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Abstract—Owing to their increased carrier velocities, Dirac
materials have become a promising option for the integration
into nanoelectronics. However, without the aid of simulation
software that is able to accurately describe the behavior of
these materials, the fabrication of novel devices is extremely
challenging. In this work, we present a second-order accurate,
multiphysics solution method for the pertinent time-dependent
Maxwell-Dirac equations. The numerical stencils of the separate
equations are presented, leading to a novel stability criterion for
the minimally coupled Dirac equation. Afterwards, the second-
order accuracy is demonstrated via a numerical example, in
which a Dirac particle is represented as a wave packet.

Index Terms—Nanoelectronics, computational electromagne-
tics, relativistic quantum mechanics, finite-difference time-
domain methods, numerical stability

I. INTRODUCTION

Since the last decade, the dimensions of transistors are
reaching the physical limit. To tackle the troublesome quan-
tum effects that emerge at this scale, new research paths are
being explored. In performance-enhancing Dirac materials,
such as graphene, topological insulators, Weyl semimetals,
and Dirac semimetals, electrons obey Dirac-like Hamiltoni-
ans, allowing for high-mobility carrier transport. The cost-
effective design of novel nanoelectronic devices requires
modeling tools that incorporate the electromagnetic (EM),
quantum mechanical (QM), and relativistic effects appearing
in these Dirac materials.

Only a few schemes for the fully coupled (3+1)D Maxwell-
Dirac system have been published [1]–[5]. These methods
solve the wave equations for the EM potentials, while implic-
itly adopting the Lorenz gauge. The gauge condition is hence
not satisfied in general. Furthermore, these methods directly
determine the EM potentials a and ϕ, making the integration
with well-established EM solvers, which compute the fields e
and h, very tedious. Moreover, the Dirac spinor in [1]–[5]
is discretized on a regular grid, which inevitably leads to
the fermion doubling problem [6]. Thus, the development
of improved schemes that avoid these inadequacies is still
necessary.

We therefore propose a self-consistent solution method for
the time-dependent (3+1)D Maxwell-Dirac equations, similar
to the work in [7] where the Maxwell-Schrödinger system is
dealt with. The Dirac scheme presented in [8] is extended
in this paper to describe charged Dirac particles, and is
coupled with Yee’s finite-difference time-domain (FDTD)
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Fig. 1. Schematic depiction of the Yee cell, which contains the spatial
grid points on which the discretized EM quantities are defined. The electric
quantities e and ϕ are evaluated at half-integer time steps, and the magnetic
variables h and a are calculated at integer time steps.

method for Maxwell’s curl equations. This choice makes our
solver compatible with existing EM code. Furthermore, the
advocated scheme incorporates the discrete Lorenz gauge,
which is hence exactly satisfied. Finally, a concrete example
of a Dirac wave packet illustrates the overall second-order
accuracy of our method.

II. DISCRETIZATION OF THE MAXWELL-DIRAC SYSTEM

A. Maxwell’s Equations and the Lorenz Gauge

The EM curl equations for the electric field e and the
magnetic field h are discretized according to the FDTD
method, yielding
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The discrete calculus notation, proposed by W. C. Chew [9],
for so-called fore- and back-vectors is introduced, which
are indicated with a tilde and a hat, respectively. Here, µ0

and ϵ0 are the vacuum permeability and permittivity, respec-
tively, and ȷ̃ is the discrete current density. The notation
m = (i, j, k) and m+ 1/2 = (i+ 1/2, j + 1/2, k + 1/2) in-
dicates the spatial sites of the discrete vectors, where the
integers i, j and k denote the indices of the grid points in
each spatial dimension. The index n corresponds to the time
step. Fig. 1 displays the position of the fields on a unit cell,
referred to as the “Yee cell”.



The stability of the FDTD method is guaranteed if the time
step ∆t obeys
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where ∆l, l = x, y, z, are the grid steps in each spatial
dimension. This inequality is commonly referred to as the
Courant-Friedrichs-Lewy (CFL) condition and CN is the
Courant number.

The EM potentials a and ϕ are related to the EM fields
according to
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, (3a)
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and the gauge is fixed with the Lorenz gauge, defined as
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In the interest of maintaining second-order accuracy, we
discretize the vector potential a as a fore-vector at integer
temporal steps, while the discrete scalar potential ϕ is defined
at half-integer time steps. Their position on the grid is also
visualized in Fig. 1. Equations (3a) and (4) are then naturally
discretized as
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Note that these equations can be interpreted as an update
scheme for the EM potentials with the electric field acting as
a source term.

B. Dirac Equation

The minimally coupled Dirac equation is given by

ıh̄
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ψ =

[
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]
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where the complex four-component Dirac spinor

ψ(r, t) =


A(r, t)
B(r, t)
C(r, t)
D(r, t)


is a function of position r and time t. The constants ı, h̄, c, m,
and q denote the complex unit, the reduced Planck constant,
the speed of light, the particle mass, and the particle charge,
respectively. The 4×4 Dirac matrices α = (αx, αy, αz) and β
are defined in the traditional way.
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Fig. 2. The spatial grid points on which the discretized Dirac quantities are
defined. The A and B components are discretized at half-integer time steps,
while the C and D components are discretized at integer time steps.

1) Discretization: The discretization of the Dirac spinor
is performed in accordance with [8] and is summarized as
follows:
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A schematic representation of this stencil is shown in Fig. 2.
The components of the spinor are staggered in space and
time, such that the resulting discrete Dirac equation is second-
order accurate in space and time. Furthermore, this staggering
leads to less unknowns to solve for, a higher computational
efficiency, and reduces the amount of fermion doubling [6].

This scheme was initially constructed to solve the Dirac
equation by itself, but the modeling of nanoelectronic devices
requires the coupling with Maxwell’s equations. In [8], the
Peierls substitution method is proposed to introduced the vec-
tor potential. However, this method is only an approximation
and also involves computationally intensive line integrals. We
propose an alternative and generally valid approach based
on minimal coupling that leads to a novel update scheme
for the Dirac equation influenced by an EM field. Minimal
coupling introduces the extra terms −qcα · aψ and qϕψ
in (6), which we discretize as follows. First, the discrete
EM potentials ã and ϕ are interpolated to the correct grid
points in space and time. Then, for the term −qcα · aψ,
the spinor components are interpolated along the direction
corresponding to the vector component of a. This method
only uses central differences and interpolations, and therefore
retains second-order accuracy. The result is a coupled system
of eight discrete update equations, the first of which reads:
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where the discrete gauge covariant derivative D is defined as

Dl|ni,j,k = ∂l − ıqal|ni,j,kMl, for l = x, y, z,

and Mµ, µ = t, x, y, z, is the averaging operator in each of
the four space-time directions. A hat and a tilde again indicate
backward and forward operators, respectively. The remaining
seven update equations are determined analogously. The Dirac
spinor is then updated by leveraging these eight equations in
a leapfrog manner, i.e., first, A and B are advanced to time
step n+ 1/2, next, C and D to n+ 1.

2) Stability: In this section, the dispersion relation and the
stability condition of the minimally coupled Dirac scheme is
derived by means of a von Neumann stability analysis. To
this end, plane waves of the form

ψ(r, t) =


A
B
C
D

 e
ı
h̄ (p·r−Et),

with constant momentum p and energy E, are placed on
the stencil and inserted into the spinor update equations. The
resulting 4×4 matrix system, with unknowns A, B, C, and D,
only yields solutions if its determinant vanishes. Enforcing the
determinant to be zero gives the discrete dispersion relation
of the minimally coupled Dirac equation:[
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where we assumed for simplicity that a, ϕ and V are constant
in space and time. It is easily checked that in the continuum
limit, i.e., ∆µ → 0, this equation converges to the dispersion
relation of a relativistic particle in an electromagnetic field.
The requirement of the energy E being real combined with
the dispersion relation (8) restricts the size of the time step,
which—after some tedious algebra—leads to the following
stability condition:
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When the potentials are zero, it is readily verified that the
stability condition (9) for the advocated minimally coupled
Dirac scheme coincides with the condition found in [8], which
is exactly the CFL condition (2).
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with (5a)

Update C with
equivalent of (7)

Update D with
equivalent of (7)

n = 0

Interpolate a and ϕ

Interpolate Ψ

Interpolate a and ϕ

n→ n+ 1

Fig. 3. Flowchart of the proposed numerical scheme for the fully coupled
Maxwell-Dirac system. The line splits where the order of the updates is
irrelevant. These updates can hence be computed in parallel.

C. Fully Coupled Maxwell-Dirac System

In the previous section, the forward coupling from Maxwell
to Dirac was discussed. For the backward coupling, the
quantum current density,

jq = qcψ†αψ, (10)

is introduced as an electromagnetic current source in (1a). We
propose to discretize this quantity as a fore-vector at integer
time steps, i.e., ȷ̃q|nm. In order to employ (10) the spinor
components are again interpolated in space and time. A self-
consistent FDTD scheme of the fully coupled system is now
formed by combining (1), (5), the spinor update equations
(such as (7)), and (10). Fig. 3 displays the flowchart of this
novel method. Note again that the incorporation of (5b) into
the scheme ensures that the Lorenz gauge is exactly satisfied
on the discrete level.

Due to the nonlinear nature of the coupling, a similar
stability analysis of the Maxwell-Dirac scheme becomes
intractable. However, through many simulation runs it was



found that if both stability conditions, (2) and (9), are satis-
fied, the solution remains bounded.

III. COMPUTATIONAL EXPERIMENT:
SECOND-ORDER ACCURACY

In all aforementioned update equations, the continuous
operators are approximated solely by second-order accurate
differences and averages. Since both backward and forward
coupling preserve this property, the novel fully coupled
scheme is second-order accurate in space and time. This
property is demonstrated by performing a range of sim-
ulations while varying the space and time steps. First, a
reference simulation is run, consisting of a free particle
with mass m = 0.023me and charge q = −e, where me

and e are the electron mass and charge, respectively. The
simulation space is a 3D cube with side length 6.35 nm that
is divided into 200 cells in each direction, yielding spatial
step sizes ∆x = ∆y = ∆z = ∆ = 31.8 pm. The time
step is determined from (2) for a CN of 0.2, such that both
stability conditions, (2) and (9), are satisfied during the entire
simulation. The particle is represented as a wave packet with
a Gaussian momentum profile:

f(p) = e−
p2

2σ ,

in which σ = 2× 10−25 kgm s−1, while all other unknowns
are initially set to zero. The simulation domain is terminated
with homogeneous Dirichlet boundary conditions. Note that
no external sources are added, such that the appearing EM
fields are generated by the particle itself. After a simulation
time of tmax = 12.1 as, the program is halted. Next, this
procedure is repeated for higher values of ∆, while keeping
CN and tmax constant. For every simulation the root-mean-
square error (RMSE) with respect to the reference simulation
is calculated. To this end, the reference solution is interpolated
to match the grid points of the current simulation and the A
and B components are interpolated in time. The resulting
relations between the RMSEs and the grid step size ∆
are displayed in Fig. 4. It is observed that the presented
scheme for the Maxwell-Dirac equations is indeed second-
order accurate in both space and time, as the error scales
quadratically with the spatiotemporal step size ∆.

IV. CONCLUSION

In this work, we devised a novel method to solve the
fully coupled Maxwell-Dirac system, targeting the accurate,
multiphysics modeling of Dirac materials for integration into
nanoelectronic devices. The proposed solver relies mainly on
the electric and magnetic fields, rather than on the potentials,
and it correctly includes the Lorenz gauge on a discrete level,
unlike previous works. Minimal coupling was introduced to
incorporate the influence of EM fields on the Dirac equation.
By carefully discretizing the extra terms that emerged, a new
solution method for the minimally coupled Dirac equation
was constructed. Its stability was investigated by deriving the
dispersion relation using a von Neumann stability analysis.
To determine the EM fields emitted by the moving, charged
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Fig. 4. The root-mean-square error (RMSE) of all pertinent quantities
exhibits second-order convergence as a function of the space-time grid
step ∆.

Dirac particle, the quantum current density was inserted as a
current source in Ampère’s law, completing the self-consistent
scheme. The staggered nature of the discretization stencil
grants this fully coupled method its overall second-order
accuracy in both space and time, which is confirmed by a
computational experiment.

Since we used the conventional finite-difference scheme for
the EM fields as a starting point, the proposed method can be
seamlessly integrated into existing EM-FDTD frameworks.
It is possible to include, for instance, perfectly matched
layers (PMLs), total-field scattered-field sources (TFSF), di-
electric materials, and higher-order finite differences. These
paths are open for further exploration.
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[8] R. Hammer, W. Pötz, and A. Arnold, “Single-cone real-space finite
difference scheme for the time-dependent Dirac equation,” Journal of
Computational Physics, vol. 265, pp. 50–70, May 2014.

[9] W. C. Chew, “Electromagnetic theory on a lattice,” Journal of Applied
Physics, vol. 75, no. 10, pp. 4843–4850, May 1994.


	Introduction
	Discretization of the Maxwell-Dirac System
	Maxwell's Equations and the Lorenz Gauge
	Dirac Equation
	Discretization
	Stability

	Fully Coupled Maxwell-Dirac System

	Computational Experiment: Second-Order Accuracy
	Conclusion
	References

