
Bracke et al.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

RESEARCH

Online dynamic container rescheduling for
improved application service time
Vincent Bracke*, Gillis Werrebrouck, José Santos, Tim Wauters, Filip De Turck and Bruno Volckaert

Abstract
Despite their maturity and robustness, container orchestration platforms still suffer from some limitations. One
of those concerns the lack of runtime adaptability of the scheduler to the overall cluster status as i) it instantiates
containers with local optimization in mind i.e. it only considers the container-specific predefined requirements
which may lead to a sub-optimal overall cluster state and ii) it does not reshuffle the deployed containers
at runtime based on container observed behavior and interdependencies. These limitations become even more
apparent within volatile load contexts. This work proposes an autonomous and dynamic rescheduling system
that aims at improving application service time by co-locating highly interdependent containers for network delay
reduction. To this extend, two distinct combinatorial optimization heuristics, Simulated Annealing and Particle
Swarm Optimization, are evaluated and compared on their respective effectiveness and efficiency as well as on
their relative performance towards the optimal solution obtained by Integer Linear Programming. Additionally,
the impact of the proposed system on application service time is validated by means of two complementary use-
cases, an event-based IoT data-hub platform and a web-based e-commerce app, with an average improvement
of the end-to-end service time of 21.6% and 13.1% respectively.
Keywords: Cloud Computing Services; Performance Management; Autonomic and Cognitive Management;
Orchestration; Mathematical Optimization; Optimization Theories

1 Introduction
Microservice software architectures promote applica-
tion development as a set of distributed small and in-
dependent services, each one delivering a specific set
of functionalities. Appropriate service decomposition
leverages on loose coupling for the inter-relationships
while ensuring high cohesion of purpose. When com-
bined with containerization technologies for their de-
ployment and execution, microservice oriented archi-
tectures offer unprecedented agility at both design
and run time. da Silva et al. [1] define containers
as a technology that provides OS-level virtualization
to isolate processes and specifies system usage limits
for resources such as Central Processing Unit (CPU),
Random-Access Memory (RAM), disk I/O and net-
work. It acts as an abstraction at the application
layer that packages code and dependencies (applica-
tion code, runtime, system libraries, settings, etc.).
Multiple containers can thus simultaneously run on
the same machine and share the OS kernel with other
*Correspondence: vincent.bracke@ugent.be
IDLab, Department of Information Technology, Ghent University - imec,
Technologiepark-Zwijnaarde 126, B-9052, Ghent, Belgium
Full list of author information is available at the end of the article

containers, each running as isolated processes in user
space. Docker [2] is one of the most commonly used
container engines but alternatives exist such as LX-
C/LXD [3], Podman [4], containerd [5], etc. As much
as they considerably improve the deployment process,
containers by themselves do not make the management
of applications easier. Therefore, container orchestra-
tion platforms have been developed to help manage
containerized applications running on distributed clus-
ters. Main such platforms comprise Apache Mesos [6],
Docker Swarm [7] and Kubernetes (K8s)[8] among oth-
ers. These platforms offer scalability, availability man-
agement, monitoring tools, networking functionalities,
container orchestration, etc. for the containerized ap-
plication. All those platforms schedule individual con-
tainers on the most appropriate server within a cluster
based on server resource availability and container re-
source needs. Additional parameters are taken into ac-
count like the deployment strategy as well as predilec-
tion and aversion constraints. Nevertheless, despite
their maturity and robustness, those container orches-
tration platforms still suffer from some limitations as
they lack runtime adaptability to overall cluster sta-

Bracke et al. Page 2 of 27

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

tus. More specifically, main weaknesses addressed in
this work are hereafter introduced:

• Container deployment requests are individually
enqueued as they arrive (online scheduling); the
scheduler only considers container-specific re-
quirements in FIFO order and not as a set of
constraints to be optimized, which may lead to a
sub-optimal overall cluster state.

• Consequently, the scheduler does not reconfigure
or adapt the distribution of containers amongst
cluster servers at runtime based on the observed
container behavior and interdependencies.

These limitations restrain cluster wide optimisation of
resource allocation and consequently affect its perfor-
mance. We therefore propose an autonomous resched-
uler that periodically reassesses the distribution of con-
tainers among servers in order to optimize the cluster
state and mitigate unwanted effects of evolving load
within a cluster. Optimization of the cluster state de-
pends on the goal given to the rescheduler. This goal
may be expressed as an objective function to be min-
imized or maximized. For instance, if the goal is to
minimize the infrastructure cost, the rescheduler will
have to find the best distribution that allows for a
minimal number of servers. In contrast, if the goal is
to fairly balance load on a fixed infrastructure, the
rescheduler might seek to distribute containers based
on even resource consumption among servers. Lastly,
if the goal is to optimize application service time
(with possibly distinct Quality-of-Service (QoS) lev-
els) in a fixed infrastructure, the rescheduler will have
to find the best distribution that allows for minimal
inter-server network traffic and consequently regroup
containers that are strongly interdependent (i.e.: that
have high network traffic among them). Indeed, con-
tainers that communicate with one another are prefer-
ably co-located on the same server for minimal network
traffic as communication between different servers sub-
stantially increases overall application latency.

This article presents a self-driving rescheduling sys-
tem that is capable of reallocating containers within
a distributed cluster to improve overall application
service time by co-locating interdependent containers
based on their observed network traffic while still tak-
ing other constraints into consideration (e.g. (anti-)
affinities as well as available and required resources).
Firstly, both the effectiveness and efficiency of the
proposed rescheduling system are demonstrated. Sec-
ondly, the impact of the rescheduling on application
service time is empirically validated by means of two
complementary use-cases: an event-based Internet of
Things (IoT) data-hub platform and a web-based e-
commerce app. To this end, both Docker (as container

technology) and K8s (as container orchestration plat-
form) have been chosen in this work for their ease of
use, high maturity and dominant market position[1, 9].

The remainder of the article is organized as follows:
section 2 summarizes the current state of the art in
the domain, after which section 3 presents three dif-
ferent combinatorial optimization techniques together
with an analysis and comparison of their respective
effectiveness and efficiency. Based on this, a concrete
implementation of the container rescheduling system
by means of a control-loop architecture is proposed in
section 4 and then validated by means of two comple-
mentary use-cases. Section 5 identifies and discusses
improvement and extension opportunities and, finally,
section 6 provides concluding remarks.

2 Related Work
This section focuses on the current state of research
in the field of resource scheduling for cloud applica-
tions rather than on metaheuristics used to solve such
NP-hard combinatorial optimization problem. How-
ever sub-section 3.3 further frames the latter by means
of additional references.

Resource scheduling can be described as a decision-
making process, used in many manufacturing and ser-
vices industries, that deals with the allocation of re-
sources to tasks over given time periods with the goal
of optimizing one or more objectives [10]. From the
early days of Information Technology (IT), schedul-
ing techniques have been intensively used and devel-
oped first on standalone computers, most commonly
to minimize task completion time. With the rise of
computer networks, clusters (of homogeneous comput-
ers) followed by grids (of heterogeneous devices) and
more recently the cloud (offering virtualized comput-
ing resources) acted as a multiprocessor computer with
distributed data sources. With a slower communica-
tion channel between processors when compared to su-
percomputers, task scheduling in distributed systems
eventually bloomed as a specific branch of research
where different optimization objectives ballooned the
scheduling literature in the past decade [11]. The au-
thors of [11] report that online schedulers are much
less common in the literature than offline schedulers,
making the development of effective online scheduling
challenging. Furthermore, the same authors also state
that imprecision of input data (e.g. execution time and
resource needs) represents another challenge as it neg-
atively impacts the scheduling performance.

In their systematic literature review on challenges
and solution directions for microservice architectures,

Bracke et al. Page 3 of 27

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

Söylemez et al. [12] identify service orchestration as
one of the nine main categories of challenges. More
specifically, the authors state that the challenges for
service orchestration relate among other to dynamic
and automated orchestration and scheduling, stating
that it is a challenging issue to perform the necessary
adjustments according to the usage of resources over
time. In addition, the authors report that reducing
total traffic cost and delay are important criteria for
scheduling as misguided scheduling directly affects the
availability and reliability of the system.

While the literature on resource scheduling for the
data center initially focused on Virtual Machine Con-
solidation (VMC) mostly to optimize the performance-
energy tradeoff [13–15], it progressively evolved, with
the rise of ‘containerization’ and microservices archi-
tecture, to address the issue of scheduling for the con-
tainerized application considering various factors such
as load balance-application performance tradeoff [16],
heterogeneity of resources [17], classical bin-packing
[18], network QoS [19] and network latency introduced
by inter-microservice communication [20]. These works
do however only consider the initial allocation of con-
tainers and do not consider their rescheduling.

Piraghaj et al. [21] propose a framework for energy
efficient container rescheduling in cloud data centers,
evaluated by means of simulation only. Furthermore,
the only perspective of optimizing the energy con-
sumption, while being relevant for data center owners,
expels other important aspects like the quality of ser-
vice and user-experience as the proposed system does
not have any knowledge of the applications running
inside the containers.

Rattihalli [22] proposes a two stages approach where
containers are first instantiated in a so-called ‘little
cluster’ for profiling before being instantiated on the
so-called ‘big cluster’. This approach assumes over-
estimated resource requirements that can be fine-
tuned during the profiling stage before final scheduling,
which represent an overhead for containers with ap-
propriately defined requirements. Another drawback
of this approach resides in the assumption of sta-
ble load over time. A solution to this latter draw-
back is proposed in [23], where the authors propose
a self-adaptative K8s cloud controller that continu-
ously updates an internal performance model of each
service and uses it to determine the kind of resources
needed by a service, as well as to predict potential
contention on shared resources, and (re-)deploys ser-
vices accordingly. However, it still requires an initial
profiling stage, the assessment phase, in a dedicated
environment.

The container rescheduling framework, introduced
by Rodriguez and Buyya [24], does not actively moni-
tor resource consumption to initiate rescheduling, but
rather only reacts upon appearance of unschedulable
containers in the pending queue by evicting moveable
containers from their server if i) the moveable con-
tainers can be rescheduled on another server and ii)
by evicting the moveable containers, the server has
enough resources to host an unschedulable container.
In contrast to this reactive approach, our rescheduling
system proactively monitors resource consumption to
periodically improve container assignment.

In [25], the authors propose an efficient online algo-
rithm that optimizes container placement based on re-
source prices, while taking inter-container traffic into
consideration. Besides its theoretical nature (backed
by trace-driven simulations), the presented analysis di-
verges from our work as i) it focuses on initial container
placement and ii) it requires the presetting of the traf-
fic demand between containers.

In [26], the authors propose NetMARKS, a K8s
scheduler extender that uses information collected by
Istio Service Mesh to schedule pods based on current
network metrics in order to save inter-node network
bandwidth and to reduce the application response de-
lay. However, NetMARKS minimizes inter-nodes traf-
fic by considering applications individually one at a
time, possibly leading to sub-optimal overall cluster
status. A comparable approach is also proposed in [27].

Lastly, Joseph and Chandrasekara [28] propose
a microservice rescheduling framework, Throttling
and Interaction-aware Anticorrelated Rescheduling
for Microservices (TIARM), to proactively perform
rescheduling activities whilst ensuring timely ser-
vice responses. The framework incorporates a compo-
nent that performs periodic monitoring and triggers
rescheduling activities based on threshold-based rules
to reduce microservice response time. The reschedul-
ing phase first selects the containers for migration
based on a multicriteria decision making method and
terminates them. The containers are then redeployed
onto nodes selected by a multiobjective strategy. While
sharing the objective and exhibiting technical similar-
ities with our work, both approaches diverge on the
fundamental aspect of container and node selection
strategy. More specifically:

• Container selection: TIARM only resched-
ules containers running on overloaded servers.
Containers to be evicted are identified using a
weighted linear combination of the CPU throt-
tling level and the interaction factor: the proposed
system prefers to move containers with the least
interactions with other containers on the current

Bracke et al. Page 4 of 27

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

node[1]. Besides the fact that the threshold used to
assess server overloading is statically defined and
consequently prone to inefficiency, TIARM only
reschedules containers when this limit is reached
on one or more servers, missing opportunities
for smaller intermediary adjustments that could
maintain the cluster state closer to the optimum
state.

• Server selection: the server selection module of
TIARM seeks to maximize the anticorrelation be-
tween the microservice container and the server
resource vectors. The underlying rationale justi-
fying this approach can be summarized as fol-
lows: the performance of workloads often depends
on other workloads running on the same server.
Workloads with positively correlated resource uti-
lization (e.g. all heavily CPU-bound) running on
the same server offer more risks of overutiliza-
tion. Coupling microservice containers with com-
plementary resource demands can improve the
resource utilization of the server and thus im-
prove QoS values. In contrast, the system pro-
posed in this article considers server resources as
constraints rather than as part of the optimisation
objective, which solely seeks to minimize network
traffic among servers, i.e. to consolidate contain-
ers on the same server based on the data volume
they exchange.

3 The dynamic rescheduling algorithm
3.1 Problem formulation: the wedding seating chart

problem
Combinatorial optimization problems are usually ex-
pressed by means of concrete use-cases helping the
reader to correctly apprehend the problem formulation
and the associated challenges, e.g. the knapsack prob-
lem, the traveling salesman problem, the cutting stock
problem. Likewise, we refer to the wedding seating
chart problem as a metaphor to the optimization prob-
lem at stake in this work. Though, if most brides and
grooms struggle with the complexity of this headache,
it can paradoxically be summarized quite simply as:
“maximizing guest satisfaction”. This can be achieved
by placing guests with people they enjoy the company
of and, inversely, avoid as much as possible dislik-
ing groups. What makes this problem complex lays
in its combinatorial nature and the following set of
constraints:

• All guests must have one seat (and, as corollary,
can only be seated at one table).

[1]The intuition is that highly interacting containers
spend more time in communication when placed across
different nodes, thereby leading to a degradation in the
observed response time.

• There is a limited (and possibly variable) number
of seats per table.

• Possibly, some guests must, or must not, seat at
the same table.

• Possibly, some guests must, or must not, seat at
a specific table.

Assuming that the level of affinity among each guest
can be quantified in a relationship matrix, the best
possible arrangement would be obtained as the highest
possible score, summing the affinities of guests shar-
ing a table and this for each table, while violating
none of the above mentioned constraints. To a certain
extent, the wedding seating chart problem can thus
be considered as an extension of the multi-parameter
Quadratic Assignment Problem (QAP) [29], expand-
ing it with (anti-) affinity constraints. The dynamic
rescheduling of containers to servers is pretty similar
to the wedding seating chart problem where guests are
containers, tables are servers and mutual relationships
would be the network interdependency between con-
tainers. Table capacity is represented by both RAM
and CPU capacity of a server (instead of simply the
number of seats of a table), with containers requiring
a slice of each (and not simply 1 seat as guests would).
Inter-container (anti-) affinity constraints correspond
to guests having to (not) sit together at the same ta-
ble, while server (anti-) affinity constraints match the
(non-) assignment of guests to specific tables.

Figure 1 The labeled-property graph model for the dynamic
rescheduling of containers to servers

More formally, Figure 1 illustrates by means of a
labeled-property graph the data model for the problem
at stake, where:

• ‘MUST_GO_WITH’ optional relationship rep-
resents container affinity constraints. Container
anti-affinity constraints are represented by the op-
tional relationship ‘MUST_NOT_GO_WITH’.
As for the ‘SENDS_TO’ relationship, they de-
scribe relationships among containers with, for
the latter, the measured number of sent bytes as
property.

Bracke et al. Page 5 of 27

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

• ‘MAY_RUN_ON’ relationship represents the
server (anti-) affinity constraint. It links a con-
tainer to the set of servers it possibly may run
on.

• ‘RUNS_ON’ relationship specifies the hosting
server for each container. When dynamically
rescheduling containers, it is important to identify
both, the server a container is currently running
on as well as the target server the container shall
be running on after the rescheduling; the record-
ing of this information is done by means of the
‘context’ property of the relationship.

Following sub-sections propose different approaches
to solve this problem firstly by means of the In-
teger Linear Programming (ILP) exact optimization
method and afterwards by means of Simulated An-
nealing (SA) and Particle Swarm Optimization (PSO),
two metaheuristics optimization techniques. Container
rescheduling being a NP-hard problem [28], the use of
metaheuristics allows to reach near optimum solution
in a reasonable time.

3.2 Problem modelization by means of ILP
Table 1 introduces the variables and parameters of the
model. Most of those are self-explanatory, though the
three last parameters require more introductory ex-
planation. Firstly, apn allows the model to take the
server (anti-) affinity constraints into account. There
are three possibilities:

• No server (anti-) affinity is defined for container p:
this parameter equals 1 for all schedulable servers,
else 0. A server could indeed be (temporarily) un-
schedulable: this may be the case for instance for
unavailable servers or for servers dedicated to the
management of the cluster and not to application
hosting.

• Server affinity is defined : in this case, this param-
eter equals 1 for all schedulable servers matching
the defined affinity, else 0.

• Server anti-affinity is defined : in this case, this
parameter equals 1 for all schedulable servers not
matching the defined anti-affinity, else 0.

Secondly, lpq allows the model to take inter-container
affinity into account. If such an affinity is defined for
2 containers then the parameter equals 1, else 0. Fi-
nally, dpq allows the model to take inter-container anti-
affinity into account. If such an anti-affinity is defined
for 2 containers, then the parameter equals 1, else 0.

Equation (1) defines the objective function of the
model; in this case, the model seeks to minimize inter-
server traffic.

min

N∑
n=1

spqn tpq, ∀p, q ̸= p (1)

Table 1 ILP formulation

Variable Description
n,m server number, from 1 to N, where N is the total

amount of servers
p,q container number, from 1 to P, where P is the total

amount of containers
rpn = 1 if container p runs on server n, 0 otherwise (binary

decision variable)
spqn = 0 if containers p and q are both hosted on server n

or if none of them is, else 1.
Parameter Description

vn CPU capacity (units) of server n
xn RAM capacity (bytes) of server n
wp CPU requirement (units) of container p
yp RAM (bytes) requirement of container p
tpq network traffic (bytes) between containers p and q
apn =1 if container p may be instantiated on server n, else

0
lpq =1 if container p and q must be co-located, else 0

(inter-container affinity)
dpq =1 if container p and q must not be co-located, else

0 (inter-container anti-affinity)

This is however subject to the following constraints:
• Each container must be instantiated on one and

only one server:

N∑
n=1

rpn = 1, ∀p (2)

• Each server must be able to provide the CPU ca-
pacity required for each hosted container:

P∑
p=1

rpnw
p ≤ vn, ∀n (3)

• Each server must be able to provide the RAM
capacity required for each hosted container:

P∑
p=1

rpny
p ≤ xn, ∀n (4)

• Container instantiation cannot violate server
(anti-) affinity constraints:

N∑
n=1

rpna
p
n = 1, ∀p (5)

• Two containers must be co-located if defined by
an inter-container affinity constraint:

1− lpq ≥ rpn − rqn, ∀n, p, q ̸= p (6)

• Two containers cannot be co-located if defined by
an inter-container anti-affinity constraint:

2− dpq ≥ rpn + rqn, ∀n, p, q ̸= p (7)

Bracke et al. Page 6 of 27

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

• Eq.(8) and Eq.(9) ensure that inter-container traf-
fic is taken into account when containers p and q
are not co-located. Those two equations ensure
the linearization of spqn = |rpn − rqn|:

spqn ≥ rpn − rqn, ∀n, p, q ̸= p (8)

spqn ≥ rqn − rpn, ∀n, p, q ̸= p (9)

• Lastly, variables rpn and spqn are defined as binary
variables:

rpn, s
pq
n ∈ {0, 1} (10)

3.3 Introduction of the selected metaheuristics
There exists a wide range of metaheuristics that are
used to solve combinatorial optimisation problems.
They can be classified into two main categories: tra-
jectory methods and population-based methods. This
categorization permits a clearer description of the al-
gorithms[2]. Trajectory methods all share the prop-
erty of describing a trajectory in the search space
during the search process while population-based
metaheuristics, on the contrary, perform search pro-
cesses which describe the evolution of a set of points
in the search space. Trajectory-based search algo-
rithms include among others Tabu Search (TS)[31],
Iterated Local Search (ILS)[32], Variable Neighbor-
hood Search (VNS)[33], Greedy Randomized Adap-
tive Search Procedures (GRASP)[34] and Simulated
Annealing (SA)[35, 36]. Examples of population-based
search algorithms are Genetic Algorithms (GAs)[37],
Honey-Bees Mating Optimization (HBMO)[38], Par-
ticle Swarm Optimization (PSO)[39] and Ant Colony
Optimization (ACO)[40].

The benchmark realized in subsection 3.5 com-
pares SA, a trajectory metaheurstic, with PSO, a
population-based metaheuristic for solving the prob-
lem of dynamic container rescheduling. SA has been
chosen as trajectory metaheuristic for its simplicity of
implementation and as it has successfully been applied
to a wild variety of combinatorial optimization prob-
lems [41, 42] among which Grid-Computing Schedul-
ing [43]. PSO has been selected as population-based
metaheuristic since it has relatively few parameters,
exhibits a good ability of global searching, has been
successfully applied to many areas [44] and, more par-
ticularly, has demonstrated good results in solving
scheduling problems in distributed grid systems out-
performing other population-based metaheuristics in
terms of solution quality and convergence time [45, 46].
[2]Moreover, a current trend is the hybridization of
methods in the direction of the integration of trajec-
tory methods in population-based ones [30].

3.3.1 Simulated Annealing (SA)
Simulated Annealing (SA) is a probabilistic method
proposed by Kirkpatrick et al. [35] and Cerny [36] for
finding the global minimum of a cost function that
may possess several local minima. Based on an anal-
ogy to the statistical mechanics of annealing in solids
it emulates the physical process whereby a solid is
slowly cooled so that when its structure is eventually
“frozen”, this happens at a minimum energy configu-
ration [47].

Algorithm 1 The SA algorithm as used for the wedding
seating chart problem
1: procedure annealing(sol, t, stop, iter, α)
2: costo ← cost(sol)
3: while t > stop do
4: for i← 1, iter do
5: solnew ← randValidNeighborSol(sol)
6: costn ← cost(solnew)
7: if probAccept(costo, costn, t) > rand(0, 1) then
8: sol← solnew

9: costo ← costn
10: end if
11: end for
12: t← t × α
13: end while
14: return sol, costo
15: end procedure

The SA algorithm (see Algorithm 1) may be sum-
marized as follows:
1 Generate a random solution (see sub-section

3.4.3).
2 Calculate its cost (see sub-section 3.4.1).
3 Generate a random neighboring solution (see sub-

section 3.4.2).
4 Calculate the new solution’s cost (see sub-section

3.4.1).
5 Compare previous and new solution costs:

• If costn < costo: move to the new solution
as it is better (i.e.: getting closer to an opti-
mum). ”Moving” to a new solution happens
by saving it as the incumbent solution for
next iteration.

• If costn ≥ costo: maybe move to the new so-
lution. Most of the time, the algorithm will
eschew moving to a worse solution, however
it sometimes elects to keep the worse solu-
tion in order to avoid being trapped in a lo-
cal minimum. To decide, the algorithm cal-
culates the ‘acceptance probability’ and then
compares it to a randomly generated number
in the interval [0;1]: if the acceptance proba-
bility is larger than the random number, the
algorithm moves to the new solution. The ex-
planation so far leaves out an important pa-

Bracke et al. Page 7 of 27

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

rameter called the temperature (as the algo-
rithm is inspired by a method of heating and
cooling metals). The temperature decreases
with the iterations of the algorithm; it usu-
ally is started at 1.0 and decreased at the
end of each iteration by multiplying it by the
α constant (typically between 0.8 and 0.99).
Furthermore, SA performs better when the
‘neighbor-cost-compare-move’ process is car-
ried about many times (typically between
100 and 1000) at each temperature [48].

6 Repeat steps 3-5 above until an acceptable solu-
tion is found or some maximum number of itera-
tions is reached.

Based on the costo, costn and temperature, the accep-
tance probability is calculated by means of Equation
(11) and can be seen as a recommendation on whether
or not to jump to the new solution. The equation typ-
ically used for the acceptance probability is:

a = min(1, e
costo−costn

T) (11)

where a is the acceptance probability, costo − costn
is the difference between the old cost and the new one
and T is the temperature. This equation helps to move
from a random solution to one with a very low cost as
the acceptance probability:

• is always > 1 when the new solution is better
than the old one. Since a probability cannot ex-
ceed 100%, we use a=1 in this case.

• gets smaller as the new solution gets worse than
the old one.

• gets smaller as the temperature decreases.
The algorithm is thus ”more likely to accept ‘slightly-
bad’ jumps than ‘really-bad’ jumps, and is more likely
to accept them early on, when the temperature is
high”[48].

3.3.2 Particle Swarm Optimization (PSO)
Proposed by Kennedy and Eberhart [39], the Parti-
cle Swarm Optimization (PSO) metaheuristic is an
algorithm used to search for an optimal solution in
a n-dimensional solution space. The underlying bio-
inspired reasoning has been aroused by the observa-
tion of animal swarms (flocks of birds, schools of fish,
etc.) moving in groups where “individual members of
the school can profit from the discoveries and previous
experience of all other members of the school during
the search for food”[39].

In PSO, a particle is an individual entity that has
a position (in n-dimensions) and a velocity and keeps
track of its best position found so far. The movement
of particles within the n-dimensional search space is

thus governed by their individual velocity, current po-
sition, personal best as well as the global best position.
A particle’s position represents a candidate solution
which value is expressed as a fitness value that is mea-
sured over an objective function and represents how
good or bad a particle’s position is. This mechanism
progressively guides the movement of the swarm by at-
tracting the particles to positions of high fitness. The
best solution gets iteratively improved and eventually
converges to a high quality solution.

The two equations which are used in PSO are ve-
locity update (12) and position update (13) equations.
These are to be modified in each iteration of PSO al-
gorithm to converge to the optimum solution. For a
n-dimensional search space, the position of the ith par-
ticle of the swarm is represented by a n-dimensional
vector, Pi = (Pi1, Pi2, ..., Pin)

T . The velocity of this
particle is represented by another n-dimensional vec-
tor V i = (Vi1, Vi2, ..., Vin)

T . The previously best vis-
ited position of the ith particle is denoted as Bi =
(Bi1, Bi2, ..., Bin)

T . Gbest is the index of the best par-
ticle in the swarm so far. The velocity of the ith particle
is updated using Eq. (12) and the position is updated
using Eq. (13) where d = 1, 2...n represents the di-
mension and i = 1, 2, ..., s represents the particle index
with s being the size of the swarm. Constants c1 and
c2 are called cognitive and social scaling parameters
respectively and r1 , r2 are random numbers drawn
from a uniform distribution.

Vid(t+1) = Vid(t)+c1r1(Bid−Pid)+c2r2(Bgd−Pid)

(12)

Pid(t+ 1) = Pid(t) + Vid(t+ 1) (13)

The PSO algorithm proceeds as follows [49]:
1 Particles’ velocities and positions are initialised

randomly. For each particle, best visited position
is set to current position. Gbest references the par-
ticle with best fitness value.

2 Particles’ velocities and positions are updated ac-
cording to Eq. (12) and (13).

3 For each particle, if the current fitness of the par-
ticle is better than its previous best fitness value,
then Bi is updated to the current position Pi.

4 Gbest is updated if the current best fitness of the
whole swarm is fitter.

5 Steps 2–4 are repeated until stopping criteria
(usually a predefined number of iterations and/or
a quality threshold for objective value) are met.

Bracke et al. Page 8 of 27

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

Shi and Eberhart [50] introduced in 1998 the con-
cept of Inertia Weight, a constant that would provide
balance between exploration and exploitation during
the search process. The Inertia Weight determines the
contribution rate of a particle’s previous velocity to its
velocity at the current time step. The resulting veloc-
ity update equation then becomes:

Vid(t+1) = w∗Vid(t)+c1r1(Bid−Pid)+c2r2(Bgd−Pid)

(14)

A large Inertia Weight facilitates a global search (ex-
ploration) while a small Inertia Weight facilitates a lo-
cal search (exploitation). Various strategies have been
proposed to dynamically adjust the Inertia Weight
during the course of the run [51]. Commonly, it is de-
creased linearly so that the search effort is mainly fo-
cused on exploration at initial stages and is focused
more on exploitation at latter stages of the run.

In parallel, variations of PSO have been introduced
to allow it to cover discrete problems; main ones be-
ing discussed and compared in [49]. Though despite
the relative success of those Discrete PSO (DPSO) ap-
proaches, “in a discrete space, when lacking continu-
ity, the movement, the velocity and inertia ideas lose
sense”[52]. García and Moreno-Pérez [52] developed
thus a new DPSO technique for discrete optimization
: the Jumping Frogs Optimization (JFO) (also referred
to as Jumping Particle Swarm Optimization (JPSO)).
It works without these components but keeps the con-
cept of attraction by the best positions. So instead of
velocity and inertia, the authors considered a random
component in the movement of particles; that now has
the form of jumps. The position of the particles is up-
dated similarly to the velocity update in the canonical
PSO (see Eq. (14)), except that weights of the update
equation are now interpreted as probabilities of the
movement of a particle towards its attractors whereas
improvement. The update equation of particles posi-
tion, where c1, c2, c3 and c4 are the probability values
of the movement of the particles towards their corre-
sponding attractors, is given by:

Pi(t+1) = c1(Pi(t))⊕ c2(Bi)⊕ c3(Ni)⊕ c4(G) (15)

The result of this operation consists of making ran-
dom moves (see sub-section 3.4.2) with probability c1,
approaching moves towards the best position of the
own particle Bi with probability c2, towards the best
position of its social neighbourhood Ni with proba-
bility c3 , or towards the best global position G with
probability c4. Those approaching moves are not ex-
actly similar to random moves as they require to move
in the direction of another solution. To this end, the

difference between two assignment schemes, the par-
ticle current position and the attractor’s position, is
obtained by listing all individual ‘container-to-server’
assignment that differ among both positions. After
this, a randomly chosen possible re-assignment is per-
formed: this corresponds to a move towards the attrac-
tor. Concretely, it consists in moving an aggregated set
of containers from the server it is assigned to (within
a particle’s position) to the server it is assigned to in
the attractor particle’s position. This re-assignment is
only possible if no container’s anti-affinity or hosting
capability constraint in the attractor’s particle posi-
tion gets violated by this move.

For the probability values, the unit interval [0, 1] is
divided into four segments with lengths c1, c2, c3 and
c4 = 1− (c1+ c2+ c3). Then a random number is gen-
erated with uniform distribution in [0, 1] and based on
the segment to which the resulting random number be-
longs, random improvement movements are applied to
the position of the particle towards the corresponding
attractor. The moves that do not produce improve-
ment are rejected. JPSO has successfully been applied
to various combinatorial optimization problems, out-
performing classical DPSO techniques, among other
when applied to the set covering problem [53], to the
vehicle routing problem [54] and to the minimum la-
belling Steiner tree problem [55].

3.4 Commonalities in the design and implementation of
both metaheuristics

3.4.1 The cost function
For performance reasons, the cost function for a spe-
cific context (called assignment in the SA algorithm
and Particle in the PSO algorithm) is only executed
once at initialization phase. Afterwards, only the delta
caused by a move is added to or subtracted from the
context cost. This allows for constant time complexity
to update the cost of a context instead of O(c2) where
c is the number of containers. Assuming ContainerC
is moved from ServerA to ServerB, the delta is then
obtained as the difference between the sum of bytes ex-
changed between ContainerC and the other containers
running on ServerA and the sum of bytes exchanged
between ContainerC and the other containers running
on ServerB.

3.4.2 The chain of affinities and the random move
function

SA and PSO both make use of a random move func-
tion that generates a new solution differing from the
current one by one element. This is achieved by ran-
domly selecting a reschedulable container and moving
it onto another server that can host it. To this end,
both the required memory and processing power of the

Bracke et al. Page 9 of 27

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

container need to be known as well as the remaining
memory and processing power of each server. Addi-
tionally, in order to keep the cluster state compliant
with (anti-) affinity constraints, the complete process
requires additional steps to be executed. More specifi-
cally, if a server affinity constraint is defined for a con-
tainer, it will only be able to move to servers matching
this constraint and, conversely, if a server anti-affinity
constraint is defined for a container the servers match-
ing this anti-affinity constraint will not be allowed to
host the container. Likewise, if a container affinity con-
straint is defined for a container, containers matching
this affinity will move along with it and inversely if a
container anti-affinity constraint is defined for a con-
tainer it will not be allowed to move to a server hosting
containers matching that constraint. The interpreta-
tion of those constraints is summarized in Table 2.

Table 2 Interpretation of constraints (colour code from Figure 2)

Server Container
Affinity Must run on Must be co-located

Anti-Affinity Must not run on Must not be co-located
N/A May run on May be co-located

CPU/RAM Remaining Required

Due to the cumulative nature of those constraints,
container scheduling may rapidly become complex.
Therefore the 5-steps process, hereafter summarized
and exemplified in Figure 2, has been designed to care-
fully identify the ‘targetable’ servers for a container to
be moved onto:
1 The identification of the container’s chain

of affinities: starting from the chosen container
to move, a Directed Acyclic Graph (DAG) rep-
resenting the container (anti-) affinities is recur-
sively constructed. The first step consists in mov-
ing upward the affinities paths until reaching ver-
tices with no predecessor, called the roots here-
after. Then, for each of those roots, the chain is
constructed downward until all vertices with no
successor are found, hereafter called the leaves.
While going downward from roots to leaves, all
anti-affinity direct predecessors are identified for
all vertices. In the Figure 2 example, starting
from container γ (assumed to be the random con-
tainer to move - see blue circle (1)) the proce-
dure will identify after two affinity upward hops
the root vertex, i.e. the container α as it does
not have any affinity predecessor. Moving down-
ward, it will identify container β on an affinity
edge (plain green line) as well as container η on an
anti-affinity edge (dotted red curve) to container
β at the first downward hop. At the second down-
ward hop, both containers γ and θ are identified

on an affinity and anti-affinity edge respectively.
Lastly, container δ is identified on an affinity edge
at hop 3. The process stops here as all leaves have
been identified. Importantly, the (anti-) affinity
definition is assumed to be both acyclic and non
adversarial.

2 The aggregation of the container’s chain
of affinities: the full chain of container affini-
ties is then aggregated as a virtual set of con-
tainers. Continuing with the example in Figure 2,
the virtually aggregated container represents the
set composed of containers α, β, γ and δ where
the quantity of memory and processing power re-
quired by the set is obtained by summing respec-
tive requirements for all member containers of
the set (550MB = 100MB + 150MB + 200MB
+ 100MB and 0.7CPU = 0.1CPU + 0.2CPU +
0.3CPU + 0.1CPU). The set has no container
affinity relationship to external containers as the
entire chain belongs to the set. Conversely, the
container anti-affinities to and from any member
of the set do not belong to it and stay unchanged.
When server affinities are defined for a container,
the most restrictive subset dominates, i.e. server
affinities of container α being less restrictive than
β, the aggregated container inherits server affini-
ties of the latter. At this stage of the process,
servers 1,2,3,4,5 and 8 are possible hosting can-
didates. If there is only one hosting candidate, it
means that no alternative exists; the process stops
here as the aggregated container is not movable.
With unchanged constraints, the now constructed
chain of affinities remains fixed and consequently
does not need to be re-computed at each random
move request.

3 The servers anti-affinities filtering: the servers
matching anti-affinities of the aggregated con-
tainer are removed from the selection. In the
example, server 5 is thus removed from poten-
tial candidates (server 6 was already not part of
them). If no alternative exists the process stops
here as the aggregated container is not movable
in the current cluster context. With unchanged
constraints, the now constructed set of potential
candidate servers remains fixed and consequently
does not need to be re-computed at each random
move request.

4 The containers anti-affinities filtering: the
servers hosting the containers matching anti-
affinities (predecessor or successor) are removed
from the selection. In the example only server 3 is
removed from potential candidates (server 6 was
already not part of them). If no alternative exists
the process stops here as the aggregated container
is not movable in current cluster context.

Bracke et al. Page 10 of 27

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

Figure 2 Constraints based identification of candidate target servers for a container and its chain of affinities

5 The servers remaining capabilities filter-
ing: lastly the resource requirements are com-
pared to the resources available. Servers with not
enough resources are thus removed from the selec-
tion which is the case of server 4, in the example,
that while still having enough memory capacity, is
lacking processing power. If no alternative exists
the process stops here as the aggregated container
is not movable in the current cluster context.

At the end of the process, a list of targetable servers is
obtained. If the list only contains the server currently
hosting the aggregated set of containers, it means that
it cannot be moved in the current cluster context and,
otherwise, the aggregated container is assigned to the
best possible server (other than the current host) ac-
cording to the cost function, i.e. to the server that
allows for the minimal cost. It is worth mentioning
that steps 1 to 3 are only performed once at algorithm
initialization phase since the information collected in
those steps does not evolve while performing moves.
Only steps 4 and 5 need to be repeated for each move.

3.4.3 The initial random reshuffling
In order to optimally explore the search space, SA and
PSO both start from a randomized initial solution.
This random allocation is executed as follows:

1 Irreducible baseline assignment: this initial
step is executed only once and consists in assign-
ing all non-reschedulable aggregated sets of con-
tainers. So, all aggregated sets of containers that
have only one possible hosting candidate at the
end of step 2 of the process presented in sub-
section 3.4.2 are assigned to that specific host.
This leaves the cluster in its minimal common as-
signment scheme.

2 Prioritization: the list of targetable servers is
then computed for all reschedulable aggregated
sets of containers that need to be re-assigned (see
steps 3 to 5 of the process introduced in sub-
section 3.4.2) and those are ordered by increasing
number of targetable servers.

3 Assignment: all reschedulable aggregated sets
of containers having the smallest number of tar-
getable servers are then assigned, randomly se-
lected one by one, to one of their candidate host-
ing servers. If no assignment solution remains for
a specific aggregated set of containers, then the
process restarts at step 1. Once all top priority
aggregated sets of containers have been assigned,
the process re-executes step 2 with the remaining
aggregated sets of containers.

This process is ensured to eventually terminate as
there is at least one possible assignment solution that
can meet all constraints, i.e. the previous cluster state.

Bracke et al. Page 11 of 27

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

The execution time of this process though will be
highly dependent on the restrictiveness and number
of constraints. If execution time is deemed critical, a
possible alternative can be achieved by returning the
previous cluster state after a predefined delay or num-
ber of unsuccessful trials as this solution is part of the
set of possible solutions; though this may impact the
quality of the solution found by the metaheuristic.

3.5 Heuristics benchmarking
3.5.1 Description of the simulation tests and

environment
In order to select the most appropriate algorithm for
the implementation of the wedding seating chart prob-
lem applied to the dynamic rescheduling of containers
within a cluster of servers, their respective efficiency
and effectiveness are compared by means of four dis-
tinct scenarios: S, M, L and XL ordered by increasing
size, as illustrated in Table 3 where column:

• ‘#C’ defines the number of containers for each
scenario,

• ‘#S’ defines the number of servers for each sce-
nario,

• ‘#SA’ defines the number of server affinity for
each scenario. If a server affinity is defined for a
container, it may only be assigned to a randomly
defined set of 25% of the servers. This ratio has
been arbitrarily defined.

• ‘#SAA’ defines the number of server anti-affinity
for each scenario. If a server anti-affinity is defined
for a container, it may only be assigned to a ran-
domly defined set of 75% of the servers. This ratio
has been arbitrarily defined.

• ‘#CA’ defines the number of container affinity
for each scenario. If a container affinity is defined
for a container towards an other container, it may
only be assigned to the server hosting the other
container.

• ‘#CAA’ defines the number of container anti-
affinity for each scenario. If a container anti-
affinity is defined for a container towards an other
container, it cannot be assigned to the server host-
ing the other container.

• ‘%NT’ defines the percentage of containers each
container sends network traffic to.

Table 3 The four distinct scenarios used for the algorithm
selection

#C #S #SA #SAA #CA #CAA %NT
S 50 5 5 5 5 5 20
M 100 10 10 10 10 10 10
L 500 50 50 50 50 50 2

XL 1500 150 150 150 150 150 1

Additionally, those four scenarios have been tested
on two different topologies:

Figure 3 Network connections among containers for the ‘S’
scenario within the dense topology

Figure 4 Network connections among containers for the ‘S’
scenario within the cluster topology

• An unstructured dense mesh topology were con-
tainers send network traffic to randomly selected
containers, as illustrated in Figure 3. This kind of
topology, also known as the ‘death star’ topol-
ogy, is typically encountered in the context of
complex applications split among multiple mi-
croservices and hosted onto a dedicated cluster
of servers. Examples of such implementation con-
cern, among other, heavy e-commerce applica-
tions like the Netflix video streaming platform [56]
and the Amazon.com retail website [57].

• A split mesh topology were containers are clus-
tered in smaller meshes, possibly exchanging net-
work traffic among them through a limited num-
ber of their containers, as illustrated in Figure
4. This kind of topology is typically encountered
in the context of multi-tenant clusters of servers
where multiple applications co-exist and depict
limited interactions among them; most of the net-
work traffic remaining circumscribed to each in-
dividual cluster of microservices.

Bracke et al. Page 12 of 27

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

For all simulations:
• 80% of the containers are reschedulable.
• Half of the servers offer 8 CPUs and 64GB of RAM

each and the other half of the servers offer 4 CPUs
and 32GB of RAM each. In each setup, one server
is flagged as non-schedulable (to simulate a typical
cluster Master Node).

• Individual required RAM/CPU is randomly as-
signed (within servers max capacity boundaries to
allow hosting). However, the total required capac-
ity in terms of RAM/CPU is 60% of the cluster
wide available RAM/CPU capacity.

• Inter-container network traffic is randomly as-
signed on a scale from 1 to 5.

All experiments have been conducted on a server
equipped with 2 Hexacore Intel® E5645 (2.4GHz)
CPUs and 288GB of RAM and running with the Linux
Operating System Ubuntu 18.04 LTS. IBM® ILOG®

CPLEX® Optimizer v22.1.0 has been used as ILP
solver while both heuristics have been developed in
Java (JDK 17.0.2).

3.5.2 Effectiveness and efficiency comparison
Both heuristics:

• have been evaluated on eight distinct test-cases;
the four different sizes being tested across both
topologies. Each distinct test-case has been run
twenty-five times to reduce the impact of the in-
herently stochastic behaviour of the heuristics on
the conclusions of the benchmark. ILP test-cases
were only executed once since this technique en-
sures the optimum solution.

• are evaluated and compared throughout their ef-
fectiveness, which is measured by the cost of the
best solution found as well as their efficiency,
which is measured by the time taken to perform
a run.

The outcome, illustrated in Figure 5 and reported in
Table 4, is hereafter further discussed :

• Efficiency:
– For each test-case, both heuristics take com-

parable time to complete. This is due to the
parameters that have been used: instead of
stopping the heuristics after a given amount
of consecutive iterations with limited or no
improvement, we simply limit it by a total
number of iterations that is based on the
search-space size. More concretely, the SA
implementation defines an initial tempera-
ture value of 1, an α value of 0.9 and the
annealing stops when temperature is smaller

[3](gap = 31.83%)

Table 4 Measured efficiency and effectiveness for the different
test-cases

Topology Size Algo Effectiveness Efficiency
AVG AVG/ILP AVG

Dense

S
SA* 16.74% 90.95% 0.034s
PSO* 16.63% 90.39% 0.034s
ILP 18.4% 100% 1.417s

M
SA 21.56% 86.98% 0.313s
PSO 21.76% 87.81% 0.307s
ILP 24.78% 100% 2.03d

L
SA 15.26% (99.8%) 80.9s
PSO 15.03% (98.29%) 82.8s
ILP[3] (15.3%) 100% (74.9d)

XL
SA 10.23% - 7233s
PSO 9.92% - 7249s
ILP - - -

Clustered

S
SA* 43% 94.59% 0.032s
PSO* 42.49% 93.48% 0.03s
ILP 45.45% 100% 1.13s

M
SA 46.23% 90.15% 0.267s
PSO 46.27% 90.24% 0.243s
ILP 51.28% 100% 2.16s

L
SA 49.09% 89.14% 73.8s
PSO 48.51% 88.08% 71s
ILP 55.07% 100% 6.4d

XL
SA 49.49% - 4985s
PSO 49.6% - 4658s
ILP - - -

than 0.00001. Those annealing parameters
ensure for a constant 111 temperature reduc-
tions. The inner loop, specifying the number
of iterations at a given temperature varies
with the size of the search-space and consists
of the number of containers multiplied by the
number of servers divided by 25. Those pa-
rameters generate thus 1110, 4440, 111000
and 999000 permutations for the S, M, L and
XL scenarios respectively. The PSO imple-
mentation defines the number of particles as
the number of servers, each particle iterating
C times, where C equals the number of con-
tainers. Those parameters generate thus 250,
1000, 25000 and 225000 permutations for the
S, M, L and XL scenarios respectively. Those
parameters ensure comparable efficiency for
both heuristics : while SA performs more it-
erations, PSO must compute the difference
between a particle’s position and the attrac-
tor’s position at each non-random move. SA
and PSO parameters optimization has al-
ready been researched and discussed in the
literature (e.g. [58] for PSO and [59] for SA)
and is therefore considered as out-of-scope
for this work; instead those empirical val-
ues have been retained as they allow for a
fair comparison of the effectiveness of each
heuristic.

– Depending on the order of magnitude of
the actual cluster to be rescheduled, one

Bracke et al. Page 13 of 27

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

Figure 5 Efficiency and effectiveness comparison

could however retain other parameters that
would better meet a specific trade-off be-
tween efficiency and effectiveness. For in-
stance, if the supervised cluster size doesn’t
exceed by far the M scenario, more iterations
could reasonably be performed for a possibly
higher effectiveness within acceptable execu-
tion time boundaries. Inversely, one could
consider that the time taken by the heuris-
tics for the L and XL scenarios are not ac-
ceptable and therefore reduce the number of
iterations (possibly at the cost of a lower ef-
fectiveness).

– The PSO heuristic is on average more effi-
cient than SA for all scenarios of the clus-
tered topology as well as for scenario M of
the dense topology. However, the difference
in time is relatively limited.

– With the search-space size defined as C ∗ S,
where C is the number of containers and S

the number of servers, a quadratic time com-
plexity is observed for both heuristics.

– Due to its disqualifying inefficiency (except
for the ‘S’ scenarios as well as scenario ‘M’
of the Clustered topology), ILP should more
be interpreted as a yardstick for the compar-
ison of both heuristics relative effectiveness.
For the ‘L’ scenario of the Dense topology,
the ILP solver was not able to provide an

optimum value since it ran out of memory[4]

after 74.9 days. For both ‘XL’ scenarios, an
out-of-memory crash happens at modelling
time (during variables creation)[5].

• Effectiveness:
– As mentioned in previous bullet, for each

test-case, both heuristics take about the
same amount of time to complete. SA tries
111/25 times more permutations than PSO,
however, being a population based heuris-
tics, PSO has the advantage of searching at
different locations of the search-space in par-
allel. Interestingly, not only does it result in
comparable efficiency but also in comparable
effectiveness for both heuristics.

– The topology significantly affects effective-
ness. This is observed for all scenario sizes.

– The heuristics relative effectiveness averages
around 90% when compared to ILP optimum
(see Table 4) and exhibits negative correla-
tion with scenario size: this involves that, de-
spite the increasing improvement ratio, the
gap between ILP optimum and heuristics
best solution increases with scenario size. As
previously stated, the ILP solver crashed af-

[4]ilog.cplex.CpxException: CPLEX Error 1001: Out of
memory.
[5]java.lang.OutOfMemoryError: Java heap space - re-
ported by the program used to feed CPLEX with the
variables and constraints.

Bracke et al. Page 14 of 27

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

Figure 6 Comparison of the relative progress of cost improvement along the iterations

ter 74.9 days for the ‘L’ scenario of the Dense
topology. At crash-time though the best so-
lution found was the 15.3%, however with an
optimality gap value of 31.83%. The reported
solution is thus probably not the optimum;
this is confirmed when comparing it with SA
and PSO that were able to improve the cost
by 15.58% and 15.42% respectively.

– For the ‘S’ scenario of the two distinct
topologies, both heuristics succeed at least
once in finding the optimum; SA exhibiting
a slightly higher effectiveness average than
PSO for the 25 different runs. While both
heuristics offer very similar effectiveness av-
erage across the different sizes and topolo-
gies, SA surpasses PSO most often.

Lastly, Figure 6 illustrates the relative progress of cost
improvement along the iterations for each approach.
Solid lines represent the average improvement and the
coloured surrounding shade indicates the dispersion
around this average. It is worth mentioning that X
and Y axis are expressed as percentages, allowing for
a relative comparison of the different approaches. Main
outcome is hereafter discussed:

• ILP’s initial solution already covers between 50%
and 90% of the distance between the cost of the
current context and the optimum. Inversely, the
cost of the initial solution for both heuristics, be-
ing randomly generated, may even be worse than
the cost of the current context.

• While ILP progresses by steps with relatively
long stable phases, both heuristics continuously
progress.

• Most of the contribution to the cost improvement
happens at early iterations. This observation ad-
vocates for a relative stop criterion (e.g. the slope
evolution) instead of an absolute stop criterion
(e.g. the number of iterations), certainly for high
search-space use-cases like the ‘L’ and ‘XL’ sce-
narios. Indeed, heuristics efficiency could be im-
proved by a factor of 3 (i.e. stopped at 30-35 per-
cent of current implementation run time) with a
limited impact on the effectiveness.

• SA surpasses PSO in all scenarios as it exhibits a
sharper slope in early iterations than PSO, reach-
ing earlier near optimum solution. Additionally,
the standard deviation for SA is smaller than for
PSO, making it more predictable. In relative stop
criterion implementation those two factors are de-
terminant and plead in favor of SA.

4 Validating the rescheduling system in a
container orchestration platform

This section aims at validating the algorithm presented
in Section 3 within a container orchestration platform.
To this end the SA implementation of the algorithm
is retained. Additionally, K8s has been selected as
container orchestration platform due to its prominent
market position and proven track record [9]. Originally
developed by Google and currently being maintained

Bracke et al. Page 15 of 27

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

by the Cloud Native Computing Foundation (CNCF),
K8s is an open-source container orchestration system
for automated deployment, scaling and management
of containerized applications. This section first intro-
duces the scheduling and descheduling mechanisms of
K8s, after which the dynamic rescheduling system, em-
bedding the SA implementation, is presented. Lastly,
the impact on application service time of the system is
tested and evaluated by means of 2 distinct concrete
use-cases.

4.1 Scheduling and descheduling containers in K8s
4.1.1 Workload resources
K8s consists of multiple components, also known as
workload resources, to be able to offer the aforemen-
tioned services. The main workload resources used in
this work, are briefly introduced below:

• Pod: A Pod is a group of one or more contain-
ers, with shared storage and network resources,
and a specification for how to run the containers.
Pods are the smallest deployable units of comput-
ing that can be created and managed in K8s.

• Deployment: A Deployment provides declara-
tive updates for Pods. A Deployment uses a de-
scription of a desired state and the Deployment
controller changes the current state towards that
desired state.

• Service: An abstract way to expose a set of Pods
as a network Service. It offers two advantages: i) a
permanent link for internal and external referenc-
ing to Pods (DNS) and ii) load balancing amongst
the endpoint Pods.

• Namespace: A Namespace is a non-overlapping
set of managed resources and allows for workload
resource isolation within a cluster. Namespaces al-
low for cluster multi-tenancy or for the separation
of development and production environments.

K8s clusters are composed of one Master Node and a
set of Worker nodes. While the Worker nodes host the
application workload resources described hereinabove,
the Master node hosts most of the cluster manage-
ment components. Main component of interest from
this Control Plane are the scheduler and descheduler,
hereafter further described.

4.1.2 K8s scheduler
K8s default scheduling system (KS) has static rules
to schedule Pods in a cluster. Developers can specify
resource requests and limits on the Pod configuration
file. A resource request is the minimum amount of re-
sources (e.g. CPU and/or RAM) required by all con-
tainers in the Pod while a resource limit is the max-
imum amount of resources that can be allocated for

the containers in a Pod. Additionally, affinity con-
straints can also be specified within a Pod configu-
ration file. The affinity feature consists of two types
of affinity: Node (anti-) affinity allowing to constrain
which nodes a Pod can (not) be scheduled on and
Inter-pod (anti-) affinity allowing to constrain which
nodes a Pod can (not) be scheduled to, based on
the Pods already running on that node. If those con-
straints conflict or if no node satisfies the full set
of constraints, then the Pod cannot be scheduled by
the KS. Those 4 varieties of affinities can be defined
as hard (“requiredDuringSchedulingIgnoredDuringEx-
ecution”) or soft (“preferredDuringSchedulingIgnored-
DuringExecution”) constraints; the latter being asso-
ciated with a preference weight indicating to which
extent the constraint may be relaxed in case of con-
straints conflict for Node attribution[6]. The KS uses
those resource and (anti-) affinity constraints in its al-
location decisions.

Figure 7 Sample of detailed scheduling operations of the
Kube–Scheduler [60]

Every Pod that requires allocation is first added to
a queue, which is monitored by the KS. As illustrated
in Figure 7, the KS allocates Pods to Nodes based
on a two-step procedure. The first step is to filter the
[6]For scoping reasons, this work only considers hard
constraints. The impact of soft constraints is consid-
ered as a candidate topic for future extensions of this
work (see Section 5).

Bracke et al. Page 16 of 27

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

available Nodes based on a set of predicates to de-
cide which Nodes are capable of running a specific
Pod. The second step is to calculate each Node’s pri-
ority, where the KS ranks each remaining Node based
on the requirements. These steps are repeated for all
Pods that require scheduling. The KS can use pred-
icates to filter the Nodes which are suitable for the
Pod that needs to be scheduled. Priority calculation
is used if multiple Nodes still remain after predicate
filtering. The Node priority calculation is based on a
set of priorities, where each remaining Node is given
a score between 0 (“worst fit”) and 10 (“perfect fit”).
The highest scoring Node is selected to run the Pod. If
more than one Node is classified as the highest-scoring
Node, then one of them is randomly chosen. When
the allocation decision is made, the KS informs the
API server indicating where the Pod must be sched-
uled. This operation is called “Binding”. It should be
noted that the KS searches for a suitable Node for
each Pod, one at a time. The KS does not take the re-
maining Pods waiting for deployment into account in
the scheduling process, nor does it reschedule running
Pods if the cluster state has evolved since their initial
deployment. The KS statically schedules Pods one by
one without considering a global view on the system.

This work thus extends the KS by implementing a
specific rescheduler system that works alongside the
KS and focuses on rescheduling Pods with global op-
timization in mind while the KS only considers prede-
fined static predicates for local optimization.

4.1.3 K8s descheduler
The KS decisions, whether or where a pod can or can
not be scheduled, are guided by its configurable policy
which comprises of set of predicates and priorities. The
scheduler’s decisions are influenced by its view of a K8s
cluster at that point of time when a new pod appears
for scheduling [61]. As K8s clusters are very dynamic
and their state changes over time, there may be desire
to move already running pods to some other nodes for
various reasons:

• Some nodes are under or over utilized.
• The original scheduling decision does not hold

true any more, as taints or labels are added to
or removed from nodes, pod/node affinity require-
ments are not satisfied any more.

• Some nodes failed and their pods moved to other
nodes.

• New nodes are added to clusters.
Consequently, there might be several pods scheduled
on less desired nodes in a cluster. The K8s desched-
uler, based on its policy, finds pods that can be moved
and evicts them, relying on the scheduler for their re-
scheduling afterwards. The K8s descheduler’s policy is

configurable by the definition of the following 7 set-
tings:

• nodeSelector: limits the nodes which are pro-
cessed.

• evictLocalStoragePods: allows eviction of pods
with local storage.

• evictSystemCriticalPods: allows eviction of pods
with any priority, including system pods.

• ignorePvcPods: set whether Persistent Volume
Claim (PVC) pods should be evicted or ignored.

• maxNoOfPodsToEvictPerNode: maximum num-
ber of pods evicted from each node.

• maxNoOfPodsToEvictPerNamespace: maximum
number of pods evicted from each namespace.

• evictFailedBarePods: allows eviction of pods with-
out owner references and in failed phase.

Additionally, the K8s descheduler supports the follow-
ing 10 strategies:

• RemoveDuplicates: makes sure that there is only
one pod associated with a ReplicaSet, Replica-
tionController, StatefulSet, or Job running on the
same node.

• LowNodeUtilization: finds nodes that are under
utilized and evicts pods, if possible, from other
nodes in the hope that recreation of evicted pods
will be scheduled on these underutilized nodes.
Currently, node resource consumption is deter-
mined by the requests and limits of pods, not their
actual usage.

• HighNodeUtilization: finds nodes that are under
utilized and evicts pods from those nodes in the
hope that these pods will be scheduled compactly
into fewer nodes.

• RemovePodsViolatingInterPodAntiAffinity: makes
sure that pods violating interpod anti-affinity are
removed from nodes.

• RemovePodsViolatingNodeAffinity: makes sure
all pods violating node affinity are eventually re-
moved from nodes.

• RemovePodsViolatingNodeTaints: makes sure that
pods violating NoSchedule taints on nodes are re-
moved.

• RemovePodsViolatingTopologySpreadConstraint:
makes sure that pods violating topology spread
constraints are evicted from nodes.

• RemovePodsHavingTooManyRestarts: makes sure
that pods having too many restarts are removed
from nodes.

• PodLifeTime: evicts pods that are older than
maxPodLifeTimeSeconds.

• RemoveFailedPods: evicts pods that are in failed
status phase.

Lastly, the K8s descheduler allows for namespace,
priority, label and node fit pod filtering.

Bracke et al. Page 17 of 27

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

By allowing the eviction of pods not fulfilling prede-
fined conditions, the combination of the K8s desched-
uler and scheduler offers thus a first option for dynamic
rescheduling. However, it suffers different limitations:

• Firstly, the violating pods are descheduled from
nodes that violate the constraints. Though, de-
pending on the deployment strategy, there is no
guarantee that the scheduler will optimally place
new pod instances (cfr. LowNodeUtilization and
HighNodeUtilization strategies).

• Secondly, K8s does not consider ‘observed’ pod
resource consumption but instead uses the pre-
defined pod resource requests and limits, which
may be prone to approximation and consequently
inefficiency.

• Additionally, K8s only supports the static defini-
tion of resources. There is no mechanism to con-
sider the fluctuation of resource requirements over
time.

• More fundamentally, the pod-centric definition of
resource request and limit does not allow for inter-
pod relationships consideration.

Consequently, the K8s mechanism for pod reschedul-
ing does not offer enough efficiency and flexibility for
fine-grained and observation-based rescheduling able
to reshuffle pods based on actual resource consumption
fluctuation over time and pods interdependencies.

4.2 Architecture and design of the rescheduling system

Figure 8 The self driving rescheduling control loop

The proposed dynamic container rescheduling sys-
tem is designed as a closed control loop as illustrated
in Figure 8. A closed control loop, also referred to as
feedback loop, is a non-terminating loop that regu-
lates the state of a dynamical system and manipulates
it towards a more desirable state while minimizing any
delay, overshoot, or steady-state error and ensuring a
level of control stability; often with the aim to achieve

a degree of optimality [62]. In K8s for instance, con-
trollers are implemented by means of control loops that
watch the state of the cluster and make changes where
needed [63]. The main purpose of these controllers is
to push the cluster closer to the desired state. Under
stable load, the control loop should eventually stop
to adapt the system it controls by converging to an
optimum. The designed control loop is based on the
following 6 components:
1 The Adapter is in charge of interfacing the dy-

namical system (i.e. the orchestration platform
and monitoring tools) specific APIs and conse-
quently allows the portability of the control loop
to other environments. It mainly fulfills 2 func-
tionalities:

• Context data fetching: when a request
for context data fetching event arrives on
the gatherClusterData topic, the Adapter
queries:

– Prometheus to collect node character-
istics (e.g. the Fully Qualified Domain
Name (FQDN), the allocatable CPU
and RAM capacity as well as the taints
and labels) and pod characteristics (e.g.
the name, the IP address, the hosting
node, the resource requests (CPU and
RAM) and the labels). Labels play an
important role as they are used after-
wards for the matching to pod and node
(anti-) affinities. Furthermore, the pro-
posed rescheduling system identifies the
reschedulable pods by means of a spe-
cific label : only pods having the label
‘reschedulable’ with the value ‘true’ will
be considered as potential candidates for
rescheduling. Lastly, the pod resource
usage (RAM and CPU) for the latest
‘s’ seconds are also collected; the actual
pod resource need is then defined as the
highest value between the pod resource
request value and the observed pod re-
source usage value. This allows to avoid
considering the rescheduling of a pod to
a certain node when feasible from the
perspective of its resource request but
not from the perspective of its observed
resource usage. The value for ‘s’ is pro-
vided in the request for context data
fetching event.

– The K8s API to collect all pod and node
(anti-) affinities.

– The PIXIE backend for network traf-
fic metrics for the last ‘s’ seconds.
Despite the vast amount of monitor-
ing metrics provided by the classical

Bracke et al. Page 18 of 27

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

K8s-Prometheus association, those are
mostly limited to a system and infras-
tructure perspective: no real applica-
tion level metrics are defined as stan-
dard that would allow to monitor net-
work flows for instance. Of course one
can always expose application metrics
to Prometheus but those would remain
specific and can hardly be generalized;
this approach is anyway no option since
it would require to rewrite all individ-
ual hosted applications to let them ex-
pose the required metrics. This issue is
usually circumvented by adding a ‘net-
work sniffer’ component within the clus-
ter. Two options are then possible:

∗ Embedding the sniffer container
along with the application contain-
ers as a sidecar in each pod. Is-
tio for instance uses this concept as
a foundation for its service mesh.
Main advantage of this approach re-
sides in the fact that the sidecar
container may be used as Transport
Layer Security (TLS) termination,
potentially enabling richer reporting
at the cost, however, of significant
unwieldiness as it requires to em-
bed such sidecar container into ev-
ery pod of the service mesh.

∗ Deploying a single instance of the
sniffer container on each node.
This approach benefits from a more
lightweight footprint while meeting
the requirements of the proposed
rescheduling system, i.e. collecting
inter-pod network traffic volumetry.
Pixie is an open source observabil-
ity tool for K8s applications that is
contributed to by New Relic, Inc. as
a CNCF sandbox project since June
2021 [64]. Pixie has been selected for
its streamlined simplicity of integra-
tion, though any other network mon-
itoring tool able to report on inter-
pod network traffic can be used in-
stead.

• Containers rescheduling: when a request
for patching event arrives on the move-
Containers topic, for each entry in the re-
ceived ordered list of pods to reschedule,
the Adapter sends to the K8s API server
a strategic merge patch to update the ‘node-
Selector’ field of the pod’s deployment man-
ifest with the FQDN of the node it must

be rescheduled onto. This action causes the
eviction of the pod instance from its current
node and the scheduling of a new instance
on the target node.

2 The Current Context Modeler periodically
queries the dynamical system (through the Adapter)
and constructs the currentContext, a logical rep-
resentation of its state.

3 The New Context Generator uses the gener-
ated currentContext to generate a newContext by
means of the chosen rescheduling algorithm. It is
worth mentioning that the choice of algorithm is
not limited to the three optimization techniques
presented in this work (ILP, SA and PSO) as
the New Context Generator component launches
its execution through an algorithm agnostic in-
terface. Additionally, the New Context Genera-
tor can be configured to only consider specific
namespaces, which allows to adapt the scope of
reschedulable containers.

4 The Decision maker compares the cost from
both the currentContext and the newContext and,
based on decision criteria, enacts the execution of
the proposed rescheduling. The decision criterion
used in this work is a customizable minimum cost
improvement ratio. It can however be extended
or fine-tuned (e.g. only apply the rescheduling if
a certain percentage of the pods to be rescheduled
have not been rescheduled recently).

5 When instructed to apply the newContext, the
Patcher first generates a sequence of individ-
ual pod rescheduling actions ensuring permanent
respect of constraints all along the reschedul-
ing (e.g. podA is running on node1, must be
moved to node2 and has an anti-affinity with
podB, currently running on node2 but having to
go to node3. In this case, podB will be moved
first). Afterwards, the Patcher sends that ordered
list to the Adapter (through the moveContainers
topic) for sequential execution of the individual
rescheduling orders.

6 The Reflective Learning analyzes over time the
impact the rescheduling decisions had on the clus-
ter and adapts the parameters of the Current Con-
text Modeler, the New Context Generator and the
Decision Maker components in order to continu-
ously improve the performance of the reschedul-
ing system. This component has not been im-
plemented in this work and would certainly jus-
tify specific research as it represents a challenge
on its own (mainly to isolate the impact of the
rescheduling on application service time in volatile
load context).

Bracke et al. Page 19 of 27

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

4.3 First validation use-case : a cloud-based IoT
data-hub platform

This first use-case focuses on an IoT cloud-based data-
hub platform. A data-hub is a central mediation point
between various data sources and data consumers [65].
With a data-hub serving as a single point of data ac-
cess, users receive the means to structure and har-
monize information collected from various sources; a
key asset in IoT applications where data integration
remains a complex challenge. There exists a large
amount of data hub platforms, some of the most promi-
nent ones being: CDP Data Hub [66], Cumulocity IoT
DataHub [67], Azure IoT Hub [68], AWS IoT Core [69]
and Google Cloud IoT Core [70]. IoT applications typ-
ically exhibiting volatile load patterns, this use-case
may certainly be considered relevant for testing and
validating the proposed dynamic rescheduling system.

4.3.1 Architecture of the cloud-based IoT data-hub

Figure 9 Architecture of the IoT data-hub: data flow from
ingest side to query and streaming side

The IoT data-hub platform that has been used is
a simplified version of Obelisk [71] that has the ad-
vantage of being based on widely used open-source
packages, which made the implementation of this test
version straight-forward. The event-based microservice
architecture of the IoT data-hub is presented in Fig-
ure 9. It relies on Kafka as central message broker.
The Ingest API expects as request body a JavaScript
Object Notation (JSON) array representing a batch
of 1..n metric data events. Once the entire request is
received, it splits the array into ‘n’ individual metric
data events and publishes those to the metrics.events
Kafka topic. The Sink Service as well as the Scope
Streamer Service are both subscribers of this topic and
consequently consume the queued messages. As they
are part of two distinct consumer groups they both re-
ceive and process messages at their own pace. The Sink
Service accumulates those individual metric events and
performs a batch write to the Time Series DataBase

(TSDB) when one of the two following conditions is
met: the last batch write did happen ‘x’ milliseconds
ago or the amount of buffered events equals to ‘y’. Both
‘x’ and ‘y’ are configurable parameters of the Sink Ser-
vice. The Scope Streamer Service also consumes those
individual metric events and, based on their respec-
tive scope[7], forwards them to the appropriate topic:
one topic being defined per scope (metrics.events.scope
where ‘scope’ is the scope name). When a client appli-
cation is willing to consume those streamed events, it
calls the Streaming API which continuously returns
the metric events it gets from the metrics.events.scope
topic as they arrive. Lastly, the Query API allows for
the retrieval of historical data (with filtering and pag-
ination mechanisms) that it fetches from the TSDB.

4.3.2 Performance evaluation
The test is conducted on a K8s v1.23 cluster with 7
nodes. The nodes are running Ubuntu 18.04.6 LTS and
are equipped with 2 Quad core Intel E5520 (2.2GHz)
CPUs, 12GB of RAM, a hard disk of 160GB and a
gigabit network interface. Node0 is the Master Node
and hosts the K8s Control PLane while Node1..6 are
Worker Nodes and consequently are available for appli-
cation hosting. To ease the interpretation of the results
both the metrics.events and the metrics.events.test
Kafka topics are configured with the number of par-
titions and the replication factor equal to 1 and thus
are exclusively hosted on Kafka Broker 0 and 2 respec-
tively. Messages are being emitted every second from
25 simulated client devices on the ‘test’ scope with the
content described in Listing 1.

Listing 1 JSON formatted event sent by devices to the IoT
Data-Hub platform

1 {
2 "device": deviceID ,
3 "timestamp": timestampMillis ,
4 "scope": "test",
5 "metric": "temperature",
6 "value": measuredTemp ,
7 "location": [3.733333,51.049999],
8 "elevation": 0.0
9 }

[7]Data isolation is internally ensured through the con-
cept of scopes which represent logical data sets with
configurable perimeter. A scope can be understood as a
labelling mechanism aiming at isolating data between
different contexts of use. Data access APIs for data in-
gestion, querying and streaming all require the scope
to be mentioned.

Bracke et al. Page 20 of 27

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

Table 5 indicates the hosting node prior to and after
the rescheduling. Infrastructure pods (the TSDB and
the Kafka Broker 0..2 instances) being flagged as not
reschedulable, remain on their initial node. The API
and Service pods, all initially hosted on Node1, on the
contrary have been flagged as reschedulable and are
re-assigned accordingly:

• The Ingest API is moved to Node2, where Kafka
Broker 0 is running, since this broker instance is
hosting the metrics.events Kafka topic to which
the Ingest API is publishing all entering metric
events.

• The Sink Service is moved to Node5, where the
TSDB instance is running. Each API and Service
in the chain adding some technical extra informa-
tion to messages (timestamps, podID, etc.), those
messages get thus heavier leaving a pod than en-
tering it; for a given amount of messages, the
Sink Service consequently sends more bytes to the
TSDB than it receives from the Kafka Broker 0
and is therefore assigned to Node5 rather than
Node2.

• The Query API fetching data from the TSDB, it
is moved to Node5, where the TSDB instance is
running.

• The Scope Streamer Service is moved to Node4
along with Kafka Broker 2 that hosts the met-
rics.events.test topic. As previously stated, as
each intermediary Service or API adds some ad-
ditional technical information to all events it pro-
cesses, the Scope Streamer Service sends more
bytes to the metrics.events.test topic than it re-
ceives from the metrics.events topic. Importantly
though, if another scope would have been used in
parallel by another set of devices, and if the re-
lated topic of that other scope would be hosted
on another broker, then the Scope Streamer Ser-
vice would most likely have been moved to Node2
along with Kafka Broker 0 that hosts the met-
rics.events topic since the sum of bytes for both
scopes would be higher than each individual one.

• The Streaming API is moved to Node 4 where the
metrics.events.test topic is hosted (on the Kafka
Broker 2) as the developed client application only
consumes events from the ‘test’ scope.

The rescheduling control loop took all in all 1820 mil-
liseconds with 725 milliseconds for the Current Context
Modeler to build the cluster context composed of 67
pods running on 7 nodes, 128 milliseconds for the New
Context Generator to compute the best possible con-
text with the SA algorithm, instantly confirms that
the gain is sufficient (0 millisecond for the Decision
Maker) and finally 967 milliseconds for the Patcher to
request the K8s scheduler to reschedule the 5 pods.

Table 5 The Pod to Node assignation before and after
rescheduling for the IoT Data-Hub use-case

Pod Is reschedu-
lable?

Node before
rescheduling

Node after
rescheduling

TSDB NO 5 5
Kafka Broker 0 NO 2 2
Kafka Broker 1 NO 3 3
Kafka Broker 2 NO 4 4
Ingest API YES 1 2
Sink Svc YES 1 5
Query API YES 1 5
Scope Streamer Svc YES 1 4
Streaming API YES 1 4

Lastly, Figure 10 illustrates the service time evolution
before, during and after the pods rescheduling. This
detailed analysis focuses solely on the streaming data
flow. More specifically :

• The i2r labelled sub-chart represents the evolu-
tion of the One-Way Delay (OWD) spent between
the publication by the Ingest API of an event on
the metrics.events Kafka topic and its reception
by the Scope Streamer Service. Table 6 indicates
the averaged OWD in milliseconds for this first
link before, during and after the rescheduling. An
average improvement of the OWD by 30.2% is ob-
served for this first link.

• The r2s labelled sub-chart represents the evolu-
tion of the OWD spent between the publication
by the Scope Streamer Service of an event on the
metrics.events.test Kafka topic and its reception
by the Streaming API. Table 6 indicates the av-
eraged OWD in milliseconds for this second link
before, during and after the rescheduling. An av-
erage improvement of the OWD by 15.6% is ob-
served for this second link.

• The e2e labelled sub-chart represents the evolu-
tion of the end-to-end service time spent within
the platform, i.e. between the reception of an
event by the Ingest API and the emission of the
same event by the Streaming API to the con-
suming application. Table 6 indicates the aver-
aged service time in milliseconds for the end-to-
end service delivery before, during and after the
rescheduling. Noticeably, an average improvement
by 21.6% is observed.

If quite promising, this overall improvement remains
however to temper with the impact the rescheduling
generates when moving pods from one node to the
other. Indeed, during the 23 seconds period of effective
rescheduling, the end-to-end network latency peaks at
4 seconds for some events and exhibits an overall av-
erage of 507.54 milliseconds, two orders of magnitude

Bracke et al. Page 21 of 27

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

Table 6 Evolution of the average OWD and end-to-end service time before, during and after the rescheduling for the IoT Data-Hub
use-case

Label From To Avg_before Avg_during Avg_after Improvement
i2r Ingest_out ScopeStreamer_in 2.157ms 7.171ms 1.506ms 30.2%
r2s ScopeStreamer_out Streaming_in 2.159ms 498.907ms 1.823ms 15.6%
e2e Ingest_in Streaming_out 4.664ms 507.539ms 3.655ms 21.6%

Figure 10 Evolution of the OWD and its impact on the
end-to-end service time before, during and after the
rescheduling for the IoT Data-Hub use-case

higher than observed in stable situation. This is mainly
caused by the (re-)connection of Kafka clients to the
broker being no lightweight operation.

4.4 Second validation use-case : a web-based
e-commerce app

The second use-case is based on the so called ‘On-
line Boutique’, a cloud-first microservices demo appli-
cation developed and used by Google to demonstrate
use of technologies like K8s/GKE, Istio, Stackdriver,
gRPC and OpenCensus. This application works on
any K8s/GKE cluster. It’s easy to deploy with little
to no configuration. The application is a web-based e-
commerce app where users can browse items, add them
to the cart, and purchase them [72]. The web-based

architecture of this use-case usefully complements the
events-based architecture of the first use-case.

4.4.1 Architecture of the Online Boutique
Figure 11 illustrates the architecture of the ‘Online
Boutique’. Unlike the previous use-case, the services
here do not communicate through a Message Broker
but rather through direct HTTP calls. Furthermore,
there are more services and interactions among them.

Figure 11 Architecture diagram of the web-based e-commerce
‘Online Boutique’ app

The components constituting the ‘Online Boutique’
are hereafter briefly introduced:

• The frontend service exposes a HTTP server to
serve the website. It does not require signup/login
and generates session IDs for all users automati-
cally.

• The cart service stores and retrieves the user’s
shopping cart into/from the Redis cache database.

• The Redis cache database stores cart data.
• The productcatalog service provides the list of

products as well as individual product details.
• The currency service converts one money amount

to another currency. It uses real values fetched
from European Central Bank.

• The payment service charges the given credit card
info (mock) with the given amount and returns a
transaction ID.

• The shipping service gives shipping cost estimates
based on the shopping cart and ships items to the
given address (mock).

• The email service sends users an order confirma-
tion email (mock).

Bracke et al. Page 22 of 27

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

• The checkout service retrieves user cart, prepares
order and orchestrates the payment, shipping and
the email notification.

• The recommendation service recommends other
products based on the cart content.

• The ad service provides text ads based on given
context words.

• The loadgenerator service continuously sends re-
quests imitating realistic user shopping flows to
the frontend service.

4.4.2 Performance evaluation
The test has been conducted on the same cluster than
the one used for the first use-case (see subsection
4.3.2). The loadgenerator service has been rewritten
to better accommodate the logging needs of the test
as well as to allow for a more fine-grained control of
the browsing script that now simulates 2 users end-
lessly looping on this scenario:

• Access the ‘Home page’ of the ‘Online Boutique’
by means of a HTTP GET call to the / URI of the
frontend service and hold the returned session-id
cookie.

• Set the currency to be used for the forthcoming
transactions by means of a HTTP POST call to
the /setCurrency URI of the frontend service with
the session-id cookie embedded in the header and
the selected currency as parameter.

• Repeat three times:
– Access the product page of a randomly

selected product by means of a HTTP
GET call to the /products/{product-id} URN
of the frontend service with the session-
id cookie embedded in the header. The
{product-id} is the identifier of the selected
product.

– Add 0<‘Q’<6 occurrences of the product to
the cart by means of a HTTP POST call to
the /cart URI of the frontend service with
the session-id cookie embedded in the header
and the selected product and quantity ‘Q’ as
parameters.

• Finally, book the order by means of a HTTP
POST call to the /cart/checkout URI of the fron-
tend service with the session-id cookie embedded
in the header and the client details as parame-
ters. The client details consist of an email address,
a physical address (street and number, zip code,
city, state, country) and the credit card details
(number, expiration month, expiration year and
CVV).

Every second, both simulated users execute the next
call in the sequence. Both users are initially shifted by
500ms.

Table 7 The Pod to Node assignation before and after
rescheduling for the ‘Online Boutique’ use-case

Pod Is reschedu-
lable?

Node before
rescheduling

Node after
rescheduling

RedisCache NO 6 6
Cart Svc YES 3 6
LoadGenerator NO 2 2
Frontend YES 6 2
Checkout Svc YES 3 2
Payment Svc YES 5 2
Email Svc YES 5 2
Recommendation Svc YES 4 2
Ad Svc YES 5 2
ProductCatalog Svc YES 4 2
Shipping Svc YES 3 2
Currency Svc YES 6 2

Table 7 indicates the hosting node prior to and after
the rescheduling. The Redis cache infrastructure pod
being flagged as not reschedulable, remains on its ini-
tial node. Similarly, the LoadGenerator pod has also
been flagged as not reschedulable and consequently
also remains on its initial node. The remaining 10 pods
are re-assigned accordingly:

• The cart service is moved to Node6, where the
Redis cache pod resides.

• The frontend service is moved from Node6 to
Node2, hosting the LoadGenerator service. The
minimization of the cost function progressively
attracting all the 8 other reschedulable pods to-
wards that same node.

The rescheduling control loop took all in all 3176 mil-
liseconds with 734 milliseconds for the Current Context
Modeler to build the cluster context composed of 74
pods running on 7 nodes, 194 milliseconds for the New
Context Generator to compute the best possible con-
text with the SA algorithm, instantly confirms that
the gain is sufficient (0 millisecond for the Decision
Maker) and finally 2248 milliseconds for the Patcher to
request the rescheduling of the 10 pods. Interestingly,
the actual pod rescheduling step explains most of the
difference with the first use-case where the Patcher
needed 967 milliseconds for 5 pods to be reassigned.
From this, it can be deducted that approximately 200
milliseconds are required per single patching request.

Table 8 Evolution of the average service time before, during and
after the rescheduling for the ‘Online Boutique’ use-case

Label Avg_before Avg_during Avg_after Improvement
/ 22.261ms 31.684ms 21.779ms 2.2%

/setCurrency 0.953ms 0.917ms 0.644ms 32.4%
/product 16.856ms 26.291ms 14.687ms 12.9%

/cart 4.514ms 7.436ms 3.661ms 18.9%
/cart/checkout 58.844ms 74.167ms 49.653ms 15.6%

e2e_xp 147.582ms 1708.0ms 128.286ms 13.1%

Bracke et al. Page 23 of 27

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

Figure 12 Evolution of the service time before, during and after the rescheduling for the ‘Online Boutique’ use-case

Lastly, Figure 12 illustrates the service time evolu-
tion before, during and after the pods rescheduling.
More specifically :

• The ‘/’ labelled sub-chart represents the evolu-
tion of the service time when accessing the ‘Home
page’ of the ‘Online Boutique’ all along the ex-
periment. Table 8 indicates the average service
time in milliseconds before, during and after the
rescheduling. An improvement of the average ser-
vice time by 2.2% is observed. This modest im-
provement is mainly explained by the fact the
frontend service locally hosts the home web-page
and, consequently, does not need to call any other
service.

• The ‘/setCurrency’ labelled sub-chart repre-
sents the evolution of the service time when set-
ting the currency to be used for the forthcoming
transactions. An improvement of the average ser-
vice time by 32.4% is observed, as mentioned in
Table 8. This optimistic result must however be
tempered as this service runs extremely fast ex-

hibiting a service time of only 0, 1 or 2 millisec-
onds before and during the rescheduling. After the
rescheduling, the service replies in 0 or 1 millisec-
ond only. The time-granularity used for the test
limits thus the interpretation of this specific re-
sult; nanoseconds precision however would not be
justified for all the other services.

• The ‘/product’ labelled sub-chart represents the
evolution of the service time when browsing a spe-
cific product page. An improvement of the average
service time by 12.9% is observed, as mentioned
in Table 8.

• The ‘/cart’ labelled sub-chart represents the evo-
lution of the service time when adding a certain
quantity of a product to the cart. An improvement
of the average service time by 18.9% is observed,
as mentioned in Table 8.

• The ‘/cart/checkout’ labelled sub-chart repre-
sents the evolution of the service time spent at
order checkout. An improvement of the average

Bracke et al. Page 24 of 27

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

service time by 15.6% is observed, as mentioned
in Table 8.

• Lastly, the ‘e2e_xp’ labelled sub-chart repre-
sents the evolution of the service time spent for
the end-to-end customer journey in the ‘Online
Boutique’ (cfr. loadgenerator scenario described
hereinabove). An improvement of the average
end-to-end service time by 13.1% is observed, as
mentioned in Table 8.

Overall, the impact the rescheduling generates when
moving pods from one node to the other still exists
but is relatively less significant than it is for the first
use-case. Indeed, during the 12 seconds period of ef-
fective rescheduling, the e2e_xp end-to-end service
time peaks at 3677 milliseconds and exhibits an overall
average of 1708 milliseconds, one order of magnitude
higher than observed in stable situation.

5 Discussion and Future work
While successfully meeting the service time improve-
ment objective, the proposed dynamic rescheduling
system would benefit from the hereafter listed im-
provements and extensions:

• In order to reduce the negative impact of the
actual rescheduling action, different approaches
should be experimented, among which limiting
the number of containers that can be resched-
uled per iteration (possibly with a prioritisation
mechanism), increasing the delay between patch-
ing commands emission, etc.

• Constraints management should be extended
to also include K8s-specific concepts like taints
(other than NoSchedule, already covered), soft
(anti-) affinities (i.e. ‘preferences’), topology la-
bels (e.g. geographic regions and zones), etc.

• Network connectivity awareness represents an ad-
ditional direction for further investigation, since
it would allow to not only cover centralized cloud
clusters but also distributed clusters where the
quality of the network link between nodes can
not be assumed to be equal and constant. To this
end, instead of defining spqn as a binary variable in
equation 1 it could be defined as a decimal value
between 0.0 and 1.0 and would then be used as an
indication of the network latency between pods,
with 0.0 if containers ‘p’ and ‘q’ are both hosted
on server ‘n’ or if none of them is, else a relative
latency score. The worse the latency, the highest
the score.

• Multi-objective optimization would also greatly
improve the proposed system which, in its cur-
rent version, does not take resource saturation
(e.g. CPU throttling) into account. Concentrat-
ing containers on few servers may ultimately turn

counterproductive, rather a trade-off between net-
work delay optimization and fair load distribution
is intuitively desirable.

• Implementing the Reflective Learning compo-
nent would allow the analysis of the impact the
rescheduling decision has on the cluster over time
and to consequently adapt the parameters of the
Current Context Modeler, New Context Gener-
ator and Decision Maker components in order
to continuously improve the performance of the
rescheduling system. This would certainly justify
specific research on its own as isolating the impact
of a rescheduling decision on application service
time in volatile load context represents a certain
challenge.

6 Conclusion
This article proposes a portable dynamic reschedul-
ing system for container orchestration platforms that
aims at improving application service time by mini-
mizing network delay among containers. To this end,
a closed control loop system monitors not only re-
source consumption and availability but also container
inter-dependency in terms of application network traf-
fic. Periodically, the system assesses if alternative as-
signments may allow network traffic reduction. If the
best alternative sufficiently reduces it, containers are
reassigned accordingly. The constrained Quadratic As-
signment Problem of identifying the best alternative
is solved by a metaheuristic. To this end, the effec-
tiveness and efficiency of PSO and SA are compared
and also benchmarked against an ILP approach which
ensures optimum solution at the cost, though, of a
disqualifying execution time. Out of this performance
study, the SA metaheuristic is retained. The impact
of the proposed system on application service time is
evaluated and discussed by means of the cloud-based
IoT data-hub platform and the Online Boutique com-
plementary use-cases with an improvement of the end-
to-end service time of 21.6% and 13.1%, respectively.
Those promising results should, however, not be con-
sidered as the end of the story since various improve-
ments, subject to further work, have been identified
and are briefly introduced.

Acknowledgements
José Santos is funded by the Research Foundation Flanders (FWO), grant
number 1299323N.

Availability of data and materials
The datasets used and analysed during the current study are available from
the corresponding author on reasonable request.

Abbreviations

ACO Ant Colony Optimization. 6
API Application Programming Interface. 16–20

Bracke et al. Page 25 of 27

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

CNCF Cloud Native Computing Foundation. 15, 18
CPU Central Processing Unit. 1, 3–5, 9, 12, 15, 17, 19, 24
CVV Card Verification Value. 22

DPSO Discrete PSO. 8

FIFO First In, First Out. 2
FQDN Fully Qualified Domain Name. 17, 18

GAs Genetic Algorithms. 6
GKE Google Kubernetes Engine. 21
GRASP Greedy Randomized Adaptive Search Procedures. 6
gRPC Google Remote Procedure Calls. 21

HBMO Honey-Bees Mating Optimization. 6
HTTP Hypertext Transfer Protocol. 21, 22

I/O Input/Output. 1
ILP Integer Linear Programming. 1, 5, 12–14, 18, 24
ILS Iterated Local Search. 6
IoT Internet of Things. 1, 2, 19–21, 24
IP Internet Protocol. 17
IT Information Technology. 2

JDK Java Development Kit. 12
JFO Jumping Frogs Optimization. 8
JPSO Jumping Particle Swarm Optimization. 8
JSON JavaScript Object Notation. 19

K8s Kubernetes. 1–3, 14–19, 21, 24
KS Kubernetes Scheduler. 15, 16

LTS Long-Term Support. 12, 19

NP Non-deterministic Polynomial-time. 2, 5

OS Operating System. 1, 12
OWD One-Way Delay. 20, 21

PSO Particle Swarm Optimization. 1, 5–8, 10, 12–14, 18, 24
PVC Persistent Volume Claim. 16

QAP Quadratic Assignment Problem. 4, 24
QoS Quality-of-Service. 2–4

RAM Random-Access Memory. 1, 4, 5, 9, 12, 15, 17, 19

SA Simulated Annealing. 1, 5–8, 10, 12–15, 18, 20, 22, 24

TIARM Throttling and Interaction-aware Anticorrelated Rescheduling
for Microservices. 3, 4

TLS Transport Layer Security. 18
TS Tabu Search. 6
TSDB Time Series DataBase. 19, 20

URI Uniform Resource Identifier. 22
URN Uniform Resource Name. 22

VMC Virtual Machine Consolidation. 3
VNS Variable Neighborhood Search. 6

Declarations
Ethical Approval
Not applicable.

Funding
José Santos is funded by the Research Foundation Flanders (FWO), grant
number 1299323N.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
Vincent Bracke substantially contributed to the conception and design of
the work, to the acquisition, analysis and interpretation of data and to the
creation of new software used in the work. He drafted the work and
substantively revised it.
Gillis Werrebrouck substantially contributed to the design of the work, as
well as to the creation of new software used in the work. He drafted the
work.
José Santos and Tim Wauters substantially contributed to the analysis and
interpretation of data. They substantively revised the work.
Filip De Turck and Bruno Volckaert substantially contributed to the
conception of the work, as well as to the analysis and interpretation of
data. They drafted the work and substantively revised it.
All authors have approved the submitted version.

Authors biography
Vincent Bracke is a PhD researcher in the Department of Information
Technology (INTEC) at Ghent University, in collaboration with imec. He
obtained the master’s degree in Computer Science from Université
Catholique de Louvain (UCL), Belgium in 2006 and the master’s degree in
International Business and Management from ICHEC Brussels Management
School, Belgium in 2009. After several years in the private sector where he
held various IT management positions, he joined in 2018 the Internet and
Data Science Lab (IDLab), a research group of INTEC. His research
interests include scalable and reliable software systems for IoT applications
and autonomous optimization of distributed resources management.

Gillis Werrebrouck obtained a bachelor’s degree in Multimedia and
Communication Technology from Howest, Belgium in 2018 and a master’s
degree in Information Engineering Technology from Ghent University,
Belgium in 2021. After his master’s degree, he interned for the Customer
Engineering team at Amazon Web Services (AWS) in Berlin, Germany. In
December of 2021, he joined the Customer Engineering team at AWS full
time as Software Development Engineer. His work at AWS involves the
architectural design and end-to-end development of highly complex cloud
applications for prominent worldclass companies.

José Santos obtained his M.Sc. degree in Electrical and Computers
Engineering in July 2015 from the University of Porto, Portugal. Recently,
he completed his doctoral studies at Ghent University in April 2022. He is
currently a Postdoctoral Researcher in the Internet Technology and Data
Science Lab (IDLab) Research Group at Ghent University - imec, Belgium.
His research interests include Cloud and Fog Computing, IoT, Service
Function Chaining, and Reinforcement Learning. His work has been
published in more than 20 scientific publications. He received the PhD
Excellence Award from imec in 2022 and the Best Dissertation Award at
NOMS 2023 based on the research conducted during his PhD about
efficient orchestration strategies in Fog Computing.

Tim Wauters obtained his M.Sc. and PhD degrees in electro-technical
engineering from Ghent University in 2001 and 2007 respectively. He has
been working as a post-doctoral fellow of the F.W.O.-V. in the Department
of Information Technology (INTEC) at Ghent University, and is now also
active as a senior researcher at imec. His main research interests focus on
the design and management of networked services, covering multimedia
distribution, cybersecurity, big data and smart cities. His work has been
published in more than 160 scientific publications.

Filip De Turck leads the network and service management research group
at Ghent University, Belgium and imec. He (co-) authored over 750 peer
reviewed papers and his research interests include design of efficient
softwarized network and cloud systems. He is involved in several research
projects with industry and academia, served as chair of the IEEE Technical
Committee on Network Operations and Management (CNOM), and serves
as a steering committee member of the IM, NOMS, CNSM and NetSoft
conferences. Prof. Filip De Turck served as Editor-in-Chief of IEEE
Transactions on Network and Service Management (TNSM), was named an
IEEE Fellow in 2020, and received the IEEE ComSoc Dan Stokesberry
Award in 2021.

Bruno Volckaert is professor of advanced software engineering and secure
distributed systems in the Department of Information Technology at Ghent

Bracke et al. Page 26 of 27

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

University and imec’s IDLab group. His current research deals with reliable
and high performance distributed software for a.o. scalable data ingestion
and processing, scalable cybersecurity detection and mitigation
architectures and autonomous optimization of cloud-based applications. He
has worked on over 65 national and international research projects and is
author or co-author of more than 200 peer-reviewed papers published in
international journals and conference proceedings.

Author details
IDLab, Department of Information Technology, Ghent University - imec,
Technologiepark-Zwijnaarde 126, B-9052, Ghent, Belgium.

References
1. da Silva, V.G., Kirikova, M., Alksnis, G.: Containers for Virtualization:

An Overview. Applied Computer Systems 23(1), 21–27 (2018)
2. Docker. Docker, Inc.: Docker Website. https://www.docker.com.

[Online] (2022)
3. LXC/LXD. The Linux Foundation: LXC Website.

https://linuxcontainers.org. [Online] (2022)
4. Podman. Red Hat, Inc.: Podman Website. https://podman.io/.

[Online] (2022)
5. containerd. The Cloud Native Computing foundation: containerd

Website. https://containerd.io. [Online] (2022)
6. Mesos. The Apache Software Foundation: Mesos Website.

http://mesos.apache.org. [Online] (2022)
7. Docker. Docker, Inc.: DockerSwarm Website.

https://docs.docker.com/engine/swarm/. [Online] (2022)
8. Kubernetes. The Cloud Native Computing Foundation: Kubernetes

Website. https://kubernetes.io. [Online] (2022)
9. Flexera: RightScale 2019 State of the Cloud Report from Flexera.

Available at
https://resources.flexera.com/web/media/documents/
rightscale-2019-state-of-the-cloud-report-from-flexera.pdf
(2020/05/20) (2019)

10. Pinedo, M.L.: Scheduling, 5th edn., p. 670. Springer, New York, USA
(2016). doi:10.1007/978-3-319-26580-3

11. Bittencourt, L.F., Goldman, A., Madeira, E.R.M., da Fonseca, N.L.S.,
Sakellariou, R.: Scheduling in distributed systems: A cloud computing
perspective. Computer Science Review 30, 31–54 (2018).
doi:10.1016/j.cosrev.2018.08.002

12. Söylemez, M., Tekinerdogan, B., Tarhan, A.K.: Challenges and
solution directions of microservice architectures: A systematic
literature review. Applied Sciences (2022)

13. Beloglazov, A., Buyya, R.: Optimal online deterministic algorithms and
adaptive heuristics for energy and performance efficient dynamic
consolidation of virtual machines in cloud data centers. Concurrency
and Computation: Practice and Experience 24(13), 1397–1420 (2012).
doi:10.1002/cpe.1867

14. Mahdhi, T., Mezni, H.: A prediction-based vm consolidation approach
in iaas cloud data centers. Journal of Systems and Software 146,
263–285 (2018). doi:10.1016/j.jss.2018.09.083

15. Wang, J.V., Cheng, C.-T., Tse, C.K.: A thermal-aware vm
consolidation mechanism with outage avoidance. Software: Practice
and Experience 49(5), 906–920 (2019). doi:10.1002/spe.2680

16. Zhao, D., Mohamed, M., Ludwig, H.: Locality-aware scheduling for
containers in cloud computing. IEEE Transactions on Cloud
Computing 8(2), 635–646 (2020). doi:10.1109/TCC.2018.2794344

17. Filip, I.-D., Pop, F., Serbanescu, C., Choi, C.: Microservices scheduling
model over heterogeneous cloud-edge environments as support for iot
applications. IEEE Internet of Things Journal 5(4), 2672–2681 (2018).
doi:10.1109/JIOT.2018.2792940

18. Nanda, S., Hacker, T.J.: Racc: Resource-aware container consolidation
using a deep learning approach. In: Proceedings of the First Workshop
on Machine Learning for Computing Systems. MLCS’18. Association
for Computing Machinery, New York, NY, USA (2018).
doi:10.1145/3217871.3217876.
https://doi.org/10.1145/3217871.3217876

19. Wen, Z., Lin, T., Yang, R., Ji, S., Ranjan, R., Romanovsky, A., Lin, C.,
Xu, J.: Ga-par: Dependable microservice orchestration framework for
geo-distributed clouds. IEEE Transactions on Parallel and Distributed
Systems 31(1), 129–143 (2020). doi:10.1109/TPDS.2019.2929389

20. Guerrero, C., Lera, I., Juiz, C.: Resource optimization of container
orchestration: a case study in multi-cloud microservices-based
applications. The Journal of Supercomputing 74(7), 2956–2983 (2018)

21. Piraghaj, S.F., Dastjerdi, A.V., Calheiros, R.N., Buyya, R.: A
framework and algorithm for energy efficient container consolidation in
cloud data centers. In: 2015 IEEE International Conference on Data
Science and Data Intensive Systems, pp. 368–375 (2015).
doi:10.1109/DSDIS.2015.67

22. Rattihalli, G.: Exploring potential for resource request right-sizing via
estimation and container migration in apache mesos. In: 2018
IEEE/ACM International Conference on Utility and Cloud Computing
Companion (UCC Companion), pp. 59–64 (2018).
doi:10.1109/UCC-Companion.2018.00035

23. Bulej, L., Bureš, T., Hnětynka, P., Khalyeyev, D.: Self-adaptive k8s
cloud controller for time-sensitive applications. In: 2021 47th
Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), pp. 166–169 (2021).
doi:10.1109/SEAA53835.2021.00029

24. Rodriguez, M., Buyya, R.: Container orchestration with cost-efficient
autoscaling in cloud computing environments. In: Handbook of
Research on Multimedia Cyber Security, pp. 190–213. IGI global,
Melbourne, Australia (2020). doi:10.4018/978-1-7998-2701-6.ch010

25. Zhou, R., Li, Z., Wu, C.: An efficient online placement scheme for
cloud container clusters. IEEE Journal on Selected Areas in
Communications 37(5), 1046–1058 (2019).
doi:10.1109/JSAC.2019.2906745

26. Wojciechowski, L., Opasiak, K., Latusek, J., Wereski, M., Morales, V.,
Kim, T., Hong, M.: Netmarks: Network metrics-aware kubernetes
scheduler powered by service mesh. In: IEEE INFOCOM 2021 - IEEE
Conference on Computer Communications, pp. 1–9 (2021).
doi:10.1109/INFOCOM42981.2021.9488670

27. Marchese, A., Tomarchio, O.: Network-aware container placement in
cloud-edge kubernetes clusters. In: 2022 22nd IEEE International
Symposium on Cluster, Cloud and Internet Computing (CCGrid), pp.
859–865 (2022). doi:10.1109/CCGrid54584.2022.00102

28. Joseph, C.T., Chandrasekaran, K.: Nature-inspired resource
management and dynamic rescheduling of microservices in cloud
datacenters. Concurrency and Computation: Practice and Experience
33(17), 6290 (2021). doi:10.1002/cpe.6290.
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.6290

29. Koopmans, T.C., Beckmann, M.: Assignment problems and the
location of economic activities. Econometrica: journal of the
Econometric Society, 53–76 (1957)

30. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization:
Overview and conceptual comparison. ACM Comput. Surv. 35,
268–308 (2001). doi:10.1145/937503.937505

31. Glover, F.W.: Future paths for integer programming and links to
artificial intelligence. Comput. Oper. Res. 13, 533–549 (1986)

32. Baum, E.B.: Towards practical ‘neural’computation for combinatorial
optimization problems. In: AIP Conference Proceedings, vol. 151, pp.
53–58 (1986). American Institute of Physics

33. Mladenović, N., Hansen, P.: Variable neighborhood search. Computers
& Operations Research 24(11), 1097–1100 (1997).
doi:10.1016/S0305-0548(97)00031-2

34. Feo, T.A., Resende, M.G.C.: A probabilistic heuristic for a
computationally difficult set covering problem. Operations Research
Letters 8(2), 67–71 (1989). doi:10.1016/0167-6377(89)90002-3

35. Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by simulated
annealing. Science (New York, N.Y.) 220, 671–680 (1983).
doi:10.1126/science.220.4598.671

36. Cerny, V.: Thermodynamical approach to the traveling salesman
problem: An efficient simulation algorithm. Journal of Optimization
Theory and Applications 45, 41–51 (1985). doi:10.1007/BF00940812

37. Holland, J.: Adaptation in natural and artificial systems. University of
Michigan Press (1975)

38. Bozorg-Haddad, O., Afshar, A., Mariño, M.: Honey-bees mating
optimization (hbmo) algorithm: A new heuristic approach for water
resources optimization. Water Resources Management 20, 661–680
(2006). doi:10.1007/s11269-005-9001-3

39. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings

Bracke et al. Page 27 of 27

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

of ICNN’95 - International Conference on Neural Networks, vol. 4, pp.
1942–19484 (1995). doi:10.1109/ICNN.1995.488968

40. Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization. IEEE
Computational Intelligence Magazine 1(4), 28–39 (2006).
doi:10.1109/MCI.2006.329691

41. Koulamas, C., Antony, S., Jaen, R.: A survey of simulated annealing
applications to operations research problems. Omega 22(1), 41–56
(1994). doi:10.1016/0305-0483(94)90006-X

42. Connolly, D.T.: An improved annealing scheme for the qap. European
Journal of Operational Research 46(1), 93–100 (1990).
doi:10.1016/0377-2217(90)90301-Q

43. Fidanova, S.: Simulated annealing for grid scheduling problem. In:
IEEE John Vincent Atanasoff 2006 International Symposium on
Modern Computing (JVA’06), pp. 41–45 (2006).
doi:10.1109/JVA.2006.44

44. Sengupta, S., Basak, S., Peters, R.A.: Particle swarm optimization: A
survey of historical and recent developments with hybridization
perspectives. Machine Learning and Knowledge Extraction 1(1),
157–191 (2019). doi:10.3390/make1010010

45. Salman, A., Ahmad, I., Al-Madani, S.: Particle swarm optimization for
task assignment problem. Microprocessors and Microsystems 26(8),
363–371 (2002). doi:10.1016/S0141-9331(02)00053-4

46. Zhang, L., Chen, Y., Sun, R., Jing, S., Yang, B.: A task scheduling
algorithm based on pso for grid computing. International Journal of
Computational Intelligence Research 4(1), 37–43 (2008)

47. Bertsimas, D., Tsitsiklis, J.: Simulated Annealing. Statistical Science
8(1), 10–15 (1993). doi:10.1214/ss/1177011077

48. Ellison Geltman, K.: The Simulated Annealing Algorithm.
http://katrinaeg.com/simulated-annealing.html (2014)

49. rezaee jordehi, A., Jasni, J.: Particle swarm optimisation for discrete
optimisation problems: A review. Artificial Intelligence Review 43
(2014). doi:10.1007/s10462-012-9373-8

50. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: 1998
IEEE International Conference on Evolutionary Computation
Proceedings. IEEE World Congress on Computational Intelligence (Cat.
No.98TH8360), pp. 69–73 (1998). doi:10.1109/ICEC.1998.699146

51. Bansal, J.C., Singh, P.K., Saraswat, M., Verma, A., Jadon, S.S.,
Abraham, A.: Inertia weight strategies in particle swarm optimization.
In: 2011 Third World Congress on Nature and Biologically Inspired
Computing, pp. 633–640 (2011). doi:10.1109/NaBIC.2011.6089659

52. García, F., Moreno-Pérez, J.: Jumping frogs optimization: a new
swarm method for discrete optimization. Technical report, Grupo de
Computación Inteligente, Departamento de Estadística, I.O. y C.,
Instituto Universitario de Desarrollo Regional, University of La Laguna,
Tenerife, Spain (January 2008)

53. Balaji, S., Revathi, N.: A new approach for solving set covering
problem using jumping particle swarm optimization method. Natural
Computing 15, 503–517 (2015). doi:10.1007/s11047-015-9509-2

54. Gutiérrez, J., Landa-Silva, D., Moreno-Pérez, J.: Exploring feasible and
infeasible regions in the vehicle routing problem with time windows
using a multi-objective particle swarm optimization approach. In:
Proceedings of the International Workshop on Nature Inspired
Cooperatives Strategies for Optimization, NICSO, pp. 103–114 (2008).
doi:10.1007/978-3-642-03211-0_9

55. Consoli, S., Moreno-Pérez, J., Darby-Dowman, K., Mladenovic, N.:
Discrete particle swarm optimization for the minimum labelling steiner
tree problem. Natural Computing 9, 29–46 (2010).
doi:10.1007/s11047-009-9137-9

56. Hahn, D.: A Day in the Life of a Netflix Engineer.
https://youtu.be/-mL3zT1iIKw?t=931. AWS re:Invent 2015 - Las
Vegas - Accessed: 2022-07-08 (2015)

57. Vogels, W.: Real-time graph of microservice dependencies at
amazon.com in 2008.
https://twitter.com/Werner/status/741673514567143424. CTO @
Amazon - Accessed: 2022-07-08 (2008)

58. Tewolde, G.S., Hanna, D.M., Haskell, R.E.: Enhancing performance of
pso with automatic parameter tuning technique. In: 2009 IEEE Swarm
Intelligence Symposium, pp. 67–73 (2009).
doi:10.1109/SIS.2009.4937846

59. Park, M.-W., Kim, Y.-D.: A systematic procedure for setting
parameters in simulated annealing algorithms. Computers &

Operations Research 25(3), 207–217 (1998).
doi:10.1016/S0305-0548(97)00054-3

60. Santos, J., Wauters, T., Volckaert, B., De Turck, F.: Resource
provisioning in fog computing: From theory to practice †. Sensors 19,
2238 (2019). doi:10.3390/s19102238

61. SIGs, K.: Descheduler for Kubernetes.
https://github.com/kubernetes-sigs/descheduler. Accessed:
2022-09-19 (2022)

62. Wikipedia: Control theory.
https://en.wikipedia.org/wiki/Control_theory. Accessed:
2022-09-20 (2022)

63. Kubernetes: Kubernetes Controllers. https:
//kubernetes.io/docs/concepts/architecture/controller/.
Accessed: 2022-09-20 (2022)

64. pixielabs.ai: Pixie Overview.
https://docs.pixielabs.ai/about-pixie/what-is-pixie.
Accessed: 2022-09-22 (2022)

65. altexsoft.com: What is Data Hub: Purpose, Architecture Patterns, and
Existing Solutions Overview.
https://www.altexsoft.com/blog/data-hub/. Accessed: 2022-09-12
(2021)

66. cloudera.com: CLOUDERA DATA PLATFORM Data Hub, A
comprehensive cloud-based Edge-to-AI analytics service.
https://www.cloudera.com/products/data-hub.html. Accessed:
2022-09-12 (2022)

67. softwareag.com: Cumulocity IoT DataHub overview.
https://cumulocity.com/guides/datahub/datahub-overview/.
Accessed: 2022-09-12 (2022)

68. microsoft.com: Azure IoT Hub: Connect, monitor and manage billions
of IoT assets.
https://azure.microsoft.com/en-us/services/iot-hub/.
Accessed: 2022-09-12 (2022)

69. amazon.com: AWS IoT Core: Easily and securely connect devices to
the cloud. https://aws.amazon.com/iot-core/. Accessed:
2022-09-12 (2022)

70. google.com: Google Cloud IoT Core: A fully managed service to easily
and securely connect, manage, and ingest data from globally dispersed
devices. https://cloud.google.com/iot-core. Accessed: 2022-09-12
(2022)

71. Bracke, V., Sebrechts, M., Moons, B., Hoebeke, J., De Turck, F.,
Volckaert, B.: Design and evaluation of a scalable internet of things
backend for smart ports. Software: Practice and Experience 51(7),
1557–1579 (2021). doi:10.1002/spe.2973.
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2973

72. google.com: GoogleCloudPlatform microservices-demo: Online
Boutique.
https://github.com/GoogleCloudPlatform/microservices-demo.
Accessed: 2022-09-12 (2022)

