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Since herbarium specimens are increasingly becoming digitised and accessible in online repositories, an important need

has emerged to develop automated tools to process and enrich these collections to facilitate better access to the preserved

archives. Particularly, automatic enrichment of multi specimen herbaria sheets pose unique challenges and problems that have

not been adequately addressed. The complexity of localization of species in a page increases exponentially when multiple

specimens are present in the same page. This already challenges the performance of models that work accurately with single

specimens. Therefore in this work, we have performed experiments to identify the models that perform well for the plant

specimen localization problem. The major bottleneck for performing such experiments was the lack of labelled data. We also

address this problem, by proposing tools and algorithms to semi-automatically generate annotations for herbarium images.

Based on our experiments, segmentation models perform much better than detection models for the task of plant localization.

Our binary segmentation model can accurately extract specimens from the background and achieves an F1 score of 0.977. The

ablation experiments for multi specimen instance segmentation show that our proposed augmentation method provides a

38% increase in performance (0.51 mAP@0.9 versus 0.37) on a dataset of 1500 plant instances.

CCS Concepts: · Applied computing✙ Digital libraries and archives; Agriculture; · Computing methodologies✙

Image segmentation; Object detection; Object identiication.
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1 INTRODUCTION

Herbarium specimens have been collected globally for hundreds of years and serve as a rich source of crucial

data for studying plant biodiversity and ecology. They provide users with documented occurrences of a plant in a

speciic location over time and therefore have been the basis of systematic botany for centuries. According to the

latest data summary report released by Index Herbariorum, there are around 3400 active herbaria in the world

comprising 397 million specimens that are protected across 182 countries [17]. Since the early 90s, libraries have

conducted multiple digitization on a regular basis to ensure restoration and lasting preservation of herbarium

collections. This protects them from further degradation caused by repetitive handling. Expanding access to

specimen types across digitization is essential in maintaining specimens and making relevant knowledge readily

available to researchers and the public. The sudden growth in high-quality image capturing devices induced

by enormous amounts of collections (that are yet to be uncovered) has further led to a rising interest in large

scale digitization initiatives across the world [2]. As herbarium specimens are increasingly becoming digitised
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and accessible on online repositories, there arises an important need to develop automated tools to process and

enrich these collections in order to facilitate better access to the digitised archives.

This rising number of digitised herbarium sheets provides an opportunity to employ image processing tech-

niques, such as deep learning, to automatically identify species and higher taxa [3ś5] or to extract other useful

information from the herbaria sheets, such as detecting handwritten text, colour bars, scales, and barcodes. The

species identiication task works well for herbarium sheets that have only one specimen on a page. However,

there are many herbaria books that have multiple species on the same page (as shown in Figure 1) for which the

complexity of the detection and localization of the plants increases tremendously. It also involves a great deal

of time and efort if they are to be enriched manually. Therefore in this work, we propose a pipeline that can

automatically localize, identify, and enrich plant specimens in multi-specimen herbaria as shown in Figure 2.

Fig. 1. Visual representation of multi specimen herbaria with three to four plant specimens on a single page. The text boxes

around each plant provide more information about the plant. The number of bar codes denote the number of unique plant

specimens in the image.

The proposed pipeline consists of three main steps; preprocessing of the images, extraction of the plants and

associated labels, and linking the extracted plants to the plant database. The preprocessing step applies mainly to

images coming from herbaria books, that are often warped due to the thickness of the book. The image may

also contain additional elements besides the page of interest, such as bar codes and colour bars that need to

be removed (see Figure 1). Next, the plants visible on the page need to be extracted separately. Finally, a text

recognition model would be used to recognize the text on the page and link it to a database of taxa. The feasibility

of the pipeline was experimentally validated. Based on the results of the feasibility study, three diferent methods

were investigated for the localization of plant species, namely plant detection (one bounding box per plant), plant

segmentation (one segmentation mask per page), and instance segmentation (one segmentation mask per plant).

Each technique has its distinct advantages and drawbacks, which are discussed further in this paper. This work is

part of an ongoing project and therefore the focus of this paper is limited to the extraction of the plant species.

In summary, the main contributions of this paper can be listed as follows:

(1) A modular pipeline is proposed that can automatically localize, detect and enrich plant specimens in multi

specimen herbaria. The feasibility of the various blocks used in the pipeline is also investigated.
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(2) Detection and segmentation models are discussed for the localization of plant species.

(3) A semi-automatic labelling algorithm is proposed to generate labels and masks that can be used to train

detection and segmentation models. An alternate approach is also been discussed to compensate for the

drawbacks of the algorithm.

(4) A new mosaic based augmentation technique is proposed for training segmentation models.

(5) Finally, we also provide the labelled data used for training and validating our models.

The remainder of this paper is organized as follows. Section 2 reviews the related work. Subsequently, Section 3

presents the feasibility of the building blocks of the pipeline used for preprocessing, localization and identiication

of plant species. The dataset along with the algorithms used to generate it are presented in Section 4. Section 5

discusses experiments and their results while Section 6 concludes this paper and explains the future directions.

Fig. 2. Proposed pipeline for automatic enrichment of the herbaria books.

2 RELATED WORK

To automatically detect or segment herbarium objects, deep learning-based computer vision methods have

become more and more popular over the last decade. Object detection models are one of the most straightforward

methods to try, as these will output the location of the objects visible in the image. These locations are represented

in the form of bounding boxes, which are (rotated) rectangles denoted by the 4 coordinate points of their vertices.

To train such models for plant extraction, each plant on each page has to be annotated by its bounding box,

which is a relatively straightforward process. A typical object detection network consists of object localisation

and classiication integrated into one convolutional network. There are two main types of meta-architectures

available for this application: single-stage detectors like Single Shot Multibox Detectors (SSD) [12] and ’You

only look once’ (YOLO) [13] and two-stage, region-based CNN detectors, such as Faster R-CNN [14]. YOLO

predicts bounding boxes of objects and their corresponding class probabilities in a single pass for the entire

image. Faster R-CNN on the other hand is composed of three modules: 1) a deep CNN image feature extraction

network, 2) a Region Proposal Network (RPN), used for detection of a predeined number of Regions of Interests

(RoIs) where the object(s) of interest could reside within the image, followed by 3) Fast R-CNN [8] that computes

a classiication score along with class-speciic bounding box regression for each of these regions. On the other

hand, single-stage detectors use a single feed-forward network to predict object class probabilities along with

bounding box coordinates on the image. Such popular pretrained object detection models generalize well to a

new dataset on few amounts of labelled samples. In [21], the authors modiied the YOLO architecture to identify

plant specimens and other objects (rulers, colour bars, text blocks, and barcodes) within herbarium sheets. The

results indicate that the proposed approach achieved good accuracy with mean average precision (mAP@0.5) of

0.932 compared to 0.901 of the original YOLO model. While object detection approaches require little resources

and a low labelling efort, their outputs can be hard to interpret for irregularly shaped objects, such as plants.

Semantic segmentation approaches can be used to classify each image pixel as part of a specimen or the

background. Such models take a binary image mask as the label for each object in the image and produce an
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output segmentation mask of the image. In this segmentation mask, each pixel is classiied as an object class or

as background. Traditional image processing techniques use colour clustering and contour based methods to

diferentiate between foreground and background objects. In this paper, we have proposed an algorithm based on

such hand crafted features to generate specimen label masks. Although it works well for single specimen herbaria,

generalizing them would be a hard task. Also since they are based on hand crafted features, the obtained masks

are noisy and normally requires further cleaning. The U-net architecture [15] and its variants on the other hand

are deep learning based approaches that have been widely used in the medical imaging domain and have become

the standard architecture for (binary) segmentation problems in recent times. The U-net architecture consists

of an encoder network that will downsample the image and extract features, which are then reconstructed in

the symmetrical decoder network to produce segmentation masks. In [22], the authors retrained a U-net model

on 400 images and masks of ferns. The model was able to successfully segment the ferns from the background,

resulting in an �1 score of 0.96, validated on 80 of the images. In [11], the authors employed a deep learning

semantic segmentation approach based on the DeepLab-V3+ architecture and Full-Resolution Residual Networks

(FRNN-A) to segment herbarium specimens from the background. They also achieved impressive segmentation

results, with IoU scores of 0.992 and 0.981 for the FRNN-A and DeepLab models, respectively. While this semantic

segmentation works really well in extracting specimens from the background, it does not diferentiate between

multiple specimens and will predict all the occurrences in a page as single specimen.

To both segment each specimen in the image and diferentiate between them, an instance segmentation

approach can be used. Instead of generating a single mask for all of the objects of the same class, these models

generate a unique mask for each object detected. Mask R-CNN [9] is a widely-used state-of-the-art segmentation

approach that extends the object detection system of Faster R-CNN. Apart from the 2 outputs of faster R-CNN (i.e.

a class label and a bounding-box ofset), there is an additional branch with a fully connected layer that outputs

segmentation masks for each output proposal box. The design of Mask R-CNN consists of three main steps.

First, the obtained feature maps are extracted from input images using the backbone network. The backbone is

further expanded by using a Feature Pyramid Network (FPN) such that strong semantically correlated features

are maintained at various resolution scales and orientations. The next step processes the feature maps using a

fully convolutional network called Region Proposal Network (RPN). The inal proposals of the RPN produce

regions of interest (ROIs) from various pyramid feature levels. A Mask R-CNN approach was successfully used in

[20] to segment and localize specimen leaves, colour bars, rulers, and text blocks. By segmenting the rulers on

the images, which were each of a uniform size, they were able to automatically estimate morphological traits of

the leaves. This approach resulted in an accurate estimation of these traits, achieving a relative error of 4.6%, and

5.7% for leaf lengths and widths, respectively.

3 FEASIBILITY TESTING OF THE PIPELINE

The idea of performing this feasibility experiment is to validate the proposed pipeline and check whether text

and plant detections can be used for localizing and identifying plants in multi-specimen herbaria.

3.1 Data

The Botanical garden of Ghent University (Belgium) has made eforts to digitize herbarium books from three

diferent and prominent Belgian botanists from the late 18th and early 19th century, Charles Van Hoorebeke,

Aimé Mac Leod and Julius Mac Leod. There are 78 books of Charles Van Hoorebeke with 20 to 40 single-sided

specimens per book. The books of Julius and Aime Mac Leod are a bit more complex with approximately 200

pages each and with multiple specimens per page (e.g. Figure 1). They are currently hosted within the virtual
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herbarium of Plantentuin Meise 1. The goal of this paper is to develop methods that can automatically extract

plant specimens from the books such as Julius and Aime Mac Leod that have multiple specimens in them.

3.1.1 Annotation

In order to perform feasibility experiments with multi specimen herbaria, a small random sample of 70 pages was

chosen from our selected books. To annotate ground truth data, we used the VGG Image Annotator (VIA) [13].

Each object ranging from the plant specimen to colour bar, scale and text box were represented by a bounding

box described by four coordinates: x, y, w, h. The coordinates (x, y) represent its left top corner while (w, h)

represent width and height. Note that the bounding box is dedicated to annotating all objects within the input

images including the plant specimen region.

3.2 Feasibility experiment: Preprocessing

Page detection is the process of inding pixels and regions in an image that constitute a page. Within the domain of

historical digitization, page detection is predominantly applied for preprocessing of documents before handwritten

text detection and recognition tasks, line and character detection, and segmentation of historical pictures.

Fig. 3. The preprocessing of herbarium images

The page detection algorithm is an improved version of the algorithm proposed in [19]. The paper was

addressed towards historical documents that used a hard threshold for extracting books from the background.

Instead of using a hard threshold, we propose a colour clustering approach that can work with diferent types of

books.

1Meise Virtual Herbarium : Mac Leod
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Fig. 4. Feasibility experiment: Results of the Yolov3 model trained on 50 labelled herbaria pages. The text regions are well

detected whereas the plant boundaries require a lot more training examples to perform as expected.

As shown in Figure 3, the proposed pipeline for page detection begins with the preprocessing of images. The

images are rotated and aligned such that the longest edge is maintained as its height. The core methodology of the

proposed algorithm can be subdivided into two main steps namely book extraction and hinge region detection.

The book extraction step ilters background noise and extracts the main book region using k-means colour

clustering. The k is chosen to be 3 and the idea behind it was primarily because the scans had three predominant

clusters, namely (1) the black background on which the book is placed and imaged (2) the background of the page

that is in white or brown and (3) the plant specimens that are in a diferent colour. The colour cluster pertaining to

the largest contour area is chosen as the book. The hinge region detection step detects the hinges and extracts the

main page region as explained in [19]. Finally, morphological transformations are performed by interpolating and

transforming the page region such that the extracted page matches the expected page dimensions. This reduces

deformations and occlusions caused by the thickness of the book. As explained in [19] the idea of detecting the
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pages is to perform morphological corrections in case of physical deformations. Therefore this step would not be

necessary for individual herbaria sheets that does not have such physical deformations.

3.3 Feasibility experiment: Specimen localization

We performed an experiment with the small annotated dataset to see if it was feasible to annotate the entire book

collection with bounding box ground truth labels. We trained a Yolov3 model for 100 epochs with 4 classes (Plant,

Text, PageNumber and Title) with 50 images for training and 20 images for validating.

As seen in Figure 4, Text, PageNumber and Title classes had no problems and the model with the limited

training data was already able to detect and localize them with decent accuracy. Plant specimens, however,

had some trouble. Although the model was learning, with the amount of complexity, the model would require

signiicantly more data to learn the plant boundaries correctly. As seen in Figure 1, the bounding box for the

plant specimens overlap signiicantly, which would further confuse the model to learn the plant boundaries when

augmentations are performed based on these annotations.

3.4 Feasibility experiment: Text recognition

An experiment was also performed to test the feasibility of text recognition to automatically recognise handwritten

text from the detected text boxes. For this test, 50 random text boxes were cropped in the original resolution and

processed with the Google Cloud Vision API2 for text recognition. The results were subjectively evaluated to see

if the botanical names of the plant specimens were recognised correctly.

Fig. 5. Sample text recognition results using Google Cloud Vision API. The plant specimen to the let belongs to the Dahlia

flowering plant family. The text had Dahlia variabilis and Dahlia Pinne that was recognised by the API correctly.

An example of text recognition result is shown in Figure 5. As shown, the API could recognise some text

correctly. There were also instances were most of the letters were predicted correctly (e.g Pahlia instead of

Dahlia and Fruipurea instead of Purpurea). Based on our evaluation, about 24% of the words were recognised

correctly while close to 36% had partial predictions that could be further improved. One option is to perform

2Google Vision API :Try it here
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fuzzy matching on all the list of expected names from the dahlia family and ind the one with the closest match

as shown in Figure 6. There are still problems on how partial recognition would be chosen. However, this would

not be further investigated in this work.

Fig. 6. Sample fuzzy matching results using the text recognition result obtained from Google Cloud Vision API and list of

species in Dahlia family obtained from wikipedia. As seen, although Dahlia purpurea was detected as Pahlia Fruipurea, fuzzy

matching on all the species in dahlia family showed that the highest score was obtained by Dahlia atropurpurea which was

the correct species.

3.5 Discussion

Based on the experiments it is evident that, it is possible to identify the plants based on the specimen and textual

descriptions provided in the herbaria. However, for the proper functioning of the pipeline it is important for

the current state of the art models to correctly localize specimens in a multi specimen herbaria. As identiied in

Section 3.3, the major bottlenecks for improving the localization of specimens include the lack of labelled data

and selecting the right model. The rest of the paper is structured to address these problems.

4 DATASET CREATION, LABELLING AND AUGMENTATION

Detection models expect bounding box coordinates of the object as explained in Section 3.1.1. This is a lot easier

to obtain owing to its rectangular structure. The segmentation model on the other hand requires polygons or

masks of the objects to be learned. Since the plant specimens have an irregular structure it would be an extremely

inaccurate and time-consuming job to manually label the plant specimen regions. The diiculty of labelling
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increases exponentially due to overlapping specimens in multi specimen herbaria. Additionally, we would also

need a good number of labelled plant specimens for the model to learn the plant features efectively. Therefore

we followed an alternative approach to generate plant specimen data.

The idea here is to use single specimen herbaria which is relatively easier to label in combination with

augmentations that can introduce complexity. The single specimen herbarium scans provided by the New York

Botanical Garden (NYBG) for the Kaggle Herbarium 2020 FGVC7 challenge was used for as the source of plant

specimen data. Although the specimen labels in the herbaria sheets in the dataset were blurred for the contest,

the plant specimens in the sheets were unaltered and therefore was suitable for our purpose. The test split of

the challenge contains 100K images representing over 32,000 plant species from which we used a small random

sample of 10k images.

To semi-automatically label the plant specimens in the scans, we propose an unsupervised algorithm to

generate plant specimen masks. As detailed in Algorithm 1, the images were transformed to HSV colour space

and were clustered based on the colours using k-means clustering with k=3. The largest contour at the centre

was chosen and was processed to remove noises. This contour represented the mask of the plant specimen. Since,

the algorithm also generated noisy masks, the generated masks were manually veriied before choosing them for

training the model. After the manual veriication, masks and bounding box labels were obtained for 1875 images

which were later used for training and evaluation.

Algorithm 1 Mask generation and labelling

Require: Preprocessed image scan with single herbarium specimen

Convert RGB to HSV

Generate masks using k-means colour clustering.

�������� ���� ← cluster that has the specimen

���� ← image mask with all zeros

�������� �������� ���� ← Dilation followed by erosion (iltering noises)

������� ← Find rectangle enclosing largest contour from �������� �������� ����

�������� ����� ���� ����� ������� �������

��������� ���� ���� ����� �����

if Mask is ���������� then

USER→ Press 1

�������� ���� � ������ ��������� ���� ����������� ����� ������� �������

Write mask and bbox coordinates to separate iles

else

USER→ Press 0

end if

During training and testing, the images were downscaled based on the task to reduce the computation time.

The selected data set is divided into two sets: 80% was used as the training set, while 20% was used for the

validation set. This is a normal data split used in most training methodologies. After completing the training,

375 images were used for validating the trained model’s reliability. Note that the generated bounding masks

were then used to determine the model’s eiciency by measuring the cross entropy loss. Additionally, the trained

model’s consistency for the instance segmentation was validated by comparing the annotated mask images with

the predicted mask results.
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4.1 Augmentation

The single specimen sheets were primarily chosen to automatically label the plant specimens. However, for the

models to identify plant specimens from complex scenarios, it requires to be trained accordingly. Therefore, the

datasets were subjected to augmentations such that the models were trained on complex scenarios. For improving

the training speed and complexity of the dataset, the mosaic augmentation [1] was used to train the object

detection model. The basic idea behind mosaic augmentation is to combine 4 images for every input in a random

scale and rotation. Example of an augmented image used for training the object detection model with a batch

size of 16 is shown in Figure 7a. On the other hand, a modiied form of mosaic augmentation inspired from [7]

was used to train the instance segmentation models. Three plant specimens from three diferent images were

randomly rotated and placed on the fourth image. The fourth image was one of the chosen blank pages from the

herbarium database. With such an augmentation, 500 images with 1500 plant instances were created to train the

instance segmentation model. An example of the modiied mosaic augmentation is shown in Figure 7b.

(a) (b)

Fig. 7. The diferent types of data augmentation methods used during the training of the models. (a) Mosaic Augmentation

used for training object detection model (batch size 16). (b) Modified version of mosaic augmentation used for training

segmentation models.

5 EXPERIMENTS

The irst experiment was carried out in an attempt to automate the labelling and creation of datasets for further

study. Experiments were also performed to compare the performance of detection and segmentation models on

the task of species localization. All the experiments were performed on a local Linux Intel(R) Core(TM) i5-7440HQ
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CPU system with a RAM capacity of 64GB; the GPU was NVidia GeForce 980 with 12GB memory, and the

operating system was Ubuntu version 18.04. The entire pipeline was implemented in python 3.6 and Pytorch

deep learning library.

5.1 Evaluation metrics

For estimating the bounding box accuracy of the detector, mean Average Precision (mAP) and Intersection over

union (IoU) metrics were used. IoU measures the percentage overlap between 2 bounding boxes. We use that to

measure how much our predicted boundary overlaps with the ground truth (the labelled object boundary). The

general deinition for the Average Precision (AP) is inding the area under the precision-recall curve. The mean

Average Precision or mAP score is calculated by taking the mean AP over all classes and/or overall IoU thresholds,

depending on diferent detection challenges that exist. Our experiments focus on single class detection (plant

specimen) and therefore mAP and AP are the same. We use two thresholds mAP groups namely mAP@[0.05:0.5]

(written as mAP@0.5) and mAP@[0.5:0.90] (written as mAP@0.90) respectively, where mAP@0.90 means average

mAP over diferent IoU thresholds, from 0.5 to 0.90 with a step of 0.05 (0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9).

5.2 Automatic mask generation: Pixel-wise segmentation

As discussed in section 4, the automatic generation of the plant segmentation masks still required a quick manual

veriication step. This is mainly due to the colour clustering sometimes failing to segment the full specimen if

part of the specimen was discoloured. Therefore, an image segmentation model was trained on the generated

plant masks, to improve this validation step and generate a usable segmentation mask for images that failed.

Two diferent U-net models were trained, one having a Resnet50 [10] backbone and the other an EicientNetB0

[16] backbone. Both of the backbones were pretrained on Imagenet, allowing for a faster generalization to our

dataset compared to training from scratch. The models were trained on a total of 1500 images and validated on

375 images.

Fig. 8. Some sample outputs of the EficientNetB0 segmentation model on images from the validation set. The predicted

segmentation masks were thresholded with a value of 0.5.

Because most of the high-resolution images were too large to train on efectively, the models were trained

on random crops of 256x256 pixels of the images and labels. However, there were a number of images that

had a very small specimen region in them. In those cases, the random selection of crops had a higher chance

ACM J. Comput. Cult. Herit.
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Model IoU �1

Resnet50 0.951 0.974

EicientNetB0 0.956 0.977

Table 1. Results of both image segmentation models on the validation set.

of selecting crops without any specimen (positive) pixel in them. Therefore the random selection was slightly

modiied to discard crops that only contained background (negative) pixels. Additionally, these image crops were

augmented by randomly slightly modifying their colour values, as this generally improves the model performance

and reduces overitting [6]. At the end of each epoch, the validation loss was however calculated on the full

validation images, which were resized to 800x606. This approach provides an alternative way to train the models

on high-resolution images as compared to [22], where they resized the entire input images to 256x256 pixels. The

models were trained for a maximum of 50 epochs, using a combination of the binary cross entropy loss function

and Sùrensen dice loss (�1) function, where the model with the lowest validation loss was saved.

Table 1 lists the performance of both models on the validation set containing 375 images. The Resnet and

EicientNet models achieved �1 scores of 0.974 and 0.977, respectively. For the EicientNetB0 model, both the

training time per epoch, epochs until convergence and best validation loss were lower than that of the Resnet50

model. This makes the EicientNetB0 architecture the better candidate for a segmentation model backbone as it

is more accurate with a faster training time. Figure 8 shows some example outputs from the EicientNet model

on the validation set. The model can correctly segment the specimens from the background. However, it does not

make any distinction between individual specimens on a single herbarium image. If these multiple specimens are

clearly separated (as is the case in Figure 8), they could be separately extracted with an additional postprocessing

step. However, many herbarium images contain overlapping specimens, which are not trivial to separate in

postprocessing.

5.3 Automatic specimen localization: Detection vs segmentation

To detect and localize plant specimens in multi specimen herbaria, we trained and compared both detection and

segmentation models. Yolov3 was trained to detect bounding boxes of plant specimens in the herbaria. The main

reason for choosing Yolov3 over the other discussed models was because it had a really good prediction accuracy

and was much faster than the other mentioned models. The image size used for training was 416 X 416. The

weights of the model (yolov3-416) pretrained on coco was initialized and used for training. The models were

trained on a total of 1500 images and validated on 375 images.

On the other hand, Mask R-CNN was the model trained to generate segmentation masks of the plant specimens

in the herbaria. The model from detectron2 - model zoo (mask_rcnn_R_50_FPN_400ep) pretrained on coco was

initialized and used for training. The usage of pretrained weights speeds up the training process [22]. The models

were trained on a total of 1500 instances and validated on 375 instances.

Type Model mAP@0.5 mAP@0.90

Detection Yolov3 0.61 0.17

Segmentation Mask R-CNN 0.89 0.53

Table 2. Results of object detection and segmentation on the validation set

ACM J. Comput. Cult. Herit.
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Fig. 9. Sample results for Yolov3 detection and Mask R-CNN segmentation model. Let images are results of the detection

model while the right images are results of the segmentation model.

Table 1 lists performance of both models on the validation set containing 375 images for predicting the bounding

box. The Yolov3 had a mAP@0.5 0f 0.61 but performed signiicantly worse for higher thresholds. The results are

shown in Figure 9. It could be seen that the model fails to detect plants even in simple single specimen herbaria.

Mask R-CNN on the other hand performed better with a mAP@0.5 of 0.89 and a mAP@0.9 of 0.53.

5.3.1 Ablation experiment: Augmentation Mask R-CNN

To study the efects of our proposed augmentation, we created a training experiment with and without augmen-

tation. To have a fair comparison, the number of epochs were kept to 500 and the number of plant instances was

limited to 1500.

Model Augmentation mAP@0.5 mAP@0.90

Mask R-CNN
No Augmentation 0.74 0.37

Modiied Mosaic 0.85 0.51

Table 3. Results of ablation experiment performed with and without data augmentation on Mask R-CNN model.The training

was limited to 500 epochs.

Sample results are shown in Figure 10. As expected, the training with the augmented images learned the plant

boundaries much faster than the non augmented images. After 500 epochs, the mAP@0.90 of augmented images

ACM J. Comput. Cult. Herit.
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(a) (b)

Fig. 10. Sample results of ablation experiments (a) Segmentation results for the model trained using non augmented images

(b) Segmentation results for the same images for the model trained using augmented images.

was 0.51 which was 38% higher than the non augmented images, which had a mAP of 0.37 as shown in Table 3.

With more augmented data and resources, the performance of the segmentation model could further be improved.

6 CONCLUSION AND FUTURE WORK

The paper has established the idea of having an automatic enrichment pipeline for multi specimen herbaria.

The feasibility of diferent blocks has been tested and major bottlenecks have been identiied. The scarcity of

labelled data for the detection and segmentation of plant specimens has been addressed by proposing a semi-

automatic labelling algorithm. The algorithm was further improved by using pixel-wise segmentation models

such as U-net that further reined the specimen masks as explained in Section 5.2. The proposed augmentation

technique has proved to be extremely beneicial for plant segmentation. It has contributed to a 38% increase in the

overall performance of the segmentation models. Finally, it was observed that the instance segmentation models

were better suited for the task of plant localization in complex multi specimen scenarios since they performed

considerably better than the detection models.

Despite having promising results, we believe that this work merely marks the beginning of this direction.

Accurate plant specimen masks are required for performing automatic trait extraction and therefore we would

further work on ine-tuning the models to obtain better instance masks. Besides segmenting each entire specimen,

diferent parts of each specimen, such as the leaves, lowers, and fruits could be extracted. However, such an

approach will require labelled data with this additional information, which will involve more manual annotation.

Apart from extending the framework to other collections, we want to extend the model towards extracting rulers,

colour bars, and other objects around the plant specimen that would further improve the data enrichment quality.

Finally, the methods explained in this paper would be further adapted to explore and automatically identify plant

illustrations in books and paintings that can give rise to interesting cross domain applications such as [18].
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