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Shadow-aware nonlinear spectral unmixing with
spatial regularization

Guichen Zhang, Paul Scheunders, Senior Member, IEEE, Daniele Cerra, Member, IEEE

Abstract—Current shadow-aware hyperspectral unmixing
methods often suffer from noisy abundance maps and inac-
curate abundance estimation of shadowed pixels, as these are
characterized by low reflectance values and signal-to-noise ratio.
In order to achieve a shadow-insensitive abundance estimation,
in this article we propose a novel spatial-spectral shadow-
aware mixing model (S3AM). The approach models shadows by
considering diffuse solar illumination and secondary illumination
from neighbouring pixels. Besides, spatial regularization using
shadow-aware weighted Total Variation is employed. Specifi-
cally, pixels in the local neighborhood of a target pixel take
simultaneously into account spectral similarity measures derived
from the imagery, elevation similarity measures derived from a
Digital Surface Model, and the impact of shadows. The sky view
factor F , needed as input for the model, is also derived from
available Digital Surface Models (DSM). The proposed approach
is extensively validated and compared to state-of-the-art methods
on two datasets. Results demonstrate that S3AM yields superior
abundance estimation maps for real scenarios, by decreasing the
noise in the results and achieving more accurate reconstructions
in the presence of shadows.

Index Terms—Spectral unmixing, spectral mixing model,
shadow-aware, spatial regularization, total variation, digital sur-
face model (DSM)

I. INTRODUCTION

SPECTRAL unmixing is a fundamental hyperspectral im-
age analysis technique analyzing the composition of an

image element at sub-pixel level [1]–[3]. Given a spectrum
related to an image element, spectral unmixing decomposes
it into the spectra related to the pure materials which are
present (usually more than one), i.e., endmembers, and their
corresponding contributions, i.e., abundances [4]. In super-
vised unmixing, the endmembers present in the scene are
available after being extracted directly from the image using
endmember extraction algorithms, or collected in an external
spectral library [1]. Subsequently, only abundances need to
be estimated. In this paper, we exclusively discuss supervised
unmixing.

A spectral mixing model describes how an incoming light
ray from a given illumination source interacts with the targets
on ground, before it is scattered back to the spectrometer
[5]. One of the most important prerequisites to correctly
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carry out the spectral unmixing process is to have a spectral
mixing model at hand that properly represents the scenario
[2]. In the past decades, numerous spectral mixing models
with different physical assumptions have been proposed [6]–
[11]. The linear mixing model (LMM) [6] is one of the most
popular approaches, as it achieves a good balance between
simplicity and accuracy in the physical modelling of the scat-
tering process. Specifically, the LMM assumes that incoming
light interacts with ground materials only once before being
scattered back to the sensor. In recent years, nonlinear mixing
models have attracted attention, as nonlinear effects in optical
interactions are occasionally non-trivial and meaningful for
a correct interpretation of the resulting spectra [1], [2]. At
a macroscopic level, nonlinear effects often appear due to
height differences between ground objects, causing incoming
light rays to interact more than once with different objects
before being scattered back to the sensor. Nonlinear algorithms
model secondary optical reflections of a light ray using the
termwise product of the spectra related to the objects on its
path. Most methods regard nonlinearities up to the second
order, including the Nascimento model [7], the Fan model
[8], the post nonlinear mixing model (PPNM) [11], and the
generalized bilinear model (GBM) [9]. Recently, authors in
[10] presented the multilinear mixing (MLM) model to tackle
nonlinear effects of all orders of optical interaction based on
stochastic processes.

Another challenge for spectral unmixing is posed by shadow
effects. A given pixel can be fully or partly sunlit or shadowed,
with partial shadowing mainly related to shadow boundaries.
Most existing spectral mixing models assume all pixels to
be sunlit [1], [2]. However, different illumination conditions
apply for shadowed pixels [12]. Specifically, fully sunlit pixels
receive both direct and diffuse solar radiation, i.e., global solar
illumination, while fully shadowed pixels only receive diffuse
solar radiation, caused by atmospheric scattering [12]. For
those spectral mixing models that do not consider shadow
effects [6]–[11], the difference in solar illumination conditions
between sunlit and shadowed regions can lead to inaccu-
rate abundance estimation, as shadows considerably impact
the magnitude of the reflectance and introduce significant
wavelength-dependent spectral distortion [12]. Therefore, ad-
vanced spectral mixing models that consider shadow effects
are desirable. Unless otherwise stated, we will refer in this
manuscript to shadowed pixels as fully or partly shadowed
image elements, while sunlit pixels denote fully sunlit image
elements.

Several methods have been developed to address this issue.
Since shadowed pixels have lower reflectance values, one of
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the most straightforward ways to describe a shadowed pixel
is by scaling its measured spectrum. This is motivated by
the fact that a fully shadowed region does not receive direct
light from any light source, while fully sunlit areas receive
global solar illumination. In addition, partly shadowed areas
can be considered to be a mixture of fully sunlit and shadowed
pixels. Earlier works include an additional ”shade” endmember
whose spectral values are (nearly) zero, followed by abundance
estimation using the linear spectral unmixing model [13],
[14]. Equivalently, the shadow LMM (SLMM) [5] extends the
LMM by subtracting the ”shade” fraction from a pixel using a
parameter Q. In [5], the shadow fraction parameter Q has been
applied in the MLM model to jointly consider nonlinear and
shadow effects, resulting in the shadow MLM (SMLM) model.
This group of methods then relies on the shadow-related
parameter Q to remove shadows. Assuming that shadows
scale the spectral reflectance, the spectral angle is a shadow-
insensitive measure of spectral similarities. The strategy in [15]
is to conduct nonlinear spectral unmixing separately in sunlit
and shadowed regions, followed by matching endmembers in
shadowed areas with those in sunlit areas using the spectral
angle distance (SAD). The shadow removal is conducted using
pixel reconstruction while replacing shadowed endmembers
with their matched sunlit ones.

However, the above approaches ignore an essential illumi-
nation contribution in shadowed regions, namely the diffuse
solar illumination, which comes from the optical scattering of
the direct sunlight in the atmosphere [12]. This contribution
has a wavelength-dependent impact on shadows, which is
non-negligible and non-trivial for spectral modeling [12]. One
straightforward way of dealing with this wavelength-dependent
shadow effect is to develop physics-based mixing models
based on radiative transfer [12]. Specifically, those methods
include two major solar illumination sources, i.e., direct and
diffuse solar radiation, with any pixel receiving a combination
of both [16]–[19]. For example, authors in [16] proposed an
illumination-invariant spectral mixing model at radiance level
based on radiative transfer. In [17], the Fansky model was
proposed, that accounts for the shadow effects by incorpo-
rating direct and diffuse solar radiation, and that accounts
for nonlinear optical interactions by using the Fan model [8].
A shadow-compensated bilinear mixing model (SCBMM) in
[18] allows for different illumination conditions in a scene,
and estimates the diffuse solar radiation and abundances
simultaneously based on global Particle Swarm Optimization
[20]. Zhang et al. [19] introduced the extended shadow-aware
multilinear mixing (ESMLM) model, describing the spectrum
of a mixed pixel as the sum of the contributions from different
illumination sources.

Nevertheless, several shadow-related challenges remain.
Since the contribution from diffuse illumination is significantly
smaller with respect to global illumination, modeling shadows
with diffuse solar illumination terms may lead to over-fitting of
the optimization problem. Moreover, the signal-to-noise ratio
in shadowed pixels is much lower with respect to sunlit pixels.
These factors lead to inaccurate abundance estimations and
noisy abundance maps [19].

The above-mentioned problems may be solved by exploiting

the spatial information in shadow-aware spectral unmixing
methods. Spatial-spectral unmixing approaches consider the
spatial dependence in local and non-local neighborhoods. On
the one hand, in local neighborhoods, abundances at a specific
pixel are assumed to be strongly correlated to the ones of
neighboring pixels [21], [22]; on the other hand, in non-local
neighborhoods, similar patches in a larger region are assumed
to share similar texture [23], [24]. Earlier work [25] improved
the local homogeneity of abundance maps by iteratively reduc-
ing the spatial structure of residual maps. Later, a hierarchical
Bayesian model incorporated spatial information based on
Markov random fields for spectral unmixing [26]. Authors
in [27] account for the spatial-contextual information through
the convolutional operation and sequentially decompose the
hyperspectral image from local attention to global aggrega-
tion. Recently, convolutional neural networks (CNN) have
been incorporated into deep learning-based spectral unmixing
approaches [28] for the modeling of spatial information.
Moreover, a group of methods applies spatial regularization to
spectral mixing models. In the past decades, numerous works
have applied different spatial regularizers to abundances, such
as spatial autocorrelation [29], spatial-spectral coherence [30],
L2 norm [31], Total Variation (TV) [32], non-local TV [23],
and non-local HSI TV incorporating the spatial distribution
of the endmembers [24]. Specifically, the TV regularization
has attracted most attention, as it promotes piecewise smooth
abundance maps and better preserves edges [32], [33].

While TV assumes neighboring pixels to have an equal
influence to a target pixel, recently some works refined this
assumption by allowing different weighting factors at neigh-
boring pixels, resulting in weighted TV [33]–[35]. Neigh-
boring pixels with associated bigger weights are assumed to
have a larger impact on the underlying spectrum. Weights can
be derived from different measures as prior knowledge, such
as spectral distance, principal components, and abundance
distance [34], [35]. In addition to spectral information, weights
derived from elevation information can improve abundance
estimation considerably [33], because of the illumination-
insensitive characteristics of Digital Surface Models (DSM). In
general, the more accurately the weights describe the ground
features, the better the abundance estimation performance.
On the other hand, inaccurate weights can lead to imprecise
results. For example, since shadows introduce wavelength-
dependent spectral distortions, spectral similarity measures
can largely reduce performance at shadows boundaries, where
pixels composed of the same target material may exhibit
spectral differences when exposed to different illumination
conditions.

In order to partly resolve the above challenges, in this article
we propose a spectral unmixing method with shadow-aware
spatial constraints obtained from a hyperspectral image and a
corresponding DSM generated by multi-view stereo imagery.
• Inspired by our previous work in [19], the spectral

mixing model accounts for typical ground scenarios in
the presence of shadows and nonlinear optical effects
by considering multiple illumination sources: global solar
illumination, diffuse solar illumination, and secondary il-
lumination from neighbouring pixels. Specifically, global
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solar radiation is assumed to be the main illumination
source for sunlit pixels, while diffuse solar radiation dom-
inates in shadowed pixels. A ground pixel may receive
light from some or all of the illumination sources, cre-
ating flexible spectral modeling for pixels with different
illumination conditions.

• In order to alleviate the impact of shadows on the estima-
tion of abundances, we propose a weighted TV constraint
with shadow-insensitive weighting factors. Weighting fac-
tors are computed from the spectral angle and elevation
differences between a target pixel and its neighboring pix-
els. In addition, a pre-computed shadow-related parameter
is included in weighting factors in order to decrease the
contribution of shadowed neighboring image elements of
the target pixel.

• We inject elevation information from the DSM into the
model in two ways. First, the elevation data provide
illumination-insensitive TV weights, beneficial to the
abundance estimation in shadowed pixels. Second, rather
than being an additional model parameter, the sky view
factor (F ), required to calculate the contribution of dif-
fuse solar illumination, is previously obtained from the
elevation data, additionally decreasing the complexity of
the spectral mixing model.

• We extensively validate the proposed method on two real
hyperspectral images including shadows, both quantita-
tively and qualitatively. The proposed model significantly
decreases the noise level in abundance maps, shows
good robustness to shadow effects, and obtains more
homogeneous abundance maps.

The remainder of this article is organized as follows. In
section II we present the most popular spectral mixing model,
i.e., LMM, and the ESMLM model, a shadow-aware spectral
unmixing approach from our earlier works [19]. Section III
introduces the proposed spatial-spectral shadow-aware mixing
model with spatial constraints (S3AM). Section IV describes
the experimental setup, including datasets, compared meth-
ods, measures for quantitative evaluation, optimal parameter
settings, and computational resources. Section V and Section
VI report and assess experimental results on two real datasets.
Finally, we conclude our work and give prospects for future
developments in Section VII.

II. SPECTRAL MIXING MODELS

We first introduce the mathematical notations utilized in this
article. Denote a hyperspectral image with B spectral bands
and N pixels as X ∈ RB×N , with X = [x1,x2, · · · ,xN ],
where pixel xj = (xj,1, xj,2, · · ·xj,B)

T ∈ RB×1. An end-
member library E ∈ RB×p consists of p endmembers, where
the i− th endmember is denoted as ei ∈ RB×1. The averaged
spectrum in the first-order neighborhood of pixel xj is denoted
as χj ∈ RB×1. Denote an abundance matrix related to E as
A = [a1,a2, · · · ,aN ], with aj ∈ Rp×1. In addition, four
pixel-wise parameters at pixel j are denotes as Pj , Qj , Kj ,
Fj , and their corresponding vector forms are denoted as P ,
Q, K, F .

Spectral mixing models can be constructed by a ray-
based description of the interaction of the incoming light

with the ground materials [5], [19]. Following some physical
assumptions, a light ray initiated from an illumination source
interacts with ground materials with given probabilities before
being scattered back to the sensor. In a simple scenario, we
assume that all pixels receive only global solar illumination,
i.e., direct sunlight, and that light rays interact only once
with the ground materials before being scattered back to the
sensor. Moreover, the probability of the optical interaction
within a single-resolution cell is assumed to be proportional
to the abundance of each material within the image element.
Following the above assumptions, the LMM is obtained as:

xj =

p∑
i=1

aj,iei (1)

where
∑p

i=1 aj,i = 1 and ∀i: aj,i ≥ 0.
The ESMLM model described in [19] is based on similar

ray-based descriptions. In order to account for shadows, the
ESMLM model allows various illumination conditions in
an image and accounts for typical scenarios related to the
types and distribution of ground materials. Specifically, the
ESMLM model considers three illumination sources: global
solar illumination, diffuse solar illumination, and secondary
illumination from neighbouring pixels. A light ray from each
illumination source follows certain physical assumptions. For
a given pixel xj , the ESMLM model sums up contributions of
possible light rays initiated from all three illumination sources,
as follows:

xj =(1−Qj)(1− Pj)

p∑
i=1

aj,iei +QjT (s0diff
)⊙

p∑
i=1

aj,iei

+ aj,ieiPj

p∑
i1=1

p∑
i2=1

aj,i1aj,i2ei1 ⊙ ei2

+ (1−Qj)(1− Pj)Kj

p∑
i=1

aj,iei ⊙ χj

(2)

where
∑p

i=1 aj,i = 1, ∀i: aj,i ≥ 0, and Pj , Qj ,Kj ∈ [0, 1].
We briefly remind the main concepts related to the ESMLM

model and its representation reported in Eq. (2). For further
details, the interested reader is referred to the extensive de-
scription in [19].

In this model, P is the probability that a light ray will
undergo a further interaction with the current pixel before
reaching the sensor, while Q denotes the shadowed fraction
of a pixel. The first term in Eq. (2) represents the linear
optical interactions of the incoming light from global solar
illumination. This term is re-scaled with (1 − Q), since the
shadowed part of a pixel does not have a direct line of sight
to the sun. Moreover, it is re-scaled with (1−P ), representing
the probability that it goes directly to the sensor after this
interaction. The second term is related to the linear interactions
of incoming light from diffuse solar illumination, contributing
to the shadowed fraction Q of a pixel. The operator T (s0diff

)
corresponding to the diffuse solar illumination is modeled
in Eq. (3). Furthermore, the third term describes second-
order optical reflections, appearing with probability P . The
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fourth term describes secondary interactions between first-
order neighboring pixels (described by spectrum χj) and the
target pixel with a strength factor K. By only retaining non-
linear effects up to the second order, only neighboring regions
with a direct line of sight to the sun can contribute to the
target pixel, resulting in a re-scaling factor of (1−Q)(1−P ).
Furthermore:

T (s0diff
) =

τ diff ⊙Es

τ dir ⊙El + τ diff ⊙Es
(3)

where τdiff (λ)Es(λ)
τdir(λ)El(λ)

= F (k1λ
−k2 + k3) with k1, k2, k3 > 0.

This power function models the wavelength-dependent atmo-
spheric scattering, which is stronger at shorter wavelengths.
El and Es represent direct and diffuse solar radiation, re-
spectively, while τ dir and τ diff represent the transmittance of
direct and diffuse solar radiation, respectively. If a ground pixel
is not occluded, the diffuse radiation comes from all directions
of the sky. When occlusion occurs, the diffuse illumination
decreases by the sky view factor F ∈ [0, 1], representing the
fraction of sky that a ground pixel can ”see”.

The ESMLM model provides flexible nonlinear modeling
with four parameters (P , Q, K and F ) and accounts for
different illumination conditions in an image element. Such
flexibility brings challenges in solving the reverse problem due
to the non-convexity of the objective function. In particular,
the ESMLM model becomes tri-convex, making it rather chal-
lenging to acquire a satisfying solution through the ADMM
approach [36], [37].

III. PROPOSED METHOD

In this article, we propose a spatial-spectral shadow-aware
mixing (S3AM) model by embedding of spatial information.
In order to make our problem bi-convex for an improved
convergence ( [36], [37]) we simplified the ESMLM model
in two aspects. First, we set P = 0, because the inner-
pixel second-order optical interactions have been observed to
have minor impact on spectral unmixing results. Besides, we
assume that the neighboring pixels contribute equally to a
target pixel regardless of their illumination conditions, so that
the neighbor illumination term is re-scaled solely according to
parameter K.

The simplified model at pixel j is given by:

xj =(1−Qj)yj +Qjyj ⊙ f̃ j +Kjyj ⊙ χj

=(1B − 1BQj)⊙ yj + 1BQj ⊙ yj ⊙ f̃ j

+ 1BKjyj ⊙ χj

=E ⊙ (1B − 1BQj + 1BQj ⊙ f̃ j + 1BKj ⊙ χj)1
T
p aj

=Ẽjaj

(4)

where

f̃ j =
Fj · (k1λ−k2 + k3)

1 + Fj · (k1λ−k2 + k3)
(5)

yj = Eaj =

p∑
i=1

aj,iei (6)

Ẽj = E ⊙ ((1B − 1BQj + f̃ jQj + χjKj)1
T
p ) (7)

We construct the optimization problem in vector form as:

min
aj ,Qj ,Kj

1

2

N∑
j=1

∥Ẽjaj − xj∥2F (8)

The ANC (abundance non-negativity constraint) and ASC
(abundance sum-to-one constraint) are applied on the abun-
dances aj [5], [19]. Additionally, we assume Q and K ∈ [0, 1],
in order to maintain their physical meanings:

aj ≥ 0,

p∑
i=1

aj,i = 1, Q,K ∈ [0, 1] (9)

Inspired by existing works on weighted total variation
constraints for spectral unmixing ( [33], [34]), the following
spatial constraint on the abundances is proposed:

N∑
j=1

∑
m∈N (j)

Rj,m∥aj − am∥11 (10)

where N (j) denotes the first order neighborhood of the target
pixel j. Rj,m represents a weighting factor describing the
similarity between pixel j and m:

Rj,m =
1

Zj

(
Rhj,m +Rxj,m

)
(11)

where Rhj,m and Rxj,m represent weighting factors related
to height and spectral information, respectively. Zj is the
normalizing constant value and constraints the summation of
weighting factors at pixel j to 1.
Rhj,m

is defined as:

Rhj,m
= exp

[
− 1

δ2h
(1 + ηQ′j,m)Thj,m

]
, (12)

where δ2h is a constant parameter controlling the weight range,
and η reduces the influence of shadowed neighboring pixels
on a target pixel using Q′j,m, the shadow fraction at the
neighboring pixel m for the target pixel j. In this article, Q′j,m
is pre-calculated using the SLMM method [5]. Finally, Thj,m

is a height similarity measure, given by the normalized height
difference between pixels j and m:

Thj,m =
(hj − hm)2

(hj + hm)2
(13)

normalized surface height above the ellipsoid h is provided
by the DSM, which is illumination-insensitive and therefore
robust to shadow effects. Thus, neighboring pixels with larger
height similarities will have larger impact on the target pixel.

The weighting factor Rxj,m
corresponds to spectral infor-

mation:

Rxj,m = exp

[
− 1

δ2x
(1 + ηQ′j,m)Txj,m

]
, (14)

where δ2x is a constant parameter controlling the weight range,
the shadow-related parameters η and Q′j,m are the same as in
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Eq. (12), and the spectral similarity measure Txj,m
is defined

by the spectral angle [38], [39]:

Txj,m
= max(arccos

xj · xm

∥xj∥∥xm∥
− 0.1, 0) (15)

Since shadow effects introduce spectral distortions [12],
[40], the spectral angle between sunlit and shadowed pixels
of the same material can be significantly larger than 0. We
found this difference empirically to be around 0.1. In order
to mitigate the impact of distortion in the spectral similarity
measure, a value of 0.1 is then subtracted from the spectral
angle in (15) up to a minimum value of 0.

Furthermore, as nonlinear effects typically do not depend
on spectral, height, and shadow conditions, we apply a non-
weighed total variation constraint on K:

N∑
j=1

∑
m∈N (j)

∥Kj −Km∥11 (16)

Hence, we define the optimization problem with spectral
and spatial constraints as:

min
A,Q,K

1

2

N∑
j=1

∥Ẽjaj − xj∥2F + λ∥AW 1∥1,1 + ℓC(A)+

ℓS(A) + ℓM(Q) + λ∥KW 2∥1,1 + ℓM(K)
(17)

where ℓC(A) = {A|A ≥ 0p×N}, ℓS(A) = {A|1T
p A = 1T

N},
ℓM(Q) = {Q|Q ≥ 01×N ,Q ≤ 11×N} and ℓM(K) =
{K|K ≥ 01×N ,K ≤ 11×N}. The sparse matrix W 2 =
[W ↑

2W
↓
2W

←
2 W→

2 ] ∈ RN×4N , where each element belongs
to the set {−1, 0, 1}, consists of differential operators in four
directions, i.e., up, down, left, and right. KW 2 computes the
difference in K in each direction in the first-order neighbor-
hood of each pixel. For instance, the difference in K in the
upward direction at pixel j can be written as Km↑ − Kj ,
where m↑ denotes the index of the neighboring pixel in
the upward direction of pixel j. Similarly, the sparse matrix
W 1 = [W ↑

1W
↓
1W

←
1 W→

1 ] ∈ RN×4N consists of differential
operators in four directions weighted by the factor Rj,m.
AW 1 computes the difference in A in each direction in the
first order neighborhood of each pixel for each endmember,
weighted by the factor Rj,m. For instance, the abundance
difference in the upward direction at pixel j associated with
endmember i can be written as (am↑,i − aj,i)Rj,m↑ , where
m↑ denotes the index of the neighboring pixel in the upward
direction of pixel j.

The above optimization is a bi-convex problem, and it is
convex to A and {Q,K}, respectively. Following [36], [37],
we split the unknown variables into two groups and solve two
convex problems sequentially using the ADMM approach. In

the ADMM form, the optimization problem is given by:

min
A,Q,K,G,H

1

2

N∑
j=1

∥Ẽjaj − xj∥2F + λ∥G2∥1,1+

ℓC(G3) + ℓS(G4) + ℓM(H1) + λ∥H3∥1,1 + ℓM(H4)
G1 = A

G2 = G1W 1

G3 = A

G4 = A


H1 = Q

H2 = K

H3 = H2W 2

H4 = K

(18)

The updating sequence is reported in Algorithm 1, while
updating equations of primal and dual variables are derived
in the Appendix.

Algorithm 1: ADMM for the optimization problem of
Eq. (18)

Input : E, f̃ , X , χ̃, λ, k1, k2, k3
Output: A, Q, K
Initialize: t = 0, A(0), Q(0), K(0), G(0), H(0), U (0)

1 while the stopping criterion is not satisfied do
2 Given Q(t), K(t), G(t), U (t), update A(t+1) with

(24)
3 Given A(t+1), U (t), update G(t+1) with (25), (26),

(27), (28)
4 Given A(t+1), H(t), U (t), update Q(t+1) and

K(t+1) with (30), (31), (32)
5 Given Q(t+1), K(t+1), U (t), update H(t+1) with

(33), (34), (35), (36)
6 Given U (t), A(t+1), Q(t+1), K(t+1), G(t+1),

H(t+1), update U (t+1) with (37)
7 t = t + 1
8 end

IV. EXPERIMENTAL SETUP

We validate our proposed method on real data, relying on
the DLR HySU and the HySpex/4K datasets. The DLR HySU
benchmark dataset is used for quantitative and qualitative
validation. It contains hyperspectral imagery with reference
abundances available for ground materials. The original dataset
does not contain shadows and a DSM, so we additionally
simulated both in this article for validation purposes. Besides,
in order to demonstrate our proposed method on real shadows
and a real DSM, we employ the HySpex and 4K dataset. As
the abundances in the latter dataset are unknown, we solely
carry out a qualitative validation in this case.

A. Datasets

1) DLR HyperSpectral Unmixing (DLR HySU) benchmark
dataset: The image in Fig. 1 (a) was acquired over Ober-
phaffenhofen, Bavaria, Germany with a HySpex pushbroom
camera, resulting in a ground sampling distance of 0.7 meters.
The image comprises 135 spectral bands ranging from 417.4
nm to 902.8 nm. This dataset [41] contains five square ground
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(a) (b)

(c) (d)

Fig. 1. DLR HyperSpectral Unmixing (HySU) dataset with simulated
shadowed pixels: (a) Hyperspectral image as a true color composite including
five ground targets with side lengths of 3 meters; (b) hyperspectral image with
simulated shadowed pixels and additional random noise (SNR = 30); (c)
endmember library containing five targets (bitumen, red-painted metal sheets,
blue fabric, red fabric, and green fabric) and surrounding grass; (d) simulated
DSM.

targets with a side of 3 meters (bitumen, red-painted metal
sheets, blue fabric, red fabric, green fabric) and a background
material (grass), for a total of 6 known endmembers (Fig. 1
(c)). The fully constrained linear spectral unmixing method
[42] is applied to the shadow-free image, yielding pixel-wise
reference abundance maps. When using the ground target sizes
to evaluate abundance estimation errors [41], the reference
abundance maps have an average error of 2.3 % [41], which
is low enough to justify their use as ground truth in our
experiments.

A binary shadow map is drawn in order to shade a part of all
targets, followed by a Gaussian filter with size 3 ∗ 3 to create
a soft shadow mask Q (Fig. 1 (b)). Furthermore, a synthetic
height map is simulated through a piecewise homogeneous
distribution using the Potts Model [26], followed by Gaussian
filtering. Then, the synthetic height map is used to compute
the simulated sky view factor F , using the method in [43].
Given the shadow-free pixel yj , we simulate the pixel xj with
artificial shadows as:

xj = (1−Qj)yj +QjT (s0diff
)yj (19)

where atmospheric parameters k1, k2, k3 are set as detailed in
Section IV-D. Furthermore, we apply additional random noise
(SNR = 30) on the simulated image.

2) HySpex and 4K Dataset: This dataset consists of an
airborne hyperspectral image and a DSM, acquired at the
same time over Oberpfaffenhofen, Bavaria, Germany between
8:42 and 8:56 a.m. (Central European Summer Time (CEST))
on June 4th, 2018. The airborne hyperspectral image (Fig.
2 (a)) was acquired with a HySpex VNIR sensor and has
been atmospherically corrected using ATCOR [41], [44], [45].
After removing the water vapor bands, a total of 101 bands
have been kept for further processing. Moreover, endmembers
E have been extracted from the fully sunlit pixels using

(a) (b)

(c) (d)

Fig. 2. Hyperspectral dataset: (a) hyperspectral image as a true color com-
posite acquired by the HySpex sensor in the study area of Oberpfaffenhofen,
Bavaria, Germany; (b) endmember library, automatically extracted from (a);
(c) normalized DSM; (d) sky view factor map derived from the DSM in (c).

the method in [19], [46] (see Fig. 2 (b)). Multi-view stereo
imagery acquired with the 4K camera system was employed
to generate the DSM [47] in Fig. 2 (c), whose values represent
surface height above the ellipsoid. In addition, height values
were normalized within [0, 1] to retain the relative height of
the ground surface. After geometrical co-registration and re-
sampling, the DSM and images share the same geo-coordinates
and spatial resolution (i.e., 0.7 m). Given the height data, the
sky view factor F was computed using the software SAGA
[43] (see Fig. 2 (d)).

B. Methods in comparison

We compare the S3AM method to the following state-of-
the-art spectral mixing models.
• LMM [6]: a linear mixing model that does not take

shadows into account.
• SLMM [13]: a linear mixing model accounting for shad-

ows using a scaling factor while ignoring diffuse solar
illumination.

• SMLM [5]: a nonlinear mixing model accounting for
shadows using a scaling factor as in SLMM, along with
nonlinear interactions using the multilinear mixing model
[10].

• NUEM [15]: a shadow removal method based on non-
linear unmixing and endmember matching. This method
requires a shadow mask as input, which has been com-
puted by S3AM in the experiment.

• Fansky [17]: a nonlinear mixing model considering shad-
ows based on both direct and diffuse solar illumination,
along with nonlinear interactions using the Fan model [8].

• ESMLM [19]: an extended SMLM model incorporating
direct and diffuse solar illumination as well as nonlinear
interactions.

• SCBMM [18]: a nonlinear mixing model considering
shadows using both direct and diffuse solar illumina-
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tion and nonlinear interactions using the bilinear mixing
model (BMM) [7].

Moreover, we investigate the impact of different variations of
the spatial TV regularization in an ablation study.

C. Quantitative measures

Given the observed pixels xj and the reconstructed pixels
x̂j , the mean reconstruction error RE is defined as:

RE =
1

N

N∑
j=1

√√√√ B∑
λ=1

(xj,λ − x̂j,λ)2, (20)

while the mean abundance error (AE) is defined as:

AE =
1

pN

N∑
j=1

p∑
i=1

|aj,i − âj,i| (21)

D. Parameter settings

1) k1, k2, k3: Following our previous work in [19], k1,
k2, k3 are the parameters of a power function that models the
ratio of diffuse to global solar irradiance on the ground surface.
We assume that atmospheric conditions are consistent in the
entire image region, so these parameters are constant in our
experiments. In practice, we compute these parameters using
ten pairs of pixels that are selected in the scene. Specifically,
a pair of pixels contain a sunlit pixel and a fully shadowed
pixel near a shadow boundary, assumed to consist of the same
material. We avoid including vegetation during the selection in
order to avoid dealing with complex nonlinear effects. Then,
k1, k2 and k3 are solved by Eq. (4), with Kj = 0, Qj = 1
and p = 1. The obtained values are: k1 = 0.579; k2 = 6.974;
and k3 = 0.206.

2) λ and η: Fig. 3 presents AE as a function of λ
and η for the DLR HySU dataset. We calculate optimal
values of these parameters from the values λ ∈ {10−5, 5 ·
10−5, 10−4, 5 · 10−4, 10−3, 5 · 10−3, 0.01, 0.05, 0.1, 1} and
η ∈ {10−5, 10−4, 10−3, 0.01, 0.1, 1, 10, 100, 500, 1000} by
minimizing AE, resulting in λ = 10−3 and η = 10 for S3AM.
As ground truth abundances are not available for the HySpex
dataset, we empirically determine λ and η to be the same as for
the DLR HySU dataset. Additionally, we analyze the impact
of different values of λ on the abundance maps in Section VI.

3) δ2x and δ2h: These parameters represent the weight range
in the exponential functions of the height-related (Eq. (12)) and
spectral (Eq. (14)) weighting factors, respectively. In principle,
one can optimize the values of δ2x and δ2h in a similar way as
λ and η, by minimizing the optimization error. However, too
many free parameters can lead to over-fitting. In practice, more
than 99.9% of Tx and Th was found to lie within the range
[0, 0.5]. Hence, we set the weighting ranges within the same
span, and choose empirical values δ2x = δ2h = 0.1.

4) µ: The penalty parameter µ of the augmented La-
grangian (see Eq. (23)) was determined as in [32]. The initial
value is set to µ = 0.001, and is then updated iteratively
by keeping the ratio between primal and dual residual norms
within a positive value of 10, as suggested in [36].

Fig. 3. AE as a function of λ and η for the DLR HySU dataset, where
λ ∈ {10−5, 5 · 10−5, 10−4, 5 · 10−4, 10−3, 5 · 10−3, 0.01, 0.05, 0.1, 1}
and η ∈ {10−5, 10−4, 10−3, 0.01, 0.1, 1, 10, 100, 500, 1000}.

5) initialization and stopping criteria: A fully constrained
spectral unmixing method [42] based on the SLMM model
has been applied to initialize A and Q, while K and U are
initialized to zero. In addition, the algorithm stops when the
primal residual is less than 5 · 10−4 or the maximum number
of iterations, set as 100, is reached.

E. Computational resources

All algorithms were developed in a MATLAB environ-
ment and run on an Intel Core i7 −8650 U CPU, 1.90
GHz machine with 4 Cores and 8 Logical Processors. We
apply the MATLAB function FMINCON using the Sequential
Quadratic Programming algorithm to perform the (non)linear
optimization for LMM, SLMM, SMLM, NUEM, Fansky, and
ESMLM. The function and constraint tolerance are set to 10−6

and 10−5, respectively. In addition, for-loop iterations over all
pixels were running in parallel on workers in a parallel pool.

The Fansky and SCBMM have the highest computational
cost, depending on the number of pixels in the subset. Besides,
the nonlinear optimization implemented by FMINCON in
ESMLM, SMLM and SLMM requires more computational
resources with respect to the linear optimization in LMM.
The S3AM, solved by the ADMM approach has a short
computation time, as MATLAB efficiently computes closed-
form updates for this method.

TABLE I
RUNNING TIME OF COMPARED METHODS

Method Running time (s)
HySU (208 pixel) subset1 (1148 pixel) subset 2 (1085 pixel)

LMM 0.47 2.56 2.27
SLMM 0.61 5.80 5.38
SMLM 0.70 9.42 8.33
NUEM 0.63 6.01 4.65
Fansky 7.42 112.75 109.20

ESMLM 2.59 26.66 25.47
SCBMM 11.43 42.25 40.43

S3AM 0.55 2.80 2.71
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(a)

(b)

Fig. 4. Comparison of mean abundance error AE in (a) and mean recon-
struction error RE in (b) for the DLR HySU dataset. Solid and dashed lines
represent results obtained using the input image with and without additional
noise (SNR = 30), respectively. Sunlit and (partly) shadowed pixels are
determined with Q ≤ 0.1 and Q > 0.1, respectively.

V. RESULTS: DLR HYSU BENCHMARK DATASET

A. Pixel reconstruction and abundance estimation

Fig. 4 shows the obtained AE and RE for all methods, from
sunlit, (partly) shadowed and all pixels, respectively. The AE
was obtained without taking grass into account. The reason for
this is that reference abundance values were derived by LMM.
In grass areas, nonlinear effects may be present, and this
class contains non-negligible intraclass variations with respect
to the spectrum selected as endmember. Therefore, reference
abundances for grass may be unreliable. In addition, NUEM
is not included in the comparison of RE, as this method
runs two unmixing processes followed by spectral matching.
Furthermore, we show AE and RE on a degraded image with
additive noise (SNR = 30), in order to evaluate the robustness
to noise of the compared methods.

All compared methods show satisfactory REs in sunlit
regions. In shadowed regions, the LMM obtains significantly
higher RE compared to other methods, indicating the impor-
tance of shadow-aware modeling. Nevertheless, smaller REs
do not necessarily imply a satisfactory abundance estimation.
Compared to REs, we observe significantly larger differences
of AEs among compared methods. In general, the better a
model accounts for shadows, the better the abundance estima-
tion. The LMM has the lowest performance, because shadow
effects are simply ignored. The NUEM is also characterized

by a large AE. Since shadow effects cause a wavelength-
dependent spectral distortion, it is quite challenging to per-
form spectral matching between sunlit and shadowed pixels.
Moreover, the SLMM and SMLM treat shadows as a scaling
effect, and perform better at abundance estimation in shadowed
regions. The performance improves further when including
the diffuse solar illumination as prior knowledge. Fansky,
ESMLM, and S3AM select pairs of pixels from the input
image as prior knowledge and estimate the ratio of diffuse and
global solar illumination through a power function. The pro-
posed approach, i.e., S3AM, clearly outperforms others thanks
to the applied spatial constraints. In addition, the ratio of
diffuse and global solar illuminations can be estimated along
with abundance values in the unmixing process, i.e., SCBMM.
Nevertheless, its AE appears higher than other methods.
The reason is that the SCBMM does not assume stronger
atmospheric scattering at shorter wavelengths [12]. Hence, its
estimated diffuse radiation may not correspond to the spectral
characteristics of shadows in practice. Furthermore, results in
Fig. 4 show that both REs and AEs increase considerably
as the image is degraded by noise. Despite better abundance
estimation, the Fansky and ESMLM are less robust to noise
compared to LMM, SLMM, SMLM, NUEM, and SCBMM.
Since the contribution of diffuse solar radiation is significantly
smaller relative to global radiation, the optimization problem
can be over-fitted and may lead to noisy abundance maps.
This sensitivity to noise can be significantly alleviated by the
proposed method S3AM, thanks to the spatial constraints.

A qualitative comparison of the abundance maps is dis-
played in Fig. 5. In order to assess the location of abundance
errors, we overlay the AE map in grayscale as a semi-
transparent layer over the optical image in Fig. 6. First of all,
it can be observed that abundance errors are mainly located
in shadowed regions. Compared to the LMM, the shadow-
aware unmixing methods therein display improved abundance
maps. While SLMM and SMLM treat shadow as a scaling
effect, the SMLM further considers nonlinear reflections. Since
the study region is a flat terrain with artificial materials,
multiple reflections appear minor. Thus, the abundance maps
of SLMM and SMLM are very similar. Unlike embedding a
shadow-related parameter in the model, the NUEM matches
spectra in shadowed areas with their corresponding ones in
sunlit regions. However, accurate spectral matching is rather
challenging due to spectral distortion caused by shadows. In
particular, this dataset contains some materials with similar
spectral information, making spectral matching more difficult.
For example, the NUEM easily confuses red-painted metal
sheets and red fabric.

Furthermore, we compare methods that take into account
diffuse solar illumination, i.e., SCBMM, Fansky, ESMLM,
and S3AM. The SCBMM may have the ability to estimate
abundance values in shadowed regions, such as bitumen, while
it seems challenging to estimate diffuse solar illumination
without prior knowledge. Fansky, ESMLM, and S3AM, on the
other hand, whose diffuse solar illumination is computed from
manually selected pixels in the input image, perform better in
abundance estimation.

However, without applying spatial constraints, abundance
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Fig. 5. Abundance maps for the HySU dataset. Left to right: bitumen, red metal sheets, blue fabric, red fabric, green fabric, and grass. Top to bottom:
reference, LMM, SLMM, SMLM, NUEM, Fansky, ESMLM, SCBMM, S3AM. The reference abundance maps are computed by applying fully constrained
least squares unmixing using the library of known endmembers on the shadow-free image.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6. DLR HySU imagery overlaid with pixel-wise mean abundance error
maps in grayscale: (a) LMM, (b) SLMM, (c) SMLM, (d) NUEM, (e) Fansky,
(f) ESMLM, (g) SCBMM, (h) S3AM, (i) reference image.

Fig. 7. Comparison of mean abundance error AE of S3AM with ablated
spatial constraints for the DLR HySU dataset. Solid and dashed lines represent
results obtained on the input image with and without additional noise
(SNR = 30), respectively.

maps show higher noise levels and confusion between similar
materials, such as red-painted metal sheets and red fabric. Such
distortions can be alleviated by injecting spatial information
into the analysis. By applying weighted TV constraints, S3AM
considerably improves the abundance estimation step. Firstly,
the noise level has been significantly reduced owing to the
spatial constraints. In addition, the abundance estimation at the
boundary pixels is significantly improved, due to the weighting
of the spectral and height information in the spatial constraints.

B. Ablation study

The S3AM method consists of a weighted TV constraint
term, where the weights are formed by spectral and height
features. In the ablation study, we investigate the individual
contribution from each feature.

We refer to the weighted TV (Eq. (10)) in the S3AM
method as wTVfull, where both height and spectral features
are included and computed by Eqs. (12) and (14). In the

ablation study, we regard height and spectral features one at
a time by setting Rhj,m = 0 and Rxj,m = 0 in Eq. (11),
respectively, resulting in the ablated TV forms wTVhei and
wTVspec. In addition, we set the weights Rhj,m

= Rxj,m
= 1

in Eq. (11), resulting in a classic non-weighted TV, labeled
as TV. Moreover, we ablate the spatial constraints entirely by
setting λ = 0 in Eq. (17), reducing the method to only the
spectral mixing model, labeled as ”none”.

Fig. 7 compares AE of wTVfull, wTVspec, wTVhei, TV,
and ”none” in the ablation study. Specifically, we investigate
AE in sunlit, (partly) shadowed, and all regions. Compared to
sunlit regions, where the spatial constraints play a minor role,
we observe considerable improvement in shadowed pixels by
embedding spatial constraints, with wTVfull achieving the best
abundance estimation, both with and without additional noise.

Figs. 8 and 9 show respectively abundance and abundance
error maps. When no spatial constraints are applied, i.e.,
”none”, resulting abundance maps are noisy. The ablation
study shows that differences in abundances mainly appear on
boundaries between different materials. Typically, TV over-
smooths the boundaries between different materials, since it
treats neighboring pixels equally. One example is visible at
the transition from bitumen to green fabric. When applying
weighted TV, the abundance estimation on the boundary pixels
is largely improved and wTVspec better preserves the shape
of the bitumen target with respect to wTVhei, because spectral
information can better separate the two materials on the
boundary between them. Since in our experiment the DSM is
randomly generated, the height information does not fully cor-
respond to the ground objects, leading to inaccurate abundance
estimations. In practice, spectral or height information alone
might not be sufficient to distinguish ground materials. The
configuration denoted as wTVfull, adopted by the proposed
method S3AM, jointly considers spectral and height features
and outperforms single-source weights both quantitatively and
qualitatively. Specifically, wTVfull constraints visibly improve
the abundance estimation on the boundary pixels, e.g., at the
right border of bitumen and the bottom side of green fabric.

C. Shadow-removed pixel reconstruction

Spectral mixing models considering shadows allow gener-
ating shadow-removed imagery through pixel reconstruction.
Specifically, in SLMM, SMLM, ESMLM, and S3AM, the
parameter Q represents the shadow fraction within a pixel.
By setting Q = 0, shadows are removed during pixel recon-
struction [19]. The NUEM, Fansky, and SCBMM methods
compute abundance values separately in sunlit and shadowed
groups. Then, shadow-removed pixels can be reconstructed
using summed-up abundance values in the two groups and
sunlit endmember spectra. Obviously, a better abundance es-
timation leads to better reconstruction and shadow removal.
Fig. 10 compares the shadow-removed images computed by
the different models. Despite confusion between bitumen and
green fabric, the SLMM achieves a satisfactory restoration in
shadowed areas, which is remarkable considering its simplic-
ity. The SMLM shows a similar abundance estimation as the
SLMM (see Fig. 5). However, some dark pixels appear in the
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Fig. 8. Abundance maps for the HySU dataset using S3AM with ablated spatial constraints. Left to right: bitumen, red metal sheets, blue fabric, red fabric,
green fabric, and grass. Top to bottom: reference, wTVfull, wTVspec, wTVhei, TV, and ”none”. The reference abundance maps are computed by applying
fully constrained least squares using the library of known endmembers on the shadow-free image.

(a) (b) (c)

(d) (e) (f)

Fig. 9. DLR HySU imagery overlaid with pixel-wise mean abundance error
maps in grayscale using S3AM with ablated spatial constraints: (a) wTVfull,
(b) wTVspec, (c) wTVhei, (d) TV, (e) ”none”, (f) reference image

reconstructed image of the SMLM, because of its incorrect
estimation of parameters P and Q [17]. Large areas of red-
painted metal sheets appear in the restored image of NUEM,
because of the mismatch between endmembers extracted in
sunlit and shadowed regions. For example, when minimizing
the spectral angle, the spectrum of shadowed red fabric is
associated with the red-painted metal sheets. In addition, the
spectrum of shadowed green fabric is associated with bitumen.
Moreover, Fansky, ESMLM, and SCBMM show material
confusion between different red materials. The material bound-
aries in shadowed areas also appear reddish due to incorrect
abundance estimation. Overall, the proposed method S3AM
achieves the best qualitative shadow-removed image, thanks
to its superior abundance estimation and spatial constraints.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 10. Restored images with removed shadows of the DLR HySU dataset
generated by (a) SLMM, (b) SMLM, (c) NUEM, (d) Fansky, (e) ESMLM,
(f) SCBMM, (g) S3AM, (h) reference image.

(a) (b)

(c) (d) (e) (f)

(g) (h) (i) (j)

Fig. 11. Subset 1 of the HySpex dataset: (a) true color composite, (b) DSM.
Abundance maps of roof using: (c) LMM, (d) SLMM, (e) SMLM, (f) NUEM,
(g) Fansky, (h) ESMLM, (i) SCBMM, (j) S3AM.

VI. RESULTS: HYSPEX AND 4K DATASET

A. Abundance estimation

Unlike for the DLR HySU dataset, we do not have ground-
truth abundances for the HySpex/4K dataset. Therefore, in this
section, we investigate and compare the methods qualitatively
on two image subsets (Figs. 11 and 12). Fig. 11 compares
the abundances of the roof material. The LMM seems to
perform satisfactorily in shadowed pixels. However, it is worth
noticing that LMM easily overestimates impervious surfaces,
as can be observed in subset 2, where many vegetation pixels
are incorrectly recognized as impervious surfaces (Fig. 12

(a) (b)

(c) (d) (e) (f)

(g) (h) (i) (j)

Fig. 12. Subset 2 of the HySpex dataset: (a) true color composite, (b) DSM.
Abundance maps of vegetation using: (c) LMM, (d) SLMM, (e) SMLM, (f)
NUEM, (g) Fansky, (h) ESMLM, (i) SCBMM, (j) S3AM.

(c)). Besides, the SLMM, SMLM, and NUEM show lower
abundances in shadowed pixels on the roof (Fig. 11 (d)-(f)).
Specifically, they confuse the spectra of the roof with other
impervious materials (see Fig. 15), since these two materials
contain similar spectral information. Therefore, in order to
distinguish between similar spectra in the presence of shadows,
it is essential to consider the diffuse solar radiation (see Figs.
11 (g)-(j)). In contrast, when determining materials with large
spectral differences, such as vegetation and road in subset 2
(Fig. 12), SLMM and SMLM can also achieve satisfactory re-
sults. Moreover, by considering the diffuse solar illumination,
Fansky, ESMLM, and SCBMM may achieve better abundance
estimation at higher noise levels. In particular, the SCBMM
shows a quite noisy abundance map in subset 1. Similar as
in the DLR HySU dataset, the SCBMM may show decreased
performance at some sunlit pixels (Fig. 12 (i)). In addition, the
Fansky method appears noisier compared to ESMLM, and can
only distinguish a part of the shadowed materials. Compared
to Fansky and SCBMM, the ESMLM performs consistently
better in both subsets.

The TV constraint further contributes to the abundance esti-
mation in two aspects. First, given the large spectral variability
in real hyperspectral imagery, the spectral unmixing methods
without the TV constraint can easily confuse similar mate-
rials, thus producing considerably noisier abundance maps,
while the spatial constraint promotes similar abundances in
local neighborhoods, significantly reducing noise. Second, the
abundance estimation is not as accurate in shadowed regions,
where pixels contain a lower signal-to-noise ratio. The spatial
constraint provides additional information to spectral models,
thus achieving better abundance estimations.

An ablation study has been conducted in subset 1, us-
ing spatial constraints wTVfull, wTVspec, wTVhei, TV, and
”none” in S3AM (see Fig. 13). As in the case of the HySU
dataset, differences in TV constraints mainly affect mixed
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(a) (b) (c) (d) (e) (f) (g)

Fig. 13. Subset 1 of the HySpex dataset: (a) true color composite, (b) DSM. Abundance maps of roof for ablation study using spatial constraints: (c) wTVfull,
(d) wTVspec, (e) wTVhei, (f) TV, (g) none.
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Fig. 14. Abundance maps of roof as a function of λ for subset 1 of the HySpex dataset using S3AM with ablated spatial constraints. Top to bottom:
TV,wTVspec, wTVhei, wTVfull. Left to right: λ = 10−5, 10−4, 10−3, 10−2 and 10−1.

sunlit/shadowed pixels in the HySpex dataset. Specifically, the
weighted TV methods, i.e., wTVspec, wTVhei, and wTVfull
lead to sharp edges, while the classic TV method oversmooths
transitions in boundary pixels. Examples can be spotted in the
regions between the two roofs in subset 1.

B. The impact of λ on abundance estimation

Since it is very challenging to select an optimal λ for the
HySpex dataset, due to the lack of ground truth, the sensitivity
of various TV constraints with respect to λ is evaluated in Fig.
14. In our experiments so far, we used the optimized values of
λ from the DLR HySU dataset on the HySpex dataset. How-
ever, a similar dataset with ground truth may be not available
at all in real-case scenarios. Fig. 14 compares abundances of
roof in subset 1 for λ ∈ {10−5, 10−4, 10−3, 10−2, 10−1}. As
expected, the abundance maps become more homogeneous and
less noisy as λ increases. The abundance maps using λ = 10−3

present the best qualitative results. As discussed, the use of the
weighted TV leads to better abundance estimation on boundary
pixels, where the wTVfull achieves a balance between height

and spectral information. This characteristic becomes more
prominent with larger values of λ. Specifically, the TV con-
straint using spectral information only, i.e., wTVspec, largely
decreases the performance when λ ≥ 10−2, as the com-
puted weights do not match well with the ground materials.
Compared to TV and wTVspec, the wTVhei constraint leads
to better results, but it can suffer from height inaccuracies.
Despite some boundary pixels possibly being affected for
larger values of λ, the wTVfull constraint generally reaches a
more robust abundance estimation in a broader range of values
of λ.

C. Shadow-removed pixel reconstruction

Fig. 15 shows three examples of shadow removal results for
the HySpex dataset. The restored images appear very bright in
shadowed roof pixels when applying the SLMM, SMLM, and
NUEM approaches. This corresponds to the poor abundance
estimations in Fig. 11 (d)-(f). In addition, some dark pixels
appear in the restored image by the SMLM, because of the
incorrect estimation of the parameters P and Q. A similar
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input SLMM SMLM NUEM Fansky ESMLM SCBMM S3AM

Fig. 15. Three examples of shadow-removed results for the HySpex dataset. Left to right: input image, SLMM, SMLM, NUEM, Fansky, ESMLM, SCBMM,
and S3AM.

artifact can be observed in the DLR HySU dataset (Fig. 10
(b)). Furthermore it is worth noticing that, when spectral angle
distance successfully matches sunlit and shadowed pixels in
a scene, the NUEM can achieve good results, such as in the
second and third examples. However, this may work only in
simple scenarios. In addition, the NUEM highly depends on
the input shadow mask. Some artifacts appear when shadowed
areas are over- or underestimated (see examples 1 and 3 in
Fig. 15). Approaches considering the diffuse solar illumination
achieve in all cases better shadow-removed images, while the
results of SCBMM are much noisier. Despite the improvement,
shadow removal by Fansky and ESMLM in the first example
shows some spectral distortions. Finally, the reconstructed road
computed by ESMLM and SCBMM in the third example
appears noisy, with the line marking resulting almost invisible.

The advantages of S3AM compared to other methods
appear evident. First, S3AM improves the restoration result
in shadowed regions and retains spectral homogeneity. The
shaded roof area in the first example of Fig. 15 shows
that S3AM better reconstructs spectral features compared to
ESMLM. Moreover, S3AM considerably reduces the noise
in the shadow-removed imagery. This noise reduction can be
spotted not only in shadowed regions, such as regions shaded
by vegetation in the second example, but also in sunlit pixels,
such as the impervious surface in the third example.

VII. CONCLUSION

This article proposes a spatial-spectral shadow-aware mix-
ing (S3AM) model. The spectral modeling accounts for
shadows, following physical assumptions based on radiative
transfer theory. Specifically, a light path initiates from an
illumination source and interacts with endmembers before
being scattered back to the observer. The model considers
direct, diffuse, and neighboring illumination sources, where
direct solar radiation is the dominant source for sunlit pixels,
and diffuse solar radiation for shadowed pixels. A mixed pixel
is then resolved by summing up the spectral contribution of
all possible light paths.

S3AM embeds a DSM generated by multi-view stereo
images. The sky view factor F , which is essential to estimate
diffuse solar illumination in S3AM, can be conveniently

computed using the DSM, reducing the model complexity.
Moreover, we take into account the spatial relationship of
abundances through weighted TV constraints, derived by
spectral information from the hyperspectral imagery, height
information from the DSM, and shadow information. The
obtained optimization problem is bi-convex and is split into
two convex problems, separately solved by the ADMM (Al-
ternating Direction Method of Multiplier) approach iteratively.

The proposed method has been extensively evaluated using
two datasets, both quantitatively and qualitatively. Experiments
demonstrate that the proposed method significantly reduces the
noise level of abundance maps and improves the abundance
estimation. Moreover, an ablation study is performed in which
the proposed weighted TV constraint is compared to different
variations of the spatial TV regularization, or only considering
the spectral information.

Several open questions remain. First of all, in order to
quantitatively validate shadow-aware spectral unmixing meth-
ods in real scenarios, there is a lack of real datasets with
shadows for which ground-truth abundances are known. Fur-
thermore, although DSM derived by multi-view stereo imagery
offers shadow-insensitive height information, the performance
of S3AM can be degraded by noise and inaccurate values,
especially on boundary regions with large height variations,
causing imprecise TV weights and abundance estimation. In
particular, urban areas represent the ideal application for this
kind of analysis, as shadows are relevant and present across
the image. However, DSMs can lead to inconsistencies due
to occlusions, especially if the elevation model is derived by
stereo images rather than multi-view datasets. Thus, future
work should address spectral unmixing methods robust to
inconsistencies and missing data in the DSM.
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APPENDIX

This section presents in detail the updating equations for
primal and dual variables in Algorithm 1.

A. Update A and G

Given Q, K, and H , the optimization problem in Eq. (18)
can be rewritten as:

min
A,G

1

2

N∑
j=1

∥Ẽjaj − xj∥2F + λ∥G2∥1,1 + ℓC(G3) + ℓS(G4)

s.t.


G1 = A

G2 = G1W 1

G3 = A

G4 = A

(22)

whose augmented Lagrangian is:

min
A,G

1

2

N∑
j=1

∥Ẽjaj − xj∥2F + λ∥G2∥1,1 + ℓC(G3) + ℓS(G4)

+
µ

2
∥A−G1 −U1∥2F +

µ

2
∥G1W 1 −G2 −U2∥2F

+
µ

2
∥A−G3 −U3∥2F +

µ

2
∥A−G4 −U4∥2F

(23)

Thus, we can derive the optimizations with respect to a
(t+1)
j :

a
(t+1)
j = (Ẽ

T

j Ẽj + 3µI)−1(Ẽ
T

j xj + µ(J
(t)
1j

+ J
(t)
3j

+ J
(t)
4j
)

(24)

where J
(t)
1j

= G
(t)
1j

+ U
(t)
1j

, J (t)
3j

= G
(t)
3j

+ U
(t)
3j

, and J
(t)
4j

=

G
(t)
4j

+U
(t)
4j

.

Next, the optimizations with respect to G
(t+1)
1 , G

(t+1)
2 ,

G
(t+1)
3 , G(t+1)

4 are written as:

G
(t+1)
1 =

[
A(t+1) −U

(t)
1 + (Gt

2 +U
(t)
2 )W T

1

][
I +W 1W

T
1

]−1
(25)

G
(t+1)
2 = soft

(
G

(t)
1 W 1 −U

(t)
2 ,

λ

µ

)
(26)

G
(t+1)
3 = max

(
A(t+1) −U

(t)
3 , 0

)
(27)

G
(t+1)
4 =

(
A(t+1) −U

(t)
4

)
+

1

p

[
1T
N − 1T

p

(
A(t+1) −U

(t)
4

)]
⊗1p

(28)

B. Update Q, K, and H

Given A and G, the optimization problem in Eq. (18) can
be rewritten as:

min
Q,K,H

1

2

N∑
j=1

∥Ẽjaj − xj∥2F + ℓM(H1) + λ∥H3∥1,1 + ℓM(H4)

s.t.


H1 = Q

H2 = K

H3 = H2W 2

H4 = K

(29)

whose augmented Lagrangian is:

min
Q,K,H

1

2

N∑
j=1

∥Ẽjaj − xj∥2F + ℓM(H1) + λ∥H3∥1,1+

ℓM(H4) +
µ

2
∥Q−H1 −U5∥2F +

µ

2
∥K1 −H2 −U6∥2F

+
µ

2
∥H2W 2 −H3 −U7∥2F +

µ

2
∥K −H4 −U8∥2F

The optimizations with respect to Q and K are solved pixel-
wise. For pixel j, we update Q

(t+1)
j and K

(t+1)
j using:

Q
(t+1)
j =

C3C4 − C2C5

C1C4 − C2
2

(30)

K
(t+1)
j =

C2C3 − C1C5

C2
2 − C1C4

(31)

where

C1 =

B∑
i=1

(f̃j,i − 1)2y2j,i + µ

C2 =

B∑
i=1

(f̃j,i − 1)χj,iy
2
j,i

C3 =

B∑
i=1

(f̃j,i − 1)yj,i(xj,i − yj,i) + µJ
(t)
5j

C4 =

B∑
i=1

χ2
j,iy

2
j,i + 2µ

C5 =

B∑
i=1

χj,iyj,i(xj,i − yj,i) + µ
(
J

(t)
6j

+ J
(t)
8j

)

(32)

with yj = Eja
(t+1)
j , J (t)

5j
= H

(t)
1j

+U
(t)
5j

, J (t)
6j

= H
(t)
2j

+U
(t)
6j

,

and J
(t)
8j

= H
(t)
4j

+U
(t)
8j

.

Next, we optimize the objective function with respect to
H

(t+1)
1 , H(t+1)

2 , H(t+1)
3 , and H

(t+1)
4 using Eqs. (33), (34),

(35), (36):

H
(t+1)
1 = min

(
max

(
Q(t+1) −U

(t)
5 , 0

)
, 1
)

(33)

H
(t+1)
2 =

[
K(t+1) −U

(t)
6 + (Ht

3 +U
(t)
7 )W T

2

][
I +W 2W

T
2

]−1
(34)
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H
(t+1)
3 = soft

(
H

(t)
2 W 2 −U

(t)
7 ,

λ

µ

)
(35)

H
(t+1)
4 = min

(
max

(
K(t+1) −U

(t)
8 , 0

)
, 1
)

(36)

C. Update U (t+1)



U
(t+1)
1 = U

(t)
1 −A(t+1) +G

(t+1)
1

U
(t+1)
2 = U

(t)
2 −G

(t+1)
1 W1 +G

(t+1)
2

U
(t+1)
3 = U

(t)
3 −A(t+1) +G

(t+1)
3

U
(t+1)
4 = U

(t)
4 −A(t+1) +G

(t+1)
4

U
(t+1)
5 = U

(t)
5 −Q(t+1) +H

(t+1)
1

U
(t+1)
6 = U

(t)
6 −K(t+1) +H

(t+1)
2

U
(t+1)
7 = U

(t)
7 −H

(t+1)
2 W 2 +H

(t+1)
3

U
(t+1)
8 = U

(t)
8 −K(t+1) +H

(t+1)
4

(37)
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