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Simple Summary: Blockade of the programmed cell death protein 1 (PD-1) receptor is an established
standard-of-care treatment option that significantly improves survival of patients with advanced
melanoma. While a smaller proportion of the population can derive a durable remission (even cure),
most patients immediately or eventually develop disease progression. Prediction of upfront resistance
to therapy as well as durable responders based on biomarkers that correlate with survival is key in
selecting an optimal personalised treatment plan. Previously we reported that total metabolic tumour
volume (TMTV) determined by whole-body [18F]FDG PET/CT is a baseline predictive biomarker
that deserves further investigation. A fully automated method is proposed for feature extraction
from whole-body [18F]FDG PET/CT. The automatically and manually derived parameters produced
similar results in both the feature analysis and survival prediction. This automation can offer a fast,
objective and reproducible assessment of TMTV and facilitate further exploration and validation of
predictive models on larger datasets.

Abstract: Background: Antibodies that inhibit the programmed cell death protein 1 (PD-1) receptor
offer a significant survival benefit, potentially cure (i.e., durable disease-free survival following
treatment discontinuation), a substantial proportion of patients with advanced melanoma. Most
patients however fail to respond to such treatment or acquire resistance. Previously, we reported
that baseline total metabolic tumour volume (TMTV) determined by whole-body [18F]FDG PET/CT
was independently correlated with survival and able to predict the futility of treatment. Manual
delineation of [18F]FDG-avid lesions is however labour intensive and not suitable for routine use. A
predictive survival model is proposed based on automated analysis of baseline, whole-body [18F]FDG
images. Methods: Lesions were segmented on [18F]FDG PET/CT using a deep-learning approach
and derived features were investigated through Kaplan–Meier survival estimates with univariate
logrank test and Cox regression analyses. Selected parameters were evaluated in multivariate Cox
survival regressors. Results: In the development set of 69 patients, overall survival prediction based
on TMTV, lactate dehydrogenase levels and presence of brain metastases achieved an area under
the curve of 0.78 at one year, 0.70 at two years. No statistically significant difference was observed
with respect to using manually segmented lesions. Internal validation on 31 patients yielded scores
of 0.76 for one year and 0.74 for two years. Conclusions: Automatically extracted TMTV based on
whole-body [18F]FDG PET/CT can aid in building predictive models that can support therapeutic
decisions in patients treated with immune-checkpoint blockade.
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1. Introduction

The prognosis of patients with unresectable metastatic melanoma has improved sig-
nificantly thanks to the development of immune checkpoint inhibitors and BRAF/MEK
targeted therapies [1–4]. Antibodies that inhibit the programmed cell death protein 1 (PD-1)
receptor (e.g., pembrolizumab and nivolumab) have become an approved standard treat-
ment option [5–9]. Durable responses can be achieved resulting in unprecedented survival
rates at five years and beyond (e.g., in the phase III CheckMate 067 trial a 6.5-year overall
survival (OS) rate of 43% was observed [10]). Notably, durable clinical benefit and remission
can be obtained even following elective discontinuation of immune-checkpoint blockade [2].
While treatment with an anti-PD-1 monoclonal antibody is sufficient in a smaller proportion
of patients, most patients will be in need of more active treatment options in order to obtain
similar benefits. The combination of nivolumab with the cytotoxic T-lymphocyte-associated
antigen 4 (CTLA-4) immune checkpoint blocking monoclonal antibody ipilimumab can
improve treatment efficacy at the cost of increased toxicity [10]. Likewise, combination
of the anti-PD-L1 monoclonal antibody atezolizumab with the BRAF-/MEK-inhibitors
vemurafenib and cobimetinib (and the combination of spartalizumab plus dabrafenib and
trametinib alike) can provide a small incremental benefit; however, this comes at the cost of
increased toxicity in patients with BRAF V600-mutant melanoma [11,12].

Reliable baseline identification of patients who derive the greatest benefit from anti-
PD-1 monotherapy and identification of those patients in need of more active combination
therapy would be helpful to guide personalised treatment decisions. However, predicting
if a specific patient will respond to anti-PD-1 therapy remains challenging and current
approaches are imperfect. Some of these approaches are time-consuming and costly and
have therefore not been implemented in clinical routine [13].

Translational research performed by our group and others has indicated that several
parameters at baseline can predict the outcome of patients with advanced melanoma when
treated with pembrolizumab [14–17]. We recently identified total metabolic tumour volume
(TMTV) as determined on fluorine-18-fluorodeoxyglucose ([18F]FDG) positron emission
tomography (PET)/computed tomography (CT) as the strongest predictor for futility of
treatment with pembrolizumab [16]. In addition, in univariate analysis, a higher number
of metastatic sites, the presence of brain metastases, an increase in lactate dehydrogenase
(LDH) or C-reactive protein (CRP) levels, lower albumin and absolute lymphocyte count,
a higher neutrophil-to-lymphocyte ratio and increased circulating tumour deoxyribonucleic
acid (DNA) levels are of interest. Tissue biomarkers could not be validated, but have been
shown to be of interest by others [18–20]. None of these biomarkers are currently widely
accepted for decision making in clinical routine. With respect to determining TMTV on
PET images, the extraction of the image-derived variables is too labour intensive and
time-consuming and further validation is required.

Automated medical image analysis, and namely lesion segmentation, could automate
the extraction of image biomarkers, alleviate the workflow and enable their usage in clinical
practice. It may also allow the exploration of a wider range of image-derived parameters
during clinical research studies. Recently, a large and growing body of literature has inves-
tigated lesion segmentation for PET/CT [21–27]. However, to the best of our knowledge,
the effect of adopting such an automated approach in the pipeline for melanoma prognosis
prediction remains to be investigated.

1.1. Related Work

A number of publications describe machine-learning methods for prognosis prediction
of melanoma. Goussault et al. [28] compared a linear model, random forest, XGBoost and
LightGBM to predict the response to immunotherapy and targeted therapy in stage IIIc or IV
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melanoma patients. A total of 935 patients from 10 different centres, taken from the French
Clinical Database of Melanoma Patients (RIC-Mel), were included, of which, 80% were used
for training. The response was classified as Class 1 in case of complete response, partial
response or stable disease, or Class 2 in case of progressive disease. For immunotherapy,
LightGBM was the best model with an accuracy of 66% while for targeted therapy, this
was the random forest with an accuracy of 65%. The most predictive parameters proved to
be the following: stage (IIIc or IV), response to previous treatment lines, age, number of
metastasis sites and time between first melanoma excision and metastatic relapse.

Flaus et al. [29] developed a method to predict a patient’s one-year OS and progression-
free survival (PFS) based on the pre-treatment [18F]FDG PET. The population included
56 patients treated for metastatic melanoma with anti-PD1 immunotherapy. Lesions were
segmented semi-automatically using a threshold set at 40% of the maximum standardised
uptake value (SUVmax). Per patient, the lesion with the highest FDG uptake was used to
extract 45 radiomic features. After a number of feature selection steps, the five best-ranked
ones were used to build survival prediction models. Data were balanced through the
synthetic minority oversampling technique. A neural network, logistic regression, support
vector machine, random forest and naive bayes approach were compared by averaging the
results of 50 random splits stratified on outcome. Each time, the training set comprised 75%
of the data. For both OS and PFS, the random forest obtained superior results with an area
under the curve (AUC) of 0.87, a sensitivity of 0.79 and a specificity of 0.95 for OS; and an
AUC of 0.90, a sensitivity of 0.88 and a specificity of 0.91 for PFS.

Küstner et al. [30] developed a convolutional neural network (CNN) for outcome
prediction and performed a range of survival analyses based on whole-body [18F]FDG
PET/magnetic resonance imaging (MRI) and PET/CT acquired on the same day before
treatment. Data from 37 patients who received checkpoint inhibitors and/or BRAF/MEK
inhibitors were collected in a prospective study. A CNN was trained on automatically
segmented lesions in the dataset to classify the patient as high-risk or low-risk. The latter
was assigned in case of response to treatment and OS of more than 548 days. Inference
was performed based on one, manually selected target lesion per patient. Results were
computed in a leave-one-out cross-validation. In addition to this classification network,
Kaplan–Meier analyses were performed, where patients were split into two groups and the
difference in OS was assessed through a Wilcoxon test. Treatment response was evaluated
with a t-test for equal means and unequal variances. The CNN for risk classification
achieved a specificity of 96%, sensitivity of 92%, positive predictive value of 92% and
accuracy of 95%. This model, combining all modalities, achieved superior overall results.
A model based on only PET/MRI proved less sensitive and less accurate, but more specific
than a model considering only PET/CT. Longer OS was seen in patients with a TMTV under
50 mL, no metastases in the brain, bone, liver, spleen or pleura, less than five affected organ
regions, no metastases, a longest lesion diameter of less than 37 mm, a peak standardised
uptake value of less than 1.3, or a range of mean apparent diffusion coefficient of less than
600 mm2. However, none of these correlated significantly with the split of patients into
high- or low-risk groups.

1.2. Goal and Contributions of This Study

Though treatment with checkpoint inhibitors has become the new standard for ad-
vanced melanoma, a considerable part of the population still progresses on such therapy.
Identification of patients that will not respond to anti-PD-(L)1 treatment at an early stage
is of utmost importance to offer them the highest possible chances of survival. However,
it is currently impossible to predict prior to treatment initiation if it will be effective for a
specific patient. The whole-body FDG PET/CT scans that are taken before and during treat-
ment are valuable sources of information. However, the use of quantitative image-derived
parameters in clinical routine is not feasible with the available tools. There is a need for a
fast, reproducible workflow to analyse the images that can be applied in clinical practice.
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Automation can provide the basis for this and can additionally offer tools to extract more
specific imaging features that can be investigated in clinical research.

The contribution of this TRIPOD 2a [31] study is threefold. First, in addition to
known imaging features, like TMTV, more specific volumetric features were extracted
and assessed for their predictive power. The potential of the features was determined
through univariate Kaplan–Meier and Cox regression analyses. Second, promising features
were exploited and combined with clinical parameters in multivariate Cox regressions
to develop a fully automated prognosis prediction model. The proposed method starts
from the whole-body PET/CT image in Digital Imaging and Communications in Medicine
(DICOM) format, derives all needed parameters from the metadata and preprocesses
the imaging data, completes a lesion segmentation, combines extracted features with
clinical parameters that are given as input and performs a prognosis prediction for patients
with advanced melanoma that will be treated with pembrolizumab. The final prognosis
prediction model was validated on an internal dataset from the same institute. Third,
a comparative analysis was performed between manually and automatically derived
imaging parameters. The impact of using the latter was evaluated in each step of the
survival analysis, feature selection and prognosis prediction. In case of similar results,
the automation may enable the use of quantitative image-derived parameters for therapy
selection in clinical routine. Moreover, it could provide new tools and features to explore in
further clinical research.

2. Materials and Methods

This section describes the steps taken for the development and validation of the
proposed prognosis prediction model. These are illustrated in Figure 1. In brief, features
are derived from automatically segmented lesions and anatomical regions. Next, a feature
selection is performed via univariate Kaplan–Meier and Cox regression analyses. Promising
features are then evaluated in multivariate Cox regressions and the model obtaining the
best results within the development set is verified on the validation set.

Figure 1. Workflow followed for the development and validation of the proposed prognostic
model. In the development stage, automated segmentations were performed for the organs using
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Totalsegmentator [32] and for the lesions using a multi-channel nnU-Net, pretrained with data from
the autoPET challenge [33], and retrained through 4-fold cross-validation within the development set.
Image features were extracted using these masks and examined through univariate Kaplan–Meier
and Cox regression analyses. Promising features according to logrank p-value and hazard ratio (HR)
were then combined with available clinical parameters in multivariate Cox regressions for predict-
ing overall survival (OS) and progression-free survival (PFS). Clinical parameters included lactate
dehydrogenase (LDH), C-reactive protein (CRP) and the presence of brain metastases. The model
achieving the highest area under the curve (AUC) through leave-one-out cross-validation on the
development set was retrained on all patients to obtain the prognosis prediction model. In the
validation stage, lesions were automatically segmented through an ensemble of the 4 models trained
during development. The trained regression model was applied to the validation set to obtain a final
AUC score for 1- and 2-year overall survival prediction.

2.1. Data

This retrospective study was performed with data collected from patients treated at
Universitair Ziekenhuis Brussel (UZ Brussel, Brussels, Belgium) for malignant melanoma
between February 2014 and August 2018. Patients with histologically confirmed, non-
resectable stage III or IV malignant melanoma according to the American Joint Committee of
Cancer (AJCC) 8th edition were included. They received pembrolizumab immunotherapy
every 3 weeks as 1st- or up to 5th-line treatment. Alternative prior-line therapy could
consist of anti-CTLA-4 (ipilimumab), anti-PD-1 (nivolumab), a combination of anti-CTLA-4
and anti-PD-1 treatments, BRAF inhibitors (dabrafenib or encorafenib) and/or BRAF/MEK
inhibitors (dabrafenib/trametinib or encorafenib/binimetinib).

A total of 100 patients were included in this study. For 69 of them, manual lesion
delineations were available, created as described in [21]. This set was used for development
while the remaining 31 patients were kept aside as an internal validation set.

For each patient, a whole-body [18F]FDG PET/CT scan was acquired at baseline,
a maximum of 7 weeks before the start of pembrolizumab treatment, and at defined
follow-up visits. The intervals of [18F]FDG PET/CT exams corresponded to roughly
3–4 immunotherapy administrations. For most patients, lesions were annotated manually
by the physician as described in [21].

CRP and LDH values of a baseline blood test were recorded and categorised based on
the upper limit of normal (ULN) with 5 groups for CRP (<ULN, 1–2 × ULN, 2–5 × ULN,
5–10 × ULN, >10 × ULN) and 3 groups for LDH (<ULN, 1–2 × ULN, >2 × ULN). Addi-
tionally, the presence of brain metastases at baseline was retained as a binary, categorical
variable. To this end, patients suspected of having brain lesions will undergo an MRI exam
a few days before or after the acquisition of the [18F]FDG PET/CT.

Treatment response was determined according to the immune-related response criteria
(irRC) [34]. Progressive disease was defined as an increase in tumour volume of at least
25% perceived on CT. Survival was considered progression-free in case of stable disease,
complete response or partial response, characterised by a reduction in tumour volume of at
least 50%.

2.2. Automated Lesion Segmentation

The lesion segmentation model developed in a previous work [21] was adapted to
overcome some of its limitations. In brief, the latter method consists of 2 steps. First, a PET
threshold is automatically determined by identifying a region of interest of homogeneous
intensity in the liver on both PET and CT. Application of the threshold segments all candi-
date regions with increased FDG uptake. In the second step, a deep learning classification
is applied to separate the lesions from the healthy tissue with physiological uptake.

Here, the second step was replaced by a segmentation network using the MONAI [35]
implementation of the nnU-Net [36] with 3 input channels: the binary mask from the
PET thresholding, the PET and the CT image. This way, the lesion segmentation is not
limited by the extent determined through thresholding, and 1 connected candidate region
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can be further divided into malignant and healthy tissue by the segmentation model.
In accordance with the nnU-Net guidelines, a U-Net architecture [37] was trained for
1000 epochs with deep supervision, a combination of dice and cross-entropy loss and an
initial learning rate of 0.01 which was decayed following (1− epoch/epochmax)0.99 [38].
An Adam optimizer was used instead of Stochastic Gradient Descend as this had yielded
better results in previous experiments [21].

The PET intensities were converted to body-weight-corrected standardised uptake
values (SUVbw) and clipped at 0 and 15 SUVbw while CT images were clipped at −1000 and
500 Hounsfield units (HU). The intensities of both modalities were scaled to the range [0, 1]
and all images were resampled to an isotropic spacing of 4 mm. Per modality, corresponding
patches of 128 voxels in three dimensions were extracted while ensuring a balance between
the amount of positive and negative patches. Data augmentation was performed on the
fly via a number of random transformations including affine transformation, Gaussian
smoothing, intensity scaling, Gaussian noise and flips, each with a probability of 0.15.

The model was first pretrained on 700 patients of the publicly available data from the
autoPET challenge [33]. Since the ground truth segmentations were constructed differently,
the trained model would produce inferior segmentation results for the data used in this
study. Therefore, the CNN, with its weights initialised from the pretraining, was retrained
on the dataset from UZ Brussel in a four-fold cross-validation. Final segmentations for the
test set were constructed by averaging the output of the four models.

2.3. Automated Organ Segmentation

The use of automated methods for medical image analysis enables the exploration of
additional, more fine-grained features for survival analysis. As an initial feasibility study,
different anatomical structures were segmented using the publicly available TotalSegmen-
tator [32]. All bones were merged into one skeleton mask. For the gastrointestinal (GI)
tract, the esophagus, stomach, duodenum, small bowel, colon and urinary bladder were
merged. Furthermore, the lungs, liver, spleen, adrenal glands and pancreas were located.
Survival analyses were performed for the tumour load per region to investigate if there are
any critical levels that could indicate treatment with pembrolizumab to be futile.

2.4. Feature Extraction and Analysis

Within the dataset, total metabolic tumour volume, total lesion glycolysis (TLG),
baseline LDH, CRP and the presence of brain metastases were available for survival
analyses corresponding to clinical research. Furthermore, tumour load in terms of TMTV
per anatomical area was assessed, using the organ segmentation described in Section 2.3.
All analyses were performed using Python 3.7 and packages scikit-survival and lifelines.

For the development set, each lesion-based, image-derived parameter was extracted
once from the manual segmentations and once from the automated segmentations to
perform univariate Kaplan–Meier analyses. For each feature, a threshold was applied to
divide the population into two groups. For each group, the Kaplan–Meier survival curve
was drawn and the statistical difference between both was determined through a logrank
test. Different thresholds were assessed depending on the value range of the feature.
The step size was set to respectively 1, 5, 10 and 100 for ranges between 1–10, 10–100,
100–1000 and more than 1000. The lowest considered threshold was equal to the step size
and the maximum one was equal to the highest value under the maximum feature value.
The threshold with the lowest associated p-value was retained for the considered feature.

The most significant of the obtained thresholds were compared across manual de-
lineations and automated lesion segmentations to evaluate the effect of slightly different
lesion tracings on the survival analysis. Hazard ratios were determined via a univariate
Cox regression for overall and progression-free survival for each feature surpassing the
critical threshold determined by the manual delineations and are reported with their 95%
confidence interval (CI).
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2.5. Prognosis Prediction

In order to be able to handle the right-censored data and get a prediction on a patient’s
individual survival curves, the Cox proportional hazard regression was used to develop
models for prognosis prediction through leave-one-out cross-validation. Hence, per ex-
periment, each patient was used once as a test subject while training the regression on
the remaining patients. The reported results are the mean values over all patients. The
goal was to predict the OS and PFS chances at one year and at two years after the baseline
PET/CT scan.

Volumetric features were selected based on their hazard ratio. Only features for
which the lower bound of the 95% confidence interval of the hazard ratio surpassed 2,
were considered in the regression modelling. The hazard ratios were calculated in a
univariate, dichotomous analysis using a threshold optimised for this dataset and are
therefore expected to be over-optimistic. Parameters with a hazard ratio below 2 were
considered unlikely to hold information that would improve the multivariate regression
models. Continuous variables were not categorised in order not to lose valuable information
by thresholding.

Patients for whom TMTV rapidly drops to 0 mL are easily identified as responders
through inspection of the first follow-up imaging. For the remaining patients, the prediction
of response will be of interest to determine who will benefit from a continuation of the
treatment. An additional Cox regression was tested to make a new survival prediction after
the first follow-up PET/CT exam. For this, the rate of change in TMTV was added as a
feature, and defined as

rate o f change =
TMTV2 − TMTV1

t2 − t1
, (1)

with TMTV1 and TMTV2 the total metabolic tumour volume derived from the baseline and
first follow-up scan, respectively, and t2 − t1 the number of days between those acquisitions.

2.6. Evaluation

Lesion segmentations were evaluated using the dice similarity coefficient (DSC) and
absolute volume difference (AVD), defined as

DSC =
2 TP

2 (TP + FP + FN)
, (2)

AVD = |Vground truth −Vprediction| , (3)

with TP the number of true positives, FP the number of false positives and FN the number
of false negatives at voxel level.

Additionally, two metrics defined in the autoPET challenge [39] were assessed, namely
the volume of false positive connected components in the predicted segmentation mask
that do not overlap with tumours in the ground truth segmentation map (VFP) and the
volume of connected components in the ground truth segmentation that do not overlap
with the estimated segmentation mask (VFN).

The overall predictive performance of regression models for survival was quantified
via the AUC of the receiver operating characteristic (ROC) curve with 95% CI, determined
through bootstrapping the predictions with replacement in 1000 iterations. Thus, 1000 vari-
ations of the prediction set were created by sampling these predicted probabilities and
allowing each one to be sampled multiple times. The CI was then constructed based on the
sampling distribution estimated from the various prediction sets. AUCs for the regression
model based on manual lesion delineation versus the ones based on automated segmenta-
tions were compared with the DeLong test [40,41]. In case of multiple comparisons with the
same AUC value, the Bonferroni correction was applied. We also report sensitivity or true
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positive rate (TPR) and specificity or true negative rate (TNR) for a threshold favouring
high specificity.

TPR =
TP

TP + FN
, (4)

TNR =
TN

TN + FP
, (5)

with TP the number of true positives, TN the number of true negatives, FP the number of
false positives and FN the number of false negatives at patient level. The 95% CI around the
sensitivity and specificity was calculated by bootstrapping the predictions with replacement
in 1000 iterations.

For evaluation, patients lost to follow-up were excluded from the test set as their
survival status is unknown. The performance of the model was evaluated on the internal
test set by retraining on all patients from the development set.

3. Results
3.1. Data

An overview of the characteristics of the development and validation subsets is
provided in Table 1. The development set was made up of 69 patients (29 male, 40 female)
with a median age of 60 years old (26–93). The set of whole-body [18F]FDG PET/CT images
included at least the baseline exam, acquired a median of 7 days (0–44) before the start of the
treatment, and between zero and nine follow-ups with a median follow-up time of 576 days
(40–1242). A total of 16 patients had a prior history of brain metastases. The median time
between PET/CT exams was 10.6 weeks (5.86–26.0). After three scans, this was increased
to a median of 14.6 weeks (7.43–71.0).

Table 1. Patient characteristics.

Patient Characteristic Development Set (n = 69) Validation Set (n = 31)

Age (median (range)) 60 (26–93) 65 (34–82)

Sex (n (%))
male 29 (42.0) 14 (45.2)

female 40 (58.0) 17 (54.8)

Tumour stage (n (%))
IIIB 1 (1.45) 1 (3.2)
IIIC 3 (4.35) 3 (9.7)
IIID 0 (0) 1 (3.3)

IV-M1a 11 (15.94) 7 (22.6)
IV-M1b 10 (14.49) 6 (19.4)
IV-M1c 27 (39.13) 9 (29.0)
IV-M1d 17 (24.64) 4 (12.9)

Prior treatments (n (%))
0 20 (29.0) 26 (83.9)
1 37 (53.6) 4 (12.9)
2 7 (10.1) 1 (3.23)
3 4 (5.80) 0 (0)
4 1 (1.45) 0 (0)

Prior anti-CTLA-4 48 (69.6) 2 (6.45)
Prior BRAF inhibitor 5 (7.25) 0 (0)

Prior BRAF/MEK inhibitor 13 (18.8) 0 (0)
Prior anti-PD-1 1 (1.45) 1 (3.23)

Prior combination anti-PD-1 +
anti-CTLA-4 0 (0) 3 (9.68)

Baseline brain lesions (n (%))
yes 16 (23.2) 7 (22.6)
no 53 (76.8) 24 (77.4)
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Table 1. Cont.

Patient Characteristic Development Set (n = 69) Validation Set (n = 31)

Baseline CRP (n (%))
<ULN 42 (60.9) 19 (61.3)

1–2 × ULN 10 (14.5) 5 (16.1)
2–5 × ULN 6 (8.7) 3 (9.7)

5–10 × ULN 10 (14.5) 1 (3.2)
>10 × ULN 1 (1.4) 3 (9.7)

Baseline LDH (n (%))
<ULN 50 (72.5) 23 (74.2)

1–2 × ULN 16 (23.2) 7 (22.6)
>2 × ULN 3 (4.3) 1 (3.2)

Follow-up
days (median (range)) 576 (40–1242) 612 (1–1874)

0 follow-up scans (n (%)) 15 (21.7) 10 (32.3)
1 follow-up scan (n (%)) 8 (11.6) 8 (25.8)
>1 follow-up scan(n (%)) 46 (66.7) 13 (41.9)

Survival (n (%))
OS 1 year 42 (60.9) 18 (58.1)
PFS 1 year 22 (36.2) -

censored 1 year 2 (2.9) 8 (25.8)
OS 2 years 22 (31.9) 13 (41.9)
PFS 2 years 8 (11.6) -

censored 2 years 16 (23.2) 10 (32.3)
n: number of patients, CRP: C-reactive protein, LDH: lactate dehydrogenase, ULN: upper limit of normal, OS:
overall survival, PFS: progression-free survival.

One year after their baseline exam, two patients were lost to follow-up and 42 patients
were still alive, of whom, 22 were progression-free. After two years, 16 patients were lost
to follow-up and 22 patients survived, of whom, eight were without progressive disease.
For automated lesion segmentation, the set of patients was randomly split into four groups,
stratified on the number of lesions and all exams belonging to the same patient were
included in the same group.

We collected an additional validation set that was never used during model develop-
ment. This set comprised 31 patients (14 male, 17 female) with a median age of 65 years old
(34–82) and a median follow-up time of 612 days (1–1874). Seven patients suffered from
brain metastases at baseline. After one year, 18 patients were still alive while eight were
lost to follow-up. A total of 13 patients survived for at least two years after their baseline
exam while 10 were lost to follow-up. Manual lesion delineations and PFS status were not
available for this validation set.

3.2. Automated Lesion Segmentation

The median segmentation results are summarised in Table 2. On average, the me-
dian dice coefficient per fold is 0.842 ± 0.343 with an absolute volume difference of
1.16 ± 239 mL. The connected components in the prediction that do not overlap with
the manual delineations constitute a median volume of 0 ± 26.4 mL while the false
negative ones make up 1.06 ± 35.6 mL.
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Table 2. Median lesion segmentation results through four-fold cross-validation.

Test Fold DSC AVD [mL] VFP [mL] VFN [mL]

0 0.821 ± 0.350 2.02 ± 32.2 0 ± 29.0 0 ± 18.0
1 0.853 ± 0.402 0 ± 40.5 0 ± 13.2 1.41 ± 17.3
2 0.887 ± 0.291 1.22 ± 54.0 0 ± 54.8 0 ± 6.71
3 0.806 ± 0.327 1.39 ± 827 0 ± 8.63 2.84 ± 100

Average 0.842 ± 0.343 1.16 ± 239 0 ± 26.4 1.06 ± 35.6
DSC: dice similarity coefficient, AVD: absolute volume difference, VFP: volume of false positive connected
components and VFN : volume of false negative connected components.

3.3. Feature Analysis

The thresholds that led to the lowest p-value in a logrank test comparing Kaplan–Meier
survival curves are summarised in Table 3. For each feature, the number of patients with a
value higher than zero is listed as well. Univariate hazard ratios for OS and PFS determined
via the manual delineations and automated lesion segmentations are tabulated in Table 4.

Table 3. Feature threshold values that generate the lowest logrank p-value when using the manual and
the automated lesion segmentations within the development set. The number of patients indicates
the amount of patients that have a value greater than zero for the respective feature.

Baseline Feature n Threshold Range Threshold for OS Threshold for PFS
Manual Automated Manual Automated

TMTV [mL] 45 10–450 90 ∗ 90 ∗ 100 ∗ 100 ∗

TLG [SUVbw·mL] 45 50–4200 400 ∗ 600 ∗ 700 ∗∗ 600 ∗

V liver metastases [mL] 22 10–260 30 ∗ 30 ∗ 30 ∗ 40 ∗

V bone metastases [mL] 19 5–75 5 ∗∗ 5 ∗ 35 ∗∗∗ 35 ∗∗∗

V lung metastases [mL] 15 5–55 5 ∗∗∗ 20 ∗∗∗ 5 ∗∗∗ 10 ∗∗

V metastases in GI tract [mL] 11 5–75 10 ∗∗∗ 10 ∗ None 10 ∗∗∗

V spleen metastases [mL] 4 5–15 5 ∗ 5 ∗ 5 ∗∗ 5 ∗∗

V metastases in adrenal glands [mL] 4 1–7 1 ∗∗ 1 ∗∗ None None
V pancreas metastases [mL] 3 1–9 None None None None

n: number of patients, TMTV: total metabolic tumour volume, TLG: total lesion glycolysis, V: volume, OS: overall
survival, PFS: progression-free survival, * p < 0.001, ** p < 0.01, *** p < 0.05.

Table 4. Hazard ratios for overall and progression-free survival associated with manual delineations
and automatically derived lesion segmentations.

Baseline Feature
Overall Survival Progression-Free Survival

Threshold Hazard Ratio (95% CI) Threshold Hazard Ratio (95% CI)
Manual Automated Manual Automated

TMTV [mL] 90 12.2 (4.95–29.8) 14.3 (5.72–35.8) 100 3.85 (1.87–7.94) 4.23 (2.04–8.77)
TLG [SUVbw·mL] 400 7.77 (3.62–16.7) 7.77 (3.62–16.7) 700 3.18 (1.48–6.82) 3.43 (1.59–7.38)
V liver metastases [mL] 30 11.0 (4.52–26.6) 8.21 (3.46–19.5) 30 4.70 (2.17–10.2) 5.12 (2.29–11.4)
V bone metastases [mL] 5 2.81 (1.38–5.72) 3.25 (1.59–6.63) 35 3.22 (0.969–10.7) 3.22 (0.969–10.7)
V lung metastases [mL] 5 3.12 (1.07–9.08) 2.56 (1.05–6.27) 5 2.62 (1.02–6.74) 1.56 (0.706–3.45)
V metastases in GI tract [mL] 10 3.00 (1.04–8.67) 7.20 (2.63–19.7) - - -
V spleen metastases [mL] 5 32.6 (2.26–470) 8.26 (1.72–39.7) 5 7.19 (0.827–62.4) 7.57 (1.65–34.8)
V metastases in adrenal glands [mL] 1 3.98 (1.36–11.6) 5.36 (1.55–18.6) - - -

TMTV: total metabolic tumour volume, TLG: total lesion glycolysis, V: volume.

For OS, the hazard ratios indicated a potential predictive value in TMTV, TLG and the
volume of liver, spleen and GI tract metastases at baseline. For PFS, this list was reduced to
TMTV and the volume of liver metastases. Results are very similar when using manual
delineations versus automatically derived lesion segmentations for TMTV, TLG and the
volume of liver metastases. Hazard ratios of the volume of spleen and GI tract metastases
show more variation, which can be attributed to the smaller number of patients with lesions
in these areas and the more challenging nature of automated lesion segmentation in the
abdomen due to the several regions of physiological uptake.
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Irrespective of how the lesions were segmented, a TMTV of more than 90 mL has the
highest hazard ratio for OS, followed by a tumour load in the liver greater than 30 mL and a
total lesion glycolysis surpassing 400 SUVbw·mL. For PFS, the order of liver metastases and
TMTV is reversed. The most significant threshold in liver tumour load for PFS deviates with
10 mL, but there is still a significant difference (p < 0.001) in survival curves when applying
the threshold of 30 mL instead of 40 mL in the set of automated lesion segmentations. The
same can be observed for TLG. The threshold with the lowest p-value differs 100–200 units
(for PFS and OS respectively), but the p-value is still smaller than 0.001 when applying
the other threshold to construct the survival curves. The hazard ratio for OS based on a
baseline TMTV above 90 mL is 12.2 or 14.3 when using manual delineations or automated
lesion segmentations, respectively. For PFS, these values drop to 3.85 or 4.23.

A volume of liver metastases surpassing 30 mL leads to a hazard ratio of 11.0 (manual)
or 8.21 (automated) for OS and 4.70 (manual) or 5.12 (automated) for PFS. A baseline TLG
of more than 400 SUVbw·mL is a bad indicator for OS with a hazard ratio of 7.77 using
either method.

The Kaplan–Meier curves for OS with a TMTV at baseline smaller or greater than 90 mL
are drawn in Figure 2a. The plots using the manual delineations are drawn in solid lines
while the ones for the automated segmentations are drawn in dotted lines. They overlap
almost completely with only minor deviations at certain time points. There are two patients
for which the decision of a TMTV larger or smaller than 90 mL differs, slightly modifying
the plots depending on the segmentation approach. At 122 days, a patient died, for which
the manual segmentation encompasses a total volume smaller than 90 mL (75.7 mL) while
for the automated segmentation, this is larger than 90 mL (306 mL). The segmentation
network misclassified a relatively large volume in the intestines as lesion. At 283 days,
a patient died, for which the manually derived TMTV is greater than 90 mL (319 mL) while
the automatically extracted value is less than 90 mL (66.2 mL), because for the latter, a large
lesion in the abdomen was missed. Still, the OS curves are very similar.

The Kaplan–Meier plots for PFS based on TMTV are shown in Figure 2b and the
graphs for OS and PFS based on TLG and the volume of liver metastases are added in
Appendix A. The decision of baseline TLG surpassing 400 SUVbw·mL is the same for all
patients no matter the segmentation approach. Hence, their plots for OS overlap completely.
The critical tumour load in the liver was found to be 30 mL, splitting the population into
two groups with significantly different survival chances for both OS and PFS. The graphs
only deviate slightly between segmentation methods.

(a) (b)

Figure 2. Kaplan–Meier curves and life tables based on a TMTV at baseline below or above 90 mL
for OS (a) and below or above 100 mL for PFS (b).
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In addition to the image-derived variables, CRP and LDH values and the presence of
brain metastases were collected, which do not depend on the lesion segmentation method.
For the blood values, the most significant threshold was determined in a similar way,
examining the different categories with respect to the ULN. In line with previous research,
the thresholds of 2 × ULN for LDH and 10 × ULN for CRP proved most significant [16].

A CRP level greater than 10 × ULN (p < 0.01) has a hazard ratio of 13.1 (95% CI:
1.53–112) for OS and 8.25 (95% CI: 0.92–73.8) for PFS.

For LDH, a value surpassing 2 × ULN (p < 0.001) has a hazard ratio of 13.9 (95% CI:
3.67–52.4) for OS and 7.85 (95% CI: 2.07–29.7) for PFS.

The logrank p-value between the groups with and without brain metastases at baseline
is smaller than 0.05 with a hazard ratio of 2.33 (95% CI: 1.13–4.80) for OS while it is greater
than 0.05 for PFS.

Considering this feature analysis, TMTV, TLG, the volume of liver, spleen and GI tract
metastases are potential parameters to be used in a prognosis prediction model for OS.
For PFS, the options are reduced to TMTV and the volume of liver metastases. For both
prediction tasks, LDH, CRP and the presence of brain metastases are tested in the leave-
one-out prognosis prediction as they hold information that can be complementary to the
volumetric features.

3.4. Prognosis Prediction at Baseline

TLG is determined by multiplying TMTV with the PET intensity in standardised
uptake values, so these are highly correlated (Pearson’s correlation of 0.95). Moreover, all
patients with more than 30 mL of liver metastases at baseline that do not survive one or
two years have a TMTV of more than 90 mL. Therefore, an initial prognosis prediction
model was tested considering the remaining parameters.

Table 5 outlines the results through leave-one-out cross-validation for the Cox propor-
tional hazard regressor considering TMTV, the LDH category and the presence of brain
metastases. Table 6 summarises the estimated baseline survival and multivariate hazard
ratios. For OS, the proposed automated pipeline achieved an AUC of 0.78 for prediction
at one year and 0.70 at two years. For the former, the model estimated a baseline survival
probability of 0.82 with multivariate hazard ratios of 1.004 for TMTV, 2.59 for LDH and 2.52
for brain metastases. At two years, the estimated baseline survival probability decreased to
0.73 with respective hazard ratios of 1.004, 1.93 and 2.58.

In case of PFS, the one-year prediction achieved an AUC of 0.61 and the baseline
survival probability was estimated at 0.74 with corresponding hazard ratios of 1.004 (TMTV
baseline), 1.72 (LDH baseline) and 1.69 (brain metastases at baseline). The two-year predic-
tion reached an AUC of 0.42 with an estimated baseline survival of 0.51 and multivariate
hazard ratios of 1.005 (TMTV baseline), 1.41 (LDH baseline) and 1.69 (brain metastases
at baseline). Similar predicted survival probabilities and hazard ratios were found when
using the manually segmented lesions. The addition of the lesion volume in the spleen
or GI tract or of the CRP category did not offer any performance improvement. For all
predictions, the DeLong test indicated no statistical difference (p > 0.05) in AUC when using
the manual delineation or automated lesion segmentation approach.

TLG is highly correlated with TMTV, but might contain more information as it gives
an indication of the tumour activity. However, the AUC values are similar for each of
the respective survival types and time points for the prognosis model considering TMTV,
LDH and brain metastases and the one taking into account TLG, LDH and brain metas-
tases. The DeLong p-values are larger than 0.05 except for one-year OS with the manual
segmentation where p is exactly 0.05 between the two models.

The volume of liver metastases proved to be predictive for survival, but the subset of
patients with a TMTV greater than 90 mL completely encompassed the group of patients
for which this value was higher than 30 mL. Moreover, for all prediction tasks, a drop in
performance was observed when replacing the TMTV with the volume of liver lesions,
which was statistically significant for OS and for PFS at one year. After Bonferroni correc-
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tion, the statistical significance level is set to 0.02 due to the comparison of the AUC of the
automated method with the values for the manual approach, the model including TLG in-
stead of TMTV and the regression with the volume of liver lesions instead of TMTV. For the
latter, only OS at two years and PFS at one year still give significantly different results.

Table 5. Leave-one-out cross-validation results for a Cox proportional hazard regressor taking into
account TMTV, LDH category and the presence of brain metastases.

Lesion Segmentation Method Metric Overall Survival Progression-Free Survival
1 Year 2 Years 1 Year 2 Years

Manual AUC (95% CI) 0.80 (0.67–0.91) 0.69 (0.54–0.83) 0.59 (0.45–0.73) 0.40 (0.22–0.60)
Sensitivity (95% CI) 0.62 (0.47–0.78) 0.59 (0.39–0.78) 0.64 (0.43–0.84) 0.25 (0.00–0.60)
Specificity (95% CI) 0.88 (0.75–1.00) 0.78 (0.62–0.92) 0.60 (0.45–0.75) 0.61 (0.48–0.73)

Automated AUC (95% CI) 0.78 (0.65–0.91) 0.70 (0.56–0.85) 0.61 (0.48–0.76) 0.42 (0.25–0.60)
Sensitivity (95% CI) 0.65 (0.50–0.79) 0.56 (0.36–0.73) 0.73 (0.54–0.91) 0 (0–0)
Specificity (95% CI) 0.88 (0.75–1.00) 0.78 (0.62–0.92) 0.60 (0.45–0.75) 0.64 (0.52–0.76)

Table 6. Baseline survival probability and multivariate hazard ratios estimated a Cox proportional
hazard regressor taking into account TMTV, LDH category and the presence of brain metastases.

Lesion Segmentation Method Parameter Overall Survival Progression-Free Survival
1 Year 2 Years 1 Year 2 Years

Manual Baseline survival chance 0.82 0.73 0.75 0.53
HR TMTV (95% CI) 1.005 (0.00–0.01) 1.01 (0.00–0.01) 1.01 (0.00–0.01) 1.01 (0.00–0.01)
HR LDH (95% CI) 2.64 (0.10–1.84) 1.92 (−0.16–1.47) 1.69 (−0.18–1.23) 1.34 (−0.39–0.97)
HR brain lesions (95% CI) 2.21 (−0.05–1.64) 2.28 (0.06–1.59) 1.53 (−0.26–1.12) 1.55 (−0.19–1.07)

Automated Baseline survival chance 0.82 0.73 0.74 0.51
HR TMTV (95% CI) 1.004 (0.00–0.01) 1.004 (0.00–0.01) 1.004 (0.00–0.01) 1.005 (0.00–0.01)
HR LDH (95% CI) 2.59 (0.13–1.77) 1.93 (−0.11–1.42) 1.72 (−0.12–1.21) 1.41 (−0.30–0.99)
HR brain lesions (95% CI) 2.52 (0.07–1.78) 2.58 (0.18–1.71) 1.69 (−0.16–1.22) 1.69 (−0.11–1.15)

HR: hazard ratio, TMTV: total metabolic tumour volume, LDH: lactate dehydrogenase.

3.5. Prognosis Prediction after First Follow-Up

The median time to the first follow-up was 62 days (28–154). The rate of change was
added to the list of features and the 15 patients without a follow-up exam were excluded.
Results of the leave-one-out cross-validation are shown in Table 7. One- and two-year OS
were predicted with AUC scores of 0.68 and 0.66, respectively. Though this is a decrease
compared to the model at baseline, the values cannot be compared directly as some patients
were excluded here. When running the baseline model with the same patients excluded,
the AUC values become 0.78 and 0.67. These values are still higher than for the follow-up
model, but without a statistically significant difference (Delong p-values > 0.05).

For PFS, the model achieved an AUC of 0.53 at one year and 0.48 at two years. For the
baseline model applied to the same set of patients, the scores were respectively 0.50 and
0.35 (Delong p-values > 0.05). When deriving the volumetric covariates from manually
segmented lesions, similar values were obtained. The AUCs at one and two years were
respectively 0.78 and 0.65 for OS and 0.44 and 0.32 for PFS. These are not statistically
different from the scores obtained when using the automated segmentation approach (all
DeLong p-values > 0.05).

There were three patients with an initial increase in TMTV (rate of change: 0.77
(0.55–1.78)) but who survived at least as long as their total follow-up time (median follow-
up time: 1140 days (805–1242)). A total of 10 patients had no lesion on both their baseline
and follow-up scans, leading to a rate of change of zero, but also survived at least as long
as their total follow-up time (median follow-up time: 988 days (774–1183)). For these
13 patients, all predictions OS were correct, irrespective of the applied segmentation
method.
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Table 7. Leave-one-out cross-validation results for a Cox proportional hazard regressor taking into
account TMTV, LDH category, brain metastases and the rate of change in TMTV after the first
follow-up.

Lesion Segmentation Method Metric Overall Survival Progression-Free Survival
1 Year 2 Years 1 Year 2 Years

Manual AUC (95% CI) 0.78 (0.59–0.92) 0.65 (0.45–0.84) 0.44 (0.28–0.59) 0.32 (0.15–0.52)
Sensitivity (95% CI) 0.83 (0.71–0.93) 0.74 (0.57–0.89) 0.70 (0.50–0.90) 0.50 (0.14–0.88)
Specificity (95% CI) 0.61 (0.33–0.88) 0.61 (0.39–0.82) 0.23 (0.11–0.39) 0.37 (0.23–0.51)

Automated AUC (95% CI) 0.68 (0.45–0.91) 0.66 (0.45–0.86) 0.53 (0.38–0.69) 0.48 (0.26–0.71)
Sensitivity (95% CI) 0.85 (0.74–0.95) 0.74 (0.57–0.89) 1.00 (1.00–1.00) 0.63 (0.25–1.00)
Specificity (95% CI) 0.62 (0.35–0.90) 0.67 (0.44–0.88) 0.29 (0.15–0.45) 0.35 (0.21–0.48)

3.6. Internal Validation Set

For the internal validation set, no PFS status was available. The multivariate Cox
regression model trained on all 69 patients of the development set considering TMTV, LDH
strata and brain lesions at baseline was applied to the internal test set. The ROC curves for
each prediction task are drawn in Figure 3. For one-year OS, the AUC reached 0.76 (95%
CI: 0.52–0.95) with a sensitivity of 0.61 (95% CI: 0.38–0.83) and specificity of 0.81 (95% CI:
0.33–1.00). At two years, the AUC became 0.74 (95% CI: 0.46–0.93) with a sensitivity of 0.61
(95% CI: 0.32–0.87) and specificity of 0.74 (95% CI: 0.40–1.00).

(a) (b)

(c) (d)

Figure 3. Receiver operating characteristic (ROC) curves with 95% confidence interval determined
through bootstrapping for the leave-one-out cross-validation (LOO) in case of the manual and pro-
posed automated approach and for the validation on the internal test set. Predictions are performed
for (a) OS at one year, (b) OS at two years, (c) PFS at one year and (d) PFS at two years.
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To illustrate the use and output of the system, the proposed clinical decision support
system (CDS) is depicted in Figure 4.

Figure 4. Example of the proposed clinical decision support system applied to a new patient. The PET,
CT and clinical parameters are acquired at the hospital. The PET and CT are used by an automated
PET threshold selection method [21] to generate a mask of all areas of increased tracer uptake. Next,
the three images are given as input to a multi-channel nnU-Net [36] to segment the lesions. From this
segmentation, the TMTV is extracted and combined with the LDH category and a binary parameter
indicating the presence of brain metastases. Based on these variables, a multivariate Cox regression
estimates the overall survival curve for the considered patient.

4. Discussion

A predictive model based on fully automated analysis of whole-body [18F]FDG
PET/CT was developed and validated on a separate dataset acquired at the same in-
stitute. Special attention was given to the impact of using automatically estimated lesion
segmentations versus manual delineations.

Univariate analysis led to highly similar features being selected using automated lesion
segmentation with respect to manual delineation. The prognosis prediction, including
TMTV, LDH strata and the presence of brain metastases at baseline, gave results with
no statistically significant difference with respect to the manual lesion delineation. This
important result indicates that while the automated approach leads to slightly different
lesion segmentations than obtained through manual delineations, the deviations are small
and not of impact for final prognosis prediction.

Lesions in the abdomen were found to be the most challenging, bearing most discrep-
ancies between the automated and manual segmentations. This region is characterised
by higher physiological uptake, hampering the performance of the segmentation model.
Segmentation models specifically trained for the abdominal region, as proposed by Jemaa
et al. [42], may improve this behaviour.

Despite the good overall agreement of the automated prognostic model with respect
to the manual approach, a clinical implementation of the decision support system could
still allow for user interaction. A possible implementation is illustrated in Figure 4. In the
automated PET thresholding step, the clinician can alter the selected threshold to change the
segmentation of PET-positive regions. Next, after the lesion segmentation step, the output
shows both the lesions and areas that are classified as physiological tracer uptake. If needed,
the user can select delineated components to be included or excluded from the tumour
load. Such an implementation would still improve the speed and reproducibility of the
process, while improving the interpretability of the results.

Considering the predictive value of image-derived features, TMTV was found to lead
to the best overall performance. It should be noted that the baseline [18F]FDG PET/CT
acquisition did not always coincide with the start of the treatment. As a result, there might
be an underestimation in TMTV at the start of the treatment. Future research in which all
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PET/CT exams are performed close to start of treatment may yield a further improvement
in results.

TLG includes information on the tumour size and intensity in SUV. Therefore, theoret-
ically, it could be preferred over TMTV as a feature. Moreover, slight oversegmentations
will be less pronounced after multiplication with PET intensity. This can be observed in
the perfect agreement between manual and automated segmentation of the Kaplan–Meier
curves for TLG (Figure A1a). That being said, no significant difference in performance
could be observed in the Cox proportional hazard prediction when including TLG instead
of TMTV, and we preferred to retain TMTV for simplicity.

Both total metabolic tumour load and the liver metabolic tumour load proved highly
predictive for survival. In fact, all patients with a volume of liver metastases higher than
30 mL also had a TMTV greater than 90 mL, but the opposite was not true. In case both
features lead to similar performance, this would greatly reduce the workload for manual
lesion delineation as only liver tumours would have to be delineated. However, for all
prediction tasks, a drop in performance was observed, which was significant for several
models. The volume of liver lesions cannot simply replace TMTV.

Considering the performance of the automated prognostic models, the one-year OS
prediction performs well with an AUC of 0.78. One possible use of the prognosis prediction
models could be to identify patients that will not respond to the standard anti-PD-1 treat-
ment, such that an alternative treatment plan can be considered. Prioritizing sensitivity for
non-responders comes at the cost of including some patients that would have responded
and may be overtreated. However, such an approach could be favoured over the alternative,
where patients with a poor prognosis are overlooked and do not receive the alternative
therapy that might increase their chances. For automatically predicting overall survival at
one year, a specificity of 0.88 was achieved with a sensitivity of 0.65, indicating that 88%
of patients who would not survive one year with the standard pembrolizumab treatment
can be identified correctly, at the cost of overtreating 35% of the patients. Important to note
is that overtreatment by administering ineffective yet potentially toxic anti-PD-1 mono-
therapy negatively impacts the overall outcome of the treated population. This highlights
the importance of developing a more detailed cost–benefit analysis for deriving an opti-
mised decision rule to determine how this prognostic model is best employed to support
therapeutic decisions when starting anti-PD-1 monotherapy. In addition, patients predicted
to fail anti-PD-1 monotherapy may benefit from treatment with BRAF-/MEK-inhibitors (if
BRAF mutant) or participating in clinical trials exploring novel combination therapies.

Another possible use would be to identify the subset of patients with a baseline TMTV
below 90 mL, that do not survive the first year. Both manual and automated models classify
10 out of 13 correctly. With this in mind, the proposed model can be a useful addition to the
available data to support the treatment decision at baseline made in clinical practice.

At two years, the AUC score decreases to 0.70. Prognosis at a later point in time
becomes more difficult as the uncertainty on the predictors increases. In addition, the more
time passes by, the more patients get lost to follow-up. Out of 69 patients in the development
set, only two were lost at one year, while this number increased to 11 for two years.

Predicting PFS achieved considerably lower results with AUCs of 0.61 at one year and
0.42 at two years. These predictions are generally harder due to the more specific nature of
the task. The performance obtained here was not found to hold clinical value. The addition
of other predictors that were not available in this dataset, might improve the estimation.

Patients whose TMTV quickly goes to 0 mL are likely to respond well to the treatment
and are easy to identify at an early stage. For other cases (stable or increasing TMTV), it is
harder to predict if continuation of the treatment would be beneficial. Therefore, prognosis
models were tested for prediction after the first follow-up where the rate of change in
TMTV was added as a feature. The overall performance of latter models in terms of AUC
were not significantly different than models predicting prognosis at baseline. Considering
only patients with stable or increasing TMTV at first follow-up, the model including rate
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of change correctly classified all patients with stable or increasing TMTV that survived at
least two years.

When applying the model with baseline features to the internal validation set, never
used during model development, comparable model performance was obtained, with an
AUC of 0.76 for the one-year prediction and 0.74 for the two-year prediction. The results
suggest our model generalises well to unseen data. We should however note that in this case
the confidence intervals of the ROC curves are large due to the limited number of subjects.

Automated image analysis offers further opportunities for deriving predictive markers
of response. Several authors have evaluated more advanced FDG PET/CT image-derived
features in prognostic models. Küstner et al. [30] evaluated organ-specific tumour load,
and found some to be predictive, though patient numbers were low. In our study, tumour
loads were extracted for seven different anatomical regions. For most of them, only a small
number of patients suffered from lesions in the considered area, not justifying inclusion
in the prognostic model. For liver, spleen and GI tract, inclusion in the prognostic model
did not improve performance. In this work, information regarding brain lesions could
be included solely through a binary indicator of their presence at baseline. However,
the segmentation and quantification of such metastases can enable the exploration of more
specific predictors.

Despite the sexual dimorphism observed in melanoma [43], sex was not found to be
a reliable predictor for prognostic outcome. In the development dataset, the difference
in overall survival between the male and female groups was negligible. Within the male
patients, 52% died during follow-up, while this was 48% for female patients.

The addition of radiomic features was tested, but this was deemed unfeasible due to
the small dataset. Similar to the work of Flaus et al. [29], radiomic features were extracted
for the lesion with the highest FDG uptake per patient, excluding patients with no lesions
greater than 10 mL [44] detected on the PET/CT scan. However, this subset included only
25 patients, of which, eight survived more than one year (five progression-free) and six
were still alive at two years (four progression-free). To be able to draw reliable conclusions,
preference was given to omit radiomic features and perform experiments with a larger
dataset, including patients with small or no baseline lesions.

The predominant limitation of this study is the relatively small datasets, both for
development and validation. As a result, several strata of features were under-represented,
not justifying further analysis. This included CRP and several organ-specific tumour loads.
Moreover, the development set showed an overrepresentation of female patients (58%).
Future work should include a more extensive validation, using an external dataset.

Furthermore, we did not have access to several parameters that have been reported to
affect survival chances [16,18–20]. Tumour intrinsic characteristics and the immunological
status of the patient are important factors influencing patient outcome. The inclusion of
features like albumin and absolute lymphocyte count, neutrophil-to-lymphocyte ratio,
circulating tumour DNA and protein expression on tumour cells are considered of interest
for investigation as co-variables allowing even more precise prognostic prediction.

5. Conclusions

This study focused on the development and validation of prognostic prediction models
for patients with advanced melanoma treated with pembrolizumab using a combination of
automatically extracted features from the whole-body [18F]FDG PET/CT scan and available
clinical parameters. Univariate feature analysis and multivariate survival modelling yielded
very similar results when using manual delineations or automated lesion segmentations.
The obtained performance for the model predicting one-year overall survival indicates
it could be of benefit in clinical routine for supporting therapeutic decisions. The main
limitations of the study were its relatively small dataset size and the mono-centre origin of
the clinical data.
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The following abbreviations are used in this manuscript:

AUC Area under the curve
AVD Absolute volume difference
CDS Clinical decision support system
CI Confidence interval
CNN Convolutional neural network
CRP C-reactive protein
CT Computed tomography
DICOM Digital Imaging and Communications in Medicine
DNA Deoxyribonucleic acid
DSC Dice similarity coefficient
[18F]FDG Fluorine-18-fluorodeoxyglucose
GI Gastrointestinal
HU Hounsfield units
irRC Immune-related response criteria
LDH Lactate dehydrogenase
MDPI Multidisciplinary Digital Publishing Institute
MRI Magnetic resonance imaging
OS Overall survival
PD Programmed death
PFS Progression-free survival
PET Positron emission tomography
ROC Receiver operating characteristic
SUVbw Body-weight-corrected standardised uptake values
SUVmax Maximum standardised uptake value
TLG Total lesion glycolysis
TMTV Total metabolic tumour volume
ULN Upper limit of normal
UZ Universitair ziekenhuis



Cancers 2023, 15, 4083 19 of 21

Appendix A

(a) (b)

(c) (d)

Figure A1. Kaplan–Meier curves and life tables based on a TLG at baseline below or above
400SUVbw·mL for OS (a) and below or above 700SUVbw·mL for PFS (b), a volume of liver metastases
at baseline below or above 30 mL for OS (c) and for PFS (d).
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