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Abstract—In this contribution, we present a new approach
to fully characterize interconnects composed out of arbitrary
polygonal cross-sections and containing piecewise homogeneous
material parameters. The complex per-unit-of-length inductance
and capacitance matrices are obtained through the application of
pertinent Dirichlet-to-Neumann operators, which are computed
by means of an extended Fokas method, that are integrated
in a boundary integral equation approach. As the complete
RLGC-data of the structures under study is computed, we are
able to assess relevant properties such as signal attenuation and
cross-talk while the support for polygonal shapes allows for the
inclusion of manufacturing effects such as etching.

Index Terms—Dirichlet-to-Neumann operator, Fokas method,
interconnect modeling, per-unit-of-length parameters.

I. INTRODUCTION

The continuous drive for integration of electronic-based
capabilities into every single aspect of our information-
centered society has been advancing at breakneck speed
for the past few decades. The resulting miniaturization and
complexity of the integrated interconnect structures operating
at ever higher frequencies has led to an increased influence
of their losses and dispersion on the signal integrity of
the signals they carry. However, as the cross-section gen-
erally still remains smaller than the smallest wavelength, a
quasi-transverse magnetic (TM) electromagnetic analysis that
computes the frequency-dependent per unit-of-length (p.u.l.)
RLGC transmission line parameters remains an indispensable
tool to accurately determine the behavior of critical lines.
Moreover, as we require a description of the interconnect
from DC up to tens of GHz, the simulation method needs to
account for all electromagnetic phenomena in the employed
materials, such as the slow-wave effect, skin effect, current
crowding and conductor losses, that cover various, drastically
different operation regimes.

In the context of boundary integral equation (BIE) ap-
proaches, the difficulty in accurately capturing the exponential
field distributions due to the current crowding, surfaces in
the correct numerical integration of the Green’s function in
the conductive media, which requires special care [1]. Hence,
alternative approaches have been developed that mitigate the
issue by replacing the conductive medium by the background
material and then applying the appropriate boundary condi-
tions, ranging from approximate, local surface impedances [2]
to exact, global relations such as the differential surface ad-
mittance (DSA) operator [3]. In recent work [4], we proposed
a novel technique to compute this operator, which no longer
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Figure 1. General representation of a multiconductor transmission line’s
cross-section including dielectrics and signal and reference conductors.

relied on the eigenmodes of the shapes such as circles [5] or
triangles [6], but instead utilizes the Fokas method or unified
transform [7] to find the DSA matrix for any convex polygons
and allows for combined magnetic and dielectric contrast.

In this contribution, we extend the work in [4] to compute
not only the complex p.u.l. inductance but the complex p.u.l.
capacitance as well. To compute this missing half of the
RLGC-parameters, we modify the Fokas-based computation
of the DSA operator to construct a dedicated Dirichlet-to-
Neumann (DtN) operator for the differential equation gov-
erning the capacitance problem. Combined, these two calcu-
lation methods enable us to fully assess signal integrity (SI)
performance of non-ideal interconnects, including a strongly
developed skin effect. Moreover, we show that magnetic
materials, which are nowadays emerging in more and more
on-chip applications can also be included in our method.

II. FORMULATION OF THE METHOD

Assume a quasi-TM, time-harmonic configuration with an
ejωt dependency. Furthermore, consider the general represen-
tation of a multiconductor transmission line’s cross-section
shown in Fig. 1. The geometry consists of arbitrary polygo-
nal elements Sn embedded in a homogeneous background
medium with permittivity ϵe and permeability µe. Each
polygonal element represents a signal conductor, reference
conductor or (lossy) dielectric, all characterized by a set of
material parameters (ϵi, µi, σi).

In [4], the procedure to compute the p.u.l. R and L matrix
is outlined in full detail and for the sake of brevity it will not
be repeated here. Instead, we turn our attention directly to
the computation of the p.u.l. capacitance C and p.u.l. conduc-
tance G matrices by solving the relevant complex capacitance
problem. Thereto, we extend the approach developed for
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Figure 2. Geometry of an arbitrary polygonal element, illustrating the
necessary definitions for the Fokas-based derivation of the DtN operator.

rectangular cross-sections in [8] to support polygonal shapes
by including a Fokas-based global relation.

We start by replacing all dielectric objects by the back-
ground medium through introduction of the pertinent contrast
surface charge density defined as ρeq = −(ϵ − ϵe)en, with
en the outward pointing normal electric field. Following the
approach detailed in [8], we approximate en by −∂nϕ and
by introducing the DtN operator D, which couples ϕ and its
normal derivative on the boundary of the replaced medium,
we rewrite the previously established relation as

ρeq = (ϵ− ϵe)Dϕ = D′ϕ, (1)

where we will determine D by means of a Fokas method as
detailed further on in this section. These charge densities in
turn induce a potential ϕ, given by

ϕ (r) = − 1

ϵ0

∮
C
ρeq (r

′)G (r, r′) dc (r′) , (2)

with G the (static) Green’s function of the governing Laplace
equation ∇2ϕ = 0.

Discretizing (2) for both dielectrics (subindex d) and con-
ductors (subindex c) and (1) for the dielectric elements by
means of a Galerkin approach with pulse basis functions,
results in the following matrix equation(

Acc AcdΓ
−1

dd D
′

Adc AddΓ
−1

dd D
′
− Γdd

)(
ρc
ϕd

)
=

(
Γccϕc
0

)
, (3)

with the (sub)matrices Axx the pertinent parts of the dis-
cretized integral equation (2), D the matrix equivalent of
D and Γxx the Gramian matrix of the pulse basis functions.
The N ×N complex capacitance matrix C +G/jω can now
be determined by exciting each conductor’s ϕc with a unit
potential in turn while keeping the others’ equal to zero and
integrating the resulting charges computed through (3).

The main difficulty remains with the construction of D or
its discrete equivalent D, for which we adopt an approach
similar to the one employed in [4], which constructs the
(differential) DtN operator for the Helmholtz equation. Here,
however, we require the DtN operator for the Laplace equa-
tion that governs the current capacitance problem.

Consider the arbitrary polygon illustrated in Fig. 2. On
its boundary, which we define using the complex variable
ζ = x + jy, we invoke Green’s second identity with the
unknown ϕ and the known particular solution of the Laplace

equation ∇2
xyv = 0, viz., v = exp (−jλζ), to obtain the

global relation [7]:∮
C

e−jλζ

(
λϕ dζ +

∂ϕ

∂n
dc

)
= 0. (4)

Note that the other solution v̆ = exp
(
jλ̄ζ̄
)
, with ·̄ the

complex conjugate, results in an alternative, but equally valid
global relation that also has to be considered to acquire
the complete solution. Nevertheless, as the remainder of the
procedure is completely analogous and for brevity, we will
proceed with (4) only.

The first step in discretizing this continuous relation con-
sists of the projection of the unknowns ϕ and ∂nϕ for each of
the M sides of the polygon onto P Legendre polynomials Pp:{

ϕm

∂nϕm

}
=

P−1∑
p=0

{
Cm

p

Dm
p

}
Pp(t), (5)

Substituting (5) into (4) yields, after some tedious calcula-
tions:

M−1∑
m=0

e−jλmm

√
j2πλhm

λhm
·

P−1∑
p=0

Ip+1/2(−jλhm)
(
λhmCm

p + |hm|Dm
p

)
= 0, (6)

with Iν (·) the modified Bessel function of the first kind. By
selecting Λ well-chosen spectral collocation points λ ∈ C [9]:

λ = − l

hm
, l ∈ {1, 2, . . . ,Λ}, (7)

an overdetermined system is constructed out of (6) that can be
solved for the coefficients Cm

p and Dm
p , resulting in the DtN

matrix D
∗
. As a final step, this discretized operator in the

Legendre domain is transformed to the sought-after matrix
D by means of analytically computed projection matrices
between the polynomial basis and the local pulse functions.

III. APPLICATIONS

We first consider a pair of coupled inverted embedded
microstrip (IEM) lines with trapezoidal cross-section, shown
in Fig. 3. The top ground plane and the two signal lines are
made out of aluminum (σ = 3.77·107 S/m) while the substrate
supporting the lines is SiO2 (ϵr = 3.9, tan δ = 0.001), which
in turn is bounded by a thick silicon slab with ϵr = 11.7 and
σ = 10S/m resting on a PEC ground plane.

We now compute the 2×2 RLGC matrices and compare to
a reference result [10], which uses a traditional DtN approach.
Figure 4 shows the relevant elements of the R and L matrices
while the unique entries of the G and C matrices are displayed
in Fig. 5. All results show excellent agreement while the slight
discrepancy in the inductance values between 10MHz and
100MHz can be attributed to the different approaches.

As a second example, we analyze a variation on the
multiconductor transmission line (MTL) considered in [4] by
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Figure 3. A pair of aluminum (σ = 3.77 · 107 S/m) trapezoidal coupled
IEM lines embedded in a silicon dioxide layer (ϵr = 3.9, tan δ = 0.001),
on top of a silicon substrate (ϵr = 11.7, σ = 10 S/m), over an infinite PEC
ground plane. All dimensions are given in µm.
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Figure 4. P.u.l. resistance and inductance matrix elements as a function of
frequency for the IEM structure of Fig. 3.

introducing two additional lines and adding a lossy dielectric
substrate (ϵr = 4, tan δ = 0.01). The modified geometry,
shown in Fig. 6, consists of five trapezoidal lines with
a conductivity of 3.57 · 107 S/m. We investigate cross-talk
for three different variations: the default isosceles trapezoid,
an inverted trapezoid (bottom length: 0.75 µm; top length:
1.5 µm; height: 1 µm) and a rectangle with a width of 1.5 µm
and height of 1 µm. The broadband RLGC parameters are
calculated for these three configurations and promptly utilized
to compute the scattering parameters of a 2mm long trans-
mission line. The near-end ports are numbered as indicated
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Figure 5. P.u.l. conductance and capacitance matrix elements as a function
of frequency for the IEM structure of Fig. 3.
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Figure 6. Multiconductor transmission line (σ = 3.57 · 107 S/m) with five
trapezoidal signal lines, a finite rectangular reference conductor and a lossy
dielectric substrate (ϵr = 4, tan δ = 0.01). All annotated dimensions are
in µm.

in Fig. 6, with the corresponding far-end port bearing the
near-end number plus five.

We consider line 1 to be the generator or aggressor line
in this scenario and look at its S-parameters first in Fig. 7.
The reflection coefficient S11 shows good matching along
the entire broad frequency range. The trapezoid and its
inverted version exhibit the same low-frequency value for
this parameter due to them having the same resistance which
changes around 10GHz once the skin and proximity effect
with the ground plane and the surrounding conductors start
to play up. The DC resistance of the rectangular cross-
section is, as expected, lower. The transmission of the primary
line S61 shows similar behavior, viz., the two trapezoids
express the same value until higher frequency effects in the
conductors make the response split. Around the same point,
the transmission starts to drop drastically regardless of the
conductors’ shape due to the skin effect and stronger coupling
to the surrounding lines.
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Figure 7. Reflection S11 (full) and transmission S61 (dashed) on the middle
line of Fig. 6 for the three different conductor shapes.

In Fig. 8, we examine the near-end cross-talk, i.e., the
signal picked up by victim lines 2 and 4 at the side of the
generator. Some well-known results from established analysis
of cross-talk on MTLs is clearly captured in these results.
At the lowest frequencies the near-end cross-talk levels out
due to common-impedance coupling as the return current in
the ground plane experiences joule losses. Further on, the
S-parameters increase rapidly once coupling between the lines
picks up as predicted by the so-called inductive-capacitive
coupling model. At the highest frequencies, wave effects,
under the form of interplay between the several quasi-TM
modes, are observed. The influence of the distance to the
driving line is immediately clear by observing the difference



between S21 and S41 and the shape of the conductors influ-
ences the overall level of the near-end cross-talk.
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Figure 8. Near-end cross-talk on line 2 S21 (full) and line 4 S41 (dashed)
with line 1 as generator for the MTL of Fig. 6 for three conductor shapes.

The effect of the agressor line on the same two victim
lines is further characterized by S71 and S91, respectively, as
plotted in Fig. 9. This far-end cross-talk depends much more
on the conductor’s shape than any of the other examined
quantities. The coupling to the closest line, i.e., line 2, in
particular seems quite sensitive to the conductor’s shape
around 10Gz, where the rectangular and trapezoidal cross-
sections exhibit a sharp drop in the cross-talk which is barely
present for the inverted trapezoid.
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Figure 9. Far-end cross-talk on line 2, S71, (full) and line 4, S91, (dashed)
with line 1 as generator for the MTL of Fig. 6 for three conductor shapes.

As a final example, we replace the non-magnetic metals
in Fig. 6 by a material with a relative permeability of µr = 10,
preserving the electrical conductivity. Figure 10 contains a
selection of the scattering parameters, viz., the reflection
coefficient S11, and near- and far-end cross talk on line 4, S41

and S91, respectively, for the original conductor (shown in full
lines) and the magnetic alternative (drawn with dashed lines).
Some interesting phenomena stand out immediately. The S11

parameters exhibits a bulge around 10GHz for magnetic
conductors. This behavior shows remarkable resemblance to
the difference between a single real pole and a complex
pair in transfer function analysis, which can be attributed to
the interplay of the capacitance and inductance of the line;
the latter being much more prominent in the presence of
the magnetic material. The other parameter that is heavily

influenced by the magnetic contrast is the far-end cross-talk
which is severely reduced.
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Figure 10. Reflection at primary line, S11, near-end cross-talk on line 4, S41,
and far-end cross-talk on line 4, S91 for the trapezoidal MTL of Fig. 6 for
non-magnetic metal (full) and magnetic conductors with µr = 10 (dashed).

IV. CONCLUSION

This contribution presents a comprehensive modeling tech-
nique to compute the full RLGC per-unit-of-length parameters
of interconnects with arbitrary polygonal cross-sections and
generic, piecewise homogeneous materials through applica-
tion of the numerically fast Fokas method. Consequently,
the framework is applicable to the analysis of state-of-the-
art interconnect structures, which exhibit intricate geometries
due to design and manufacturing effects. The inclusion of
magnetic materials in emerging interconnect design is also
accomplished by the advocated method. The novel method is
successfully applied to the analysis of cross-talk in a multi-
conductor line with varying shapes and magnetic properties.
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