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Abstract—The emergence of Time-Sensitive Networking (TSN)
has enabled network determinism to a new level, offering high
reliability and bounded latency for critical communications.
However, the unpredictable nature of traffic generation also poses
new challenges to TSN. While TSN is designed to maintain
backward compatibility with the 802.1 standards, many end
nodes may not be equipped to understand TSN. This can result
in a less deterministic TSN, and suboptimal resource utilization,
mainly driven by Residual Service Time (RST). To address these
challenges, this study proposes three scheduling mechanisms to
reduce RST: q-learning, active time slot update, and polynomial
forecasting. Real-world data captured from our wireless-TSN (W-
TSN) evaluation kit is used to compare the proposed approaches
in terms of one-way latency. The results show that the machine
learning approach outperforms the other methods in terms of
overall latency. However, it is less effective in identifying the
optimal time slot position compared to the other methods.

Keywords—wireless time-sensitive networking; scheduling; ma-
chine learning; reinforcement learning; residual service time.

I. INTRODUCTION

Led by the promise of bounded latencies and guaranteed
packet delivery, Time-Sensitive Networking (TSN) is attract-
ing the attention of industry [1], [2]. New paradigms that
mingle digital and physical worlds such as the metaverse
are grounded by the integration of extended reality (XR)
and degrees of augmented and virtual reality (AR/VR). This
integration is opening a new window of applications that
include basic tasks such as virtual or real objects’ movement,
where end-to-end communication latency of less than 1 ms and
99.999% reliability are a must to enjoy a smooth experience
[3].

Furthermore, such network demands are also required by
mission-critical industrial applications such as aerospace, au-
tomotive, and machine control applications. Most of these
applications currently depend on the old-fashioned best-effort
network packet delivery capabilities, which in most cases
are unacceptable [4]. Additionally, for a wide range of these
applications having a wired solution is not sufficient. Hence,
wireless-TSN (W-TSN) as an extension of TSN, which would
bring mobility and plug-and-play capabilities, represents a
natural next move [5].

TSN’s strategy to achieve an advantage over traditional net-
works is based on combining features leading to determinism.
Such components are defined by the IEEE TSN Task Group1

in four categories: Synchronization, Reliability, Latency, and

1http://www.ieee802.org/1/tsn

Resource Management. Every component comprises a series
of standards, some of which are still under development [6].
However, even though TSN is developed over IEEE 802.1,
during the initial deployment stage, it is expected that most end
devices or data generators will not be fully TSN compatible.
As a result, some of its benefits will only be partially available
to those non-TSN end devices.

Jitter, a widely known concept in best-effort networks, is
highly reduced in TSN thanks to transmission time slot align-
ment achieved by the IEEE802.1Qbv Time-Aware Scheduler
(TAS) [7]. Hence, a frame would hop between nodes toward its
destination with a reduced delay. However, the incorporation
of non-TSN end nodes in a TSN might still generate latency
jitter that is proportional to Residual Service Time (RST).
The RST comes as an intrinsic characteristic of the cyclic
scheduling in TSN and is defined as the elapsed time when a
frame is available to be transmitted until it gets transmitted in
the medium. The addition of an end node in a TSN is typically
achieved by connecting it directly to a TSN switch for wired
connections, or by using a W-TSN station (STA) for wireless
connections [8]. This represents a key difference between the
two types of TSN, and provides an opportunity to optimize
the RST through the use of the STA.

RST mainly occurs when non-TSN end devices generate
frames independently of the TSN time-synchronization or
scheduling process. This behavior can be acceptable for some
applications that primarily require reliability, but it is not
suitable for most time-sensitive traffic flows, as it leads to
suboptimal use of network resources and non-deterministic
waiting times. Given that the problem is mainly related to the
lack of control over frame generation, it is natural to propose
approaches that focus on two main aspects: i) incorporating
TSN features into end nodes, or ii) implementing forecasting-
related solutions such as prediction algorithms or machine
learning techniques for frame generation prediction. The latter
being the specific focus of the present work.

Based on real captured data using our imec’s W-TSN
evaluation kit which has been built on top of openwifi [9], this
paper’s main contribution corresponds to a one-way latency
comparison of an optimization best-guess-based selection al-
gorithm, and a polynomial-fitting forecasting method, against
a reinforcement learning approach for non-TSN end-device
frame generation prediction. An efficient wireless STA-based
generation forecast capable of processing small time slots
could align TSN time slots with data generation time, thus



reducing latency and jitter in the TSN.
The remainder of the paper is organized as follows. First,

in Section II, related works on TSN residual service time
are presented, followed by a brief overview of residual time
optimization in Section III. Next, in Section IV, the proposed
management algorithms are explained, to finally present the
results in Section V and conclude in Section VI.

II. RELATED WORKS

The absence of a standardized TSN traffic scheduling algo-
rithm has resulted in a substantial amount of work from the
community. This work is mainly concentrated on network cal-
culus, machine learning, or heuristic optimization approaches
that tackle the problem from a system-wide perspective. As
a result, most of the defined systems consist of a static
collection of interconnected TSN switches with end nodes as
flow generators [8], [10], [11], [12].

Some studies, such as the one in [13], take an additional
step by addressing end nodes without synchronization or
scheduling to provide timing guarantees. This approach aims
to reduce the likelihood of non-TSN and TSN traffic arriving
at the same priority switch queue, thereby affecting TSN traffic
determinism. However, our work differs significantly from
these studies in several key ways. Firstly, we concentrate solely
on the TSN access time slot (see Fig. 2), which is crucial in our
proposal to integrate wireless into TSN, given the substantial
differences between wired and wireless networks. In principle,
we anticipate that the W-TSN will be situated at the TSN’s
edge, acting as access for end nodes. Therefore, unlike wired
TSN, where a switch serves as the network entrance point for
end nodes, in wireless, an end node’s flow access device is an
STA, which presents a promising opportunity point to filter
non-TSN traffic by implementing the strategies outlined in our
research.

Moreover, authors in [14] address unsynchronized traffic
by incorporating it into their mapping procedure from legacy
Ethernet to wired TSN. However, they only provide a basic
level of timing guarantee by classifying it as an Audio-Video-
Bridging (AVB) type. Hence, lowering the TSN guarantees.

Additionally, authors in [15], propose utilizing a hierarchical
structure to reduce the size of the schedule calculation prob-
lem by partitioning the stream set. However, this approach,
which is commonly found in the current literature, does
not consider non-TSN-compliant unsynchronized end node
traffic. Nonetheless, studies like this complement the work we
propose, as they would determine the best schedule from the
wireless access point to the information receiver.

In conclusion, since the TSN working group began propos-
ing initial concepts for incorporating determinism in best-effort
networks in 2012, numerous studies have focused on achieving
optimal scheduling. However, many of these studies do not
take into account real-world hardware in their analyses, nor
do they address the difficulties involved in integrating wireless
into TSN.

III. RESIDUAL SERVICE TIME OPTIMIZATION

This section’s aim is to provide an overview of RST as well
as a description of the proposed strategies.

A. Residual Service Time (RST)

General strategies are defined by TSN’s current standards
to describe an automated traffic flow scheduler. The lack
of a standardized scheduling method is not an obstacle for
wired TSN due to its steady nature, where fixed schedules are
manually set at the boot-up time using the Central Network
Controller (CNC) and Centralized User Configuration (CUC).
However, driven by the mobile nature of W-TSN the need
for an adaptable scheduler is evident. Furthermore, once the
schedule is computed, and distributed to the TSN end nodes,
the management system will need to keep adapting to the
network and end node changes. One of the most critical delays
that might be improved by adaptation is the Residual Service
Time (RST).

RST is mainly generated by the lack of time synchroniza-
tion, variable processing times, and lack of awareness of the
schedule between the end node and the TSN. In the first
update stage from non-TSN to TSN, it is expected that most
end devices will not have TSN capabilities. In some cases,
modifying the end node software and/or hardware to include
basic TSN features such as time-synchronization will not be
an option. An example of the one-way latency of a non-TSN-
aware end node can be found in Fig. 1.
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Fig. 1. RST problem

Fig. 1 shows a typical time-triggered traffic (TT) end node
generation with respect to the TSN gated schedule. Despite
the end node running an application with the same generation
cycle as the TSN, the generation of frames is shifted due to the
jitter on generation and processing time. This synchronization
mismatch leads to latency jitter that could be as high as com-
munication cycle time, an unwanted characteristic for some
applications. For instance, if one transmission slot is open per
cycle for the end node, the frame latency in one hop can be
calculated by adding the RST, the processing delay, and the
packet transmission time. Here, because of its shifting nature,
the RST amount will fluctuate from 0 when both generation
and TSN cycle are aligned and the generation happens during



the assigned time slot, to Cycle − Timeslotsize, when the
frame is generated just after the time slot ends.

B. Strategies to Reduce RST

Theoretically, in an optimal TSN, where even processing
delay is predictable (e.g., in a real-time operating system),
RST is low or nonexistent. The strategies to solve or improve
the RST in real development will be mainly related to the
nature of the end node. There are two main aspects to consider:
the traffic type and the end node capabilities to include TSN
features.

Regarding the traffic type, a periodic traffic type such as
the machine control one, not only reduces the mismatch
possibilities but also opens the door to several strategies to
reduce RST. The one proposed in this work is to provide
a pulse-based time synchronization from the TSN to the
end node. This would undoubtedly lower RST, however, the
quality of the time synchronization, plus variable processing
times at the end node would still generate RST. Hence, extra
strategies need to be explored. The details behind the pulse-
based synchronization are explored in section V-A. Another
potential solution to synchronization would be to incorporate a
packet-based synchronization mechanism like Precision Time
Protocol (PTP). However, it’s important to note that this
approach would require the end node to be compatible with
PTP in order to be effective.

The proposed strategy in this paper is to adapt the TSN
access time slot position in presence of pulse-based synchro-
nized traffic generation to reduce RST. Such adaptation, from
a management point of view, has two stages. The first, as
it is depicted in Fig. 2, considers the W-TSN STA node
sending information such as frames arrival timestamp to the
network management (CUC and CNC). By using this, and
conditioned by the available resources, the time slot location
can be predicted and set in an optimal place. During the second
stage, the end node application has the option to delay its
transmissions in order to optimize frame generation and time
slot alignment. This strategy can be particularly useful when a
time slot is already in use or when the ideal time slot position
falls between two existing time slot locations. By strategically
delaying generations, the end node can improve the RST.

IV. ALGORITHMS IMPLEMENTATION

Three access time slot scheduling approaches are proposed
to diminish the RST. The first is an optimization-based method
that considers only the last arrival timestamp at the W-TSN
STA as the best prediction for the next time slot access
position. The second and third are forecasting methods. The
former fits a polynomial equation using a number of past
samples. In contrast, the latter uses Reinforcement Learning
(RL) to model the arrivals pattern to find the best next time
slot position.

As shown in Fig. 3, the scheduling works as a feedback
system using the one-way latency of the frames as the algo-
rithm’s input. The output is then represented as an access time
slot position.
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Fig. 3. RST algorithms process

Time slot length is expressed as a power of 2. As such
the start and the end of the time slot can be set only on a
fixed offset during the communication cycle. Hence, based on
the cycle length and time slot size, there is a finite number
of positions where such time slot can be placed inside the
communication cycle.

The environment function task is to provide a realistic one-
way latency value which is then used as a variable to optimize
the algorithms. By using the cycle length, time slot position,
frame arrival time, frame length, and data rate, it delivers the
one-way latency of the frame. With the aim to improve the
realism of the results, a random Clear Channel Assessment
(CCA) delay value is also added to emulate Wi-Fi’s backoff.

A. Active Update

This optimization-based function is shown in Algorithm 1.
It starts by calculating an error, which is defined as the time
distance between the previous arrival time and the middle of
the time slot. Then, as in a typical proportional controller,
by considering the maximum latency, the algorithm defines
how many time slot positions (stepsleft) the time slot should



be shifted. In addition, if a time slot is already in use, the
algorithm will select the next best available time slot.

Algorithm 1 Active Update
Input: environment(env), time slot space(S), tx time,

TSsize, cycle, arrivals
Output: Access Time slot Position (s)

1: errormax = (2 ∗ cycle− TS size)/2
2: for t=1,2,...T do
3: lnow = env(arrivals(t), s)
4: if lnow > tx time then
5: TS = S(s)
6: error = (2 ∗ lnow + TSend − TSstart)/2
7: stepsleft = round(error ∗ smax)/errormax

8: if s− stepsleft ≤ 0 then
9: s = smax + s− stepsleft

10: else
11: s = s− stepsleft
12: end if
13: end if
14: end for
15: return s

B. Polynomial Fitting Forecasting

The second approach is the polynomial regression forecast-
ing which can be found in Algorithm 2. By using the last k
arrivals saved in a moving vector (mv), a degree m polynomial
is fitted, and the next time slot position is forecasted. Then,
the best time slot position is found from the time slot position
space S. The present method brings a clear advantage over
the low variability of consecutive arrivals.

Algorithm 2 Polynomial Fitting
Input: arrivals, block size(k), degree(m)
Output: Access Time slot Position (s)

1: for t=1,2,...T do
2: if mod(arrivals(t), k) = 0 then
3: mv = arrivals(0 : k)
4: function = polyfit(mv,m)
5: prediction = function(k + 1)
6: s = min(abs(S − prediction))
7: end if
8: end for
9: return s

C. Reinforcement Learning (RL)

For the Reinforcement Learning (RL) algorithm, a Q-
learning approach is used. First, by using the arrival times-
tamps the exploration and exploitation stages follow an expo-
nential decay function. The RL online learning algorithm uses
the previous experience to learn its policy which is contained
in a Q-function given in (1) [15].

Qt+1(st, s
′
t) = (1− α)Qt(st, s

′
t)+

α[rt + γmaxs′Qt(st+1, s
′)]

(1)

where γ is the discount factor, and α ∈ [0,1] is the learning
rate. In the same way as in Fig. 3, the algorithm, in this
case, the so-called agent, takes a decision about the time slot
position, then the environment block would provide a latency
reward (l) and time slot current position (s) which are used to
fill the Q-table. The Q-table is a TSxTS table with TS being
the number of possible time slots in the communication cycle.
Then, every slot would record the reward of going from TSi

to TSj which is used in the exploring and testing stages. The
Algorithm 3, presents details regarding the learning phase.

Algorithm 3 Q-Learning
Input: time slot space(S),

exploration probability (ϵ), discount factor (γ),
learning rate(α)

Output: Q
Initialization :

1: Q← Q0

2: for t=1,2,...T do

3: at =

{
argmaxaQ(st, a) with probability 1-ϵ
random action with probability ϵ

4: Perform action at
5: Check new state st+1 and reward rt using environment
6: Q← L(Q, lnow, γ, α)
7: end for
8: return Q

V. RESULTS

This section will introduce the architecture used for mea-
suring as well as the algorithm’s results in terms of latency
and accuracy.

A. Test Setup and Capture

The testing setup is divided into two parts: i) data gathering
and ii) algorithms implementation and verification.

Fig. 4 shows the data collecting topology used. The end
node bears an analog infrared sensor connected to an analog-
digital converter attached to a Raspberry Pi 4. The former
is then connected to imec’s W-TSN Evaluation Kit (EK)
through the W-TSN STA using Ethernet. The W-TSN STA
is a ZedBoard and the AP is a Xilinx ZC706 both using a
TSN-enhanced version of openwifi 2 [9]. Finally, the network
controllers (CUC and CNC), are physically placed in a central
node as shown in Fig. 2.

The data capture is done at the W-TSN STA driver. Here
the arrival timestamp of UDP frames generated by the end
node are filtered just before getting to the W-TSN STA gating
system. Such capture location allows to include generation
and processing delays both in the END-NODE and W-TSN
STA. An electrical pulse is generated by the W-TSN STA on a
cycle basis, triggering the end node’s sensor capture, analog-
digital conversion, and frame generation. Further, the three
algorithm approaches and environment explained in Section

2https://github.com/open-sdr/openwifi
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Fig. 4. Data Gathering Topology

IV were implemented in Matlab. By using the captured data
set the algorithms were tested and the results are presented in
the next subsection.

B. Algorithms Results

Fig. 5 presents a comparison of the mean one-way latency
of the proposed algorithms using different time slot sizes for
the access time slot (see Fig. 2). The results indicate that RL
consistently outperforms the other algorithms in terms of mean
latency across all time slot sizes. The active update approach
is generally the second-best option, with the exception of the
128µs time slot, where Forecasting(k = 100,m = 3) exhibits
a lower mean latency. This poor performance of the active
update approach for the 128µs time slot comes as a result of
a short time slot, increasing the possibility of update cases
where the time slot is positioned before the generation time
increasing thus the one-way latency.
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Fig. 5. Mean One-way Latency

The worst-case scenario for RST occurs when a frame is
generated immediately after the time slot. To evaluate the
algorithms’ performance in this scenario, the percentage of
frames with a latency greater than 60ms is presented in
Fig. 6. The results clearly demonstrate the advantage of ML
algorithms, which can learn from arrival patterns and avoid

this worst-case scenario. However, the Active update and
Forecasting approaches, which provide a fast response, may
lead to a higher percentage of frames with latency exceeding
60ms, especially for short time slot sizes.
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Evaluating both the worst-case and best-case scenarios is
crucial. Fig. 7 illustrates the percentage of frames with one-
way latencies below 100 microseconds. The ML approach is
optimized for latency, which enables it to avoid worst-case
scenarios by scheduling time slots mostly after frame arrivals.
However, this cautious approach may reduce the percentage of
frames with the lowest latency in small time slots. Despite this,
all algorithms perform well with 2048 and 1024 microsecond
time slots due to the number of arrivals fitting in the time slot
being bigger.

The 512µs time slot size exhibited notably poor perfor-
mance. The space S of time slots is generated based on the
cycle length and the number of time slots, and the algorithm
selects the best possible option within this space. However,
in this case, the start and end positions of the time slots are
fixed, and it appears that the positions of the 512µs time slots
did not contribute to accurate frame arrival times.

Data quality and quantity are crucial for ML. The Q-table
size depends on the time slot; for 128µs slots, there are
262,144 positions. Filling them would improve the agent’s
understanding and decision-making. But only 17.87% are
filled with the smallest slot. These results are not only related
to the data distribution but also to the number of arrival data
points used (100k).

C. Q-Table Cyclic Shifting

In the context of frame arrivals, it may be necessary to
establish a fixed generation time delay at the end node in
the event of a TSN schedule update. Rather than worsening
the results, this fixed delay could actually help reduce hop
latency by locating the frame generation in a more favorable
position with respect to the time slot. However, when using Q-
learning, a schedule update would alter the known information,
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requiring a re-learning delay. To avoid this, and assuming that
the distribution of frame arrivals remains unchanged, a circular
shifting of the Q-table K steps is proposed to account for the
fixed delay at the end node, which is denoted by (2).

Qnew = circshift(Q,K) (2)

Table I presents a comparison of the average one-way
latency between two scenarios: when training is conducted
from scratch and when a circular or cyclic shift is applied to
an already learned Q-table. The K-value was calculated based
on the mean value of the shifted arrival distribution. Better
approaches to finding K are out of the scope of this work.
The table demonstrates the feasibility of using the shifting
approach as an alternative to re-learning.

Table I
TRAINING VS SHIFTED MEAN ONE-WAY LATENCY

TS size (µs) Trained (µs) Shifted (µs)

2048 97.14 91.45
1024 96.45 96.33
512 289.46 255.61
256 314.5 308.82
128 2063 2055.66

VI. CONCLUSION AND FUTURE WORK

The Residual Service Delay (RST) poses a critical challenge
in realizing the full benefits of time-sensitive networks (TSN).
This study examined the problem’s nature in a W-TSN context
and proposed three distinct methods for reducing RST. The ef-
fectiveness of the proposed algorithms was evaluated through
measuring simulations using real data frame arrival informa-
tion captured from our W-TSN evaluation kit. Our findings
revealed that the machine learning approach exhibited the best
overall latency across different time slot sizes. However, when
comparing the percentage of frames with the lowest latency in
small time slot sizes, the active update and forecasting methods

outperformed it. These results, coupled with the Q-table cyclic
shifting proposal, represent a promising initial step towards
more efficient TSN scheduling techniques. Such techniques
will not only consider traffic flow requirements and resources
but also constraints related to the end nodes’ frame generation
nature and topology in W-TSN.
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