC parties nor an external observer can learn any
information on the IoT sensor data d or the inference
result x. However, the process relies on secure key
management of k and the shares JkKi.

3.3. Secure container environment
The proposed MOZAIK architecture consists of a mul-

titude of microservices. Microservice-based architectures
promote application development as a set of distributed
small and independent services each one of those focusing
on a specific task. An inherent property of microservice-
based architectures is the large amount of services that
need to be managed in a production environment. To
maintain a fully operational state of the application, each
service runs in a separate container and the contain-
ers are managed by a container orchestration platform,
e.g., Kubernetes [22]. Containers bundle all the necessary
dependencies and software of an application in a stan-
dardized and portable format. This standardized format
is laid out by the Open Container Initiative (OCI). In
general, the OCI creates open industry standards around
container formats and runtimes [23]. Containers offer
relatively fast startup times with a smaller computational
overhead compared to virtual machines (VM) and allow
large applications to scale horizontally in a seamless man-
ner. A container runtime manages the container life cycle

5. In other words, DistDec can be viewed as a thresholdized version
of DecAndVerify.

https://csrc.nist.gov/Projects/Lightweight-Cryptography


and provides software-based container isolation. Software-
based container isolation exposes the risk of container
runtime escaping vulnerabilities and system privilege es-
calation [24]. A recent example of such a vulnerability is
CVE-2022-0811 [25].

If an attacker tries to gain unauthorized access to
the MOZAIK application or its data, the overarching
MOZAIK-Obelisk API can be considered as one of the
initial targets, as it is the only publicly reachable access
point that can directly give access to the stored data. When
the attacker successfully exploits a vulnerability at the
API and succeeds to escape the container runtime, the
attacker may be able to gain access to other (sensitive)
components of the system and access the (encrypted)
data and (encrypted) keys. To mitigate these container
runtime security vulnerability risks, sensitive components
of the MOZAIK architecture will run in a secure container
runtime, inherently making the system more secure. A
secure container runtime encapsulates the container in a
lightweight virtual machine (microVM) or a sandboxed
environment and enforces a strict container-host isolation.
A VM applies hardware virtualization to create an isolated
virtual environment for each VM instance. As a result
of such hardware-based isolation, the attacker would be
stuck in the isolated environment and cannot access other
sensitive components of the system. Using any form of
VM automatically entails a certain computational over-
head, hence a trade-off between execution performance
and added security needs to be made to decide which
components should run in a secure container.

Next to using, or in combination with, a secure con-
tainer runtime, Trusted Execution Environments (TEE)
can be used to further enhance the security of the system.
A TEE is a tamper-resistant processing environment that
runs on a separation kernel. It guarantees the authenticity
of the executed code, the integrity of the runtime states
(e.g., CPU registers, memory and sensitive I/O), and the
confidentiality of its code, data and runtime states stored
on a persistent memory. [26]

The guarantees that TEE provides would allow
MOZAIK to be more secure and allows MOZAIK to
be deployed on third-party multi-tenant cloud service
providers (CSP), without the risk that a malicious tenant
or CSP can access or alter the data or code. TEE can be
used in multiple parts of the MOZAIK architecture, e.g.,
running the key store in a TEE could provide an extra
layer of security and isolation for secure key storage.

4. Key management within MOZAIK

The MOZAIK architecture presented in Section 3 does
not cover key management within MOZAIK. This section
presents a key management solution that meets the re-
quirements from Section 2. Our key management solution
only requires temporary storage of encrypted key shares in
the key store of MOZAIK and relies on public-key encryp-
tion. Similar to the secret sharing scheme and the AEAD
scheme, we use a public-key encryption scheme [27] as a
black-box.
PK.KeyGen The public-key scheme key generation out-

puts a private key ks and a public key kp.
PK.Enc Given the public key kp and message m, the

encryption algorithm outputs a ciphertext c.

PK.Dec Given the private key ks and a ciphertext c, the
decryption algorithm outputs the message m.

Figure 3 shows the setup, data collection, computation
and result retrieval involving all entities in the MOZAIK
architecture. When a MPC computation party Pi joins
MOZAIK, it runs PK.KeyGen() and obtains ksi and kpi

.
It then advertises its public key kpi

to all users in a
way preventing impersonation attacks on kpi

, e.g., via
a public-key infrastructure. Pi may join anytime but is
only available to computation that starts after Pi joined,
i.e., we do not consider parties joining the protocol mid-
computation like in the YOSO model [28].

Before a computation begins, the user encrypts the
key share for Pi using Pi’s public key kpi

, i.e., cJkKi ←
PK.Enc(kpi

, JkKi) and stores all encrypted key shares
cJkK1 , . . . , cJkKn in the key store. For added security, the
encrypted key shares are only stored temporarily in the
key store and thus are removed after their expiry date.

When the MPC parties start the computation, they
fetch their respective encrypted key shares cJkKi from the
key store and the encrypted user data c from MOZAIK-
Obelisk. During the computation, the key shares are de-
crypted using psi and are temporarily stored at the MPC
parties. The decrypted JkKi is used as private input to the
MPC protocol computing DistDec and Infer. When the
computation has finished, each party obtains a share of
the result JxK. To communicate the result x back to the
user securely, two approaches come to mind. First, the
MPC parties may run a distributed encryption protocol,
DistEnc, to encrypt x and produce a ciphertext cx. This
ciphertext will be stored in Obelisk and the MPC parties
erase the temporarily stored key shares. The user retrieves
the encrypted result from Obelisk and uses their key
k to decrypt the result. Another approach is that each
MPC party Pi encrypts their share JxKi using the user’s
public key, producing ciphertexts cJxKi and storing these
ciphertexts in Obelisk. The user fetches the encrypted
shares of the result, decrypts them and then reconstructs
the inference result x by calling Recon. While the former
approach is more storage efficient and does not require the
MPC parties to know the public key of the user, it may
incur more costly MPC computation compared to the latter
approach. However, it is possible that for short inference
results, e.g., where x is only a few bits, distributed en-
cryption leads to better overall performance. We leave a
detailed study of which approach is more suitable to future
work with an implementation of a concrete use-case.

Intuitively, the encrypted key share for MPC party i
can only be decrypted by that party and not by others
or Obelisk. Similarly, the key store cannot change the
encrypted key share without being detected by the party
that attempts to decrypt it later. In addition, no further
data analysis on the plaintext data can be computed since
the honest MPC parties have erased their key share and
refuse to commence a new MPC protocol run.

4.1. Trade-offs and other approaches

The presented approach where key shares are tem-
porarily stored at MOZAIK-Obelisk to be relayed to the
MPC engines for temporary use is not the only key
share distribution that comes to mind. However, we note
multiple benefits of our presented approach.



k, JkK1, . . . , JkKn ← KeyGen()

store k

Measure d
Encrypt
c← Enc(k, d)

store c

ksi , kpi ← PK.KeyGen()

encrypt cJkKi ← PK.Enc(kpi , JkKi) and store cJkK1 , . . . , cJkKn

compute

get key share
cJkKi

get data
c

JdKi ← DistDec(JkKi, c)
JxKi ← Infer(JdKi)

cJxKi ← PK.Enc(kpu , JxKi)

store cJxKi

erase cJkKi

retrieve result
cJxK1 , . . . , cJxKn

decrypt JxKi ← PK.Dec(psu), cJxKi
x← Recon(JxK1, . . . , JxKn)

User IoT Device Obelisk-core Key Store MPC Party i

data collection loop

MPC computation

computation

MOZAIK-Obelisk API

Figure 3. Overview of the setup, data collection, computation and result retrieval in the MOZAIK architecture. We omit calls to the MOZAIK-Obelisk
API for clarity and directly show the behaviour of the sub-components (in the dashed box).

First, the MPC parties remain pure computing parties
in the architecture. This aligns well with the MPC-as-
a-service model of trust [29]–[31], where computation
providers offer to take part in MPC computation as a
means to outsource computation. Since no data needs
to be persisted between two calls of DistDec or Infer,
the user is flexible to switch MPC-as-a-service providers
easily without overhead. Second, by storing the key shares
encrypted in the key store, the user doesn’t need to be
online to start DistDec since the assigned MPC parties
can fetch their shares. Note that the data collection by the
IoT device can already start before the user picked the
MPC parties, increasing time and operational flexibility.
Further, no direct interaction between user and the MPC
parties is required, so similarly, the user does not need to
be online when Infer returns a result. Still, only those
MPC parties receive a share that were picked by the
user. The key store cannot chose a different (e.g., less
trustworthy) set of MPC parties. The time of processing is
in full control of the user since processing is only possible
once the key shares are distributed. Third, all information
that may be used to decrypt the sensor data, i.e., the
encrypted key shares, remain with third-parties, the key
store and the assigned MPC parties, only during the time
of processing the data. Fourth, if the processed personal

data is of a highly sensitive nature, the architecture allows
the introduction of more PETs (e.g., obfuscating or de-
identifying) on the personal data before it is shared to
protect it even further. This ensures GDPR and DGA
compliance and flexibility for data marketplaces of any
type of data. The marketplace can document this approach
as an adequate measure to justify the sharing of (sensitive
personal) data in a decentralized setting.

The benefits come at a trade-off. To increase the
flexibility of the user and remove the requirement of the
user being online, the encrypted sensor data as well as the
encrypted key shares are both stored in the centralized
entities, Obelisk and key store, which may give rise to
single point of failure issues.

Other variants of the key distribution approach include
the user sending the key shares directly over a secure
channel to each MPC party directly, i.e., not involving
other architectural components. This clearly requires the
user to be online to start Infer. In another variant, the
MPC parties store their key share persistently such that
the user only needs to share the key once and subsequent
computation tasks do not require the user to be online.
However, as noted above, this reduces much flexibility in
the MPC-as-a-service model as well as it may introduce
additional legal requirements.



4.2. Implementation considerations

Previous sections sketch the solution using the func-
tionalities and cryptographic schemes in a black-box man-
ner. In the following, we briefly describe concrete instan-
tiations and protocols that may be used for deployment.

MOZAIK currently supports multiple AEAD scheme
instantiations since the scheme is being computed both
on the IoT device as well as in MPC. We support
SKINNY [32] and GIFT-based [33] lightweight AEAD
schemes from the NIST LWC competition, which are
designed to be efficient in resource-constraint devices and
are thus a choice favouring the IoT side, i.e., Enc. How-
ever, since these algorithms perform orders of magnitude
worse than so called MPC-friendly ciphers, we support
additionally MiMC [34] and derived AEAD schemes [35].
These constructions allow the evaluation of DistDec to
be much more efficient. The components of MiMC, e.g.,
256-bit prime field arithmetic, is quite costly on micro-
controllers and embedded devices. We found AES-based
AEAD schemes, e.g., AES-GCM [36] and AES-GCM-
SIV [37] to be a suitable compromise, since AES is much
more MPC-friendly than lightweight symmetric primitives
due to its largely algebraic structure [38]. Dedicated dis-
tributed symmetric encryption (e.g., DiSE [39] and follow-
up works) may also be used, however current construc-
tions and security notions do not fit the single encryption
entity that we require.

For the public-key encryption, a deployment re-
quires fewer considerations. Any IND-CCA(2) secure
scheme may be used, such as standardized constructions,
e.g., [40]. For post-quantum security, a suitable candidate
may also be chosen after it has been finalized.

To implement the MPC-based algorithms,
DistDec and Infer, we first note that the two algorithms
do not need to be executed with the same MPC protocol.
The shares of the sensor data JdK that are output
from DistDec in one protocol can be converted into
input shares of the protocol suitable for Infer [41]. The
protocol for DistDec depends mainly on the choice of the
AEAD scheme above. A lightweight scheme will likely
perform better in Boolean, constant-round protocols,
such as garbled circuits [42], whereas for more than two
parties or MPC-friendly ciphers, secret-sharing based
protocols [43], [44] are more suitable. Dedicated MPC
protocols for AES and SPN-based primitives exist as well,
e.g., [45], [46]. Machine-learning model inference has
been studied separately, often with dedicated protocols
for certain types of models [47], [48].

4.3. Further discussion and future work

Due to space constraints, we cannot formally detail
all security and privacy notions and considerations that
exist in the architecture, and how they are addressed with
various cryptographic, legal and operational means. While
sensor data confidentiality and authenticity is guaranteed
via the aforementioned use of AEAD encryption, MPC,
secret-sharing and secure containers, several other, some-
times subtle, considerations have to be kept in mind.

The current measures tolerate static corruption, i.e.,
where the set of corrupted components in the architecture
does not change during the deployment lifetime. We leave
an adaptive corruption where the corrupted parties change,

e.g., in between executions of DistDec and Infer, or in
between runs of the whole process, for future work. In this
setting, information on key shares of previously corrupted
parties may allow the adversary to reconstruct the key
in certain cases. This may be addressed by re-sharing
randomness and proxy re-encrypting the sensor data from
time to time. Moreover, several privacy considerations
exist due to linkability. Obelisk and key store can build
usage and access patterns of (the user’s) sensor data
and the key shares for the MPC engines. This leads to
knowledge regarding the type, frequency and data size of
the analysis that is chosen by the user. Mitigations, such
as anonymous credentials, are beyond the scope of this
paper and left for future work.

Another open problem, from a legal point of view, is
classifying the result of the computation [49]. It is unclear
whether the result of the computation is personal data at
all. If it is not personal data, the GDPR does not apply
to the result. If it is personal data, the whole process can
be seen as technical and organisation measures taken to
protect the data of the data subjects. Further work in this
direction is highly relevant for the use of MPC and other
PETs in privacy engineering.

5. Conclusion
In conclusion, the convenience of the cloud for IoT

devices is enormous. However, data collection and sharing
in cloud-assisted IoT systems also introduces new security,
privacy and compliance challenges. To address these chal-
lenges, we propose MOZAIK, an end-to-end secure and
privacy-friendly data sharing architecture, that processes
symmetrically encrypted IoT data in a privacy-preserving
manner via distributed decryption using secure multi-party
computation. In this setting, management of the symmetric
encryption key is crucial for the overall security and
privacy. In this work, we presented a key management
approach of said symmetric key which included temporary
storage of the symmetric keys and relied on public-key en-
cryption without significant overhead increase. The paper
identified both security and privacy threats for our setting
and presented a solution based on the requirements drawn
from these threats and overall functionality to ensure
that MOZAIK maintains the highest security and privacy
standards as well as functionality.
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