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Abstract—This paper introduces a novel rate-based variant of
homeostatic activity-dependent structural plasticity (HADSP) for
echo state networks. Despite its importance in brain development,
structural plasticity has been largely overlooked in artificial
neural networks. Our algorithm, although using only homeostatic
plasticity, let emerge principles of Hebbian learning. Our analysis
sheds light on the information processing capabilities of HADSP-
powered echo state networks and suggests that HADSP effectively
leverages the inter-relationships of the network’s inputs. The
study highlights the potential for rate-based HADSP to contribute
to the field of computational neuroscience and plasticity in echo
state networks. Furthermore, our findings highlight the crucial
role of structural plasticity in influencing network function
and organization and contribute significantly to the ongoing
research on leveraging plasticity for the advancement of reservoir
computing techniques.

I. INTRODUCTION

Homeostatic activity-dependent structural plasticity
(HADSP) is the ability of a network to change its structural
organization in response to a pattern of activity.

Structural plasticity refers to the brain’s ability to change its
connectivity through the formation or elimination of synapses,
which in the context of artificial neural networks translates
into changing a connection weight from 0 to a non-zero
value or vice versa. Structural plasticity is a fundamental
mechanism in the formation and maturation of biological
neural circuits during development [1] [2]. In the field of
neuroscience, the study of how structural plasticity contributes
to the development of neural circuits has been the subject of
significant scientific research [3]. It is known to happen so
that neurons maintain their homeostasis [2] and to be guided
by electrical activity [4]. Structural plasticity is particularly
puzzling in the context of artificial neural networks because
it is completely absent. Indeed, in the context of reservoir
computing and deep learning, the architecture of the neural
network is usually fixed, and learning occurs only through
changes in the strength of pre-existing connections.

This is particularly striking in the context of echo state
networks (ESNs), the rate-based version of reservoir comput-
ing. In ESNs, connections between neurons are generated ran-
domly, an approach that has been described as ”the antithesis
of the ’optimal’” approach [5]. And indeed, the use of random
weights is in stark contrast to the traditional approach of op-
timizing connections for maximum performance. As such, the
study of reservoir computing presents an important opportunity
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for research in plasticity, and recent studies have explored this
avenue by investigating the effects of various non-structural
plasticity rules on reservoir computation performance [6] [7]
[8]. Compared to previous studies, our work focuses on a
structural plasticity rule.

Hebbian learning and homeostatic plasticity are two funda-
mental mechanisms of neural plasticity that alter the strength
of connections between neurons based on their activity.
Hebbian plasticity focuses on extracting correlations from
sensory information, while homeostatic plasticity maintains
overall stability by balancing activity. The two mechanisms
are complementary [9] and contribute to the adaptiveness
of neural systems, yet the relationship between them is not
fully understood. Recent studies have shown that Hebbian
plasticity can emerge from homeostatic plasticity in spiking
neural networks [4] [10]. We build on this work to create a
rate-based HADSP algorithm and apply it in the context of
echo state networks.

This paper first presents the necessary background (sec-
tion II) for echo state networks and describes the rate-based
HADSP algorithm. We also introduce the main elements of our
experiment and the techniques used in this section. Section
III then offers an in-depth analysis of the algorithm and in
particular the different types of network configurations ob-
tained from HADSP. We show that HADSP leads to different
computational properties compared to a randomly instantiated
reservoir using the information processing capacity. In section
IV we show that our algorithm also implements a form of
Hebbian learning and test our algorithm on the Mackey-Glass
equations benchmark to demonstrate the capabilities of the
network to exploit the redundancy in its inputs to improve
performance on this benchmark.

This study drew inspiration from the field of computational
neuroscience, and as such, we use the terms state, activation,
activity and firing rate of neurons as synonymous.

II. BACKGROUND

A. Echo state networks

An illustration of the Echo state networks framework is
given in Fig. 1. It consists of n neurons. The evolution
of the vector states x of the n neurons is determined by
the interactions between the connection matrix W, the input
matrix Win, the input u[t], the bias vector b and the activation
function σ, combined in the following equation :

x[t+ 1] = σ(W × x[t] +Win × u[t]) + b (1)



Fig. 1. Schematic architecture of reservoir computing

We take σ as the hyperbolic tangent function. The purpose of
the bias term b is to enrich the dynamics of the network, it
is however kept low enough to not be preponderant. For this
paper, b is always a 1 × n vector, sampled randomly from a
normal distribution of mean 0.1 and standard deviation 0.1.
The dimensions of the other matrices are n × n for W and
1× n for Win.

Once W, Win and b are fixed, the desired output is obtain
through the following equation :

y[t+ 1] = Wout × x[t+ 1] + bout (2)

where Wout, bout are learned using ridge regression such
that the generated train output, y[t], closely approximates a
desired target output, ytarget[t] [5].

B. Presentation of the HADSP algorithm

1) Growing rule: This rule has been derived from a
computational neuroscience context with a spiking neural
network. In biology, the calcium concentration in the soma
of neurons is thought to be proportional to the firing rate
and to potentially impact the growth of dendrites and axons
[11] [10]. In this model, neurons have multiple synapses
of fixed weight. Similarly, in our algorithm, we consider
that neurons can have multiple connections between them.
A connection coming from node i to node j means that the
value wij = 0.05. However, the same pair of neurons can have
multiple synapses; thus if node j has k connections coming
from node i, wij = k ∗ 0.05. Finally, self-connections are not
allowed in our model.

We limit the maximum number of partners γ a neuron can
have, meaning that we always have k ≤ γ.

The value of a 0.05 weight increment is linked to the
input strength. Changing this value influences the regime’s
dynamics. This parameter should be kept low enough to
allow the HADSP to recombine the inputs without creating an
unstable regime. In the context of our experiments, a weight
increment value of 0.05 was found to be optimal. Every 100
steps, a growth indicator, ∆z, is calculated for each neuron
according to the following formula :

∆z = − 1

β
(⟨⟨⟨x⟩⟩⟩ − ρ) (3)

where ⟨⟨⟨x⟩⟩⟩ is the average of the state vector x over the
increment period. ∆z depends on two hyperparameters : the
growth parameter β and the target rate ρ.

Based on the resulting value of ∆zj of the j-th neuron, one
input connection is added if ∆zj < −1 or pruned if ∆zj >
+1.

Thus, when a neuron’s activity falls below the -1 threshold,
a new connection is established to increase its activity. The
creation of new connections is restricted to neurons that have
been identified as requiring additional connections. Among all
those possible partners, one is selected randomly to create a
new connection. Similarly, when a neuron’s activity exceeds
the +1 threshold, an existing connection is pruned in order to
decrease its activity. Note that the pruning of connections is
performed independently of the state of the neuron’s partners,
regardless of whether they also need to decrease their activity
or not. In other words, it does not take into account the relation
between the activities of the neurons pairs, which differentiates
it from Hebbian mechanisms.

2) On the need of excitatory neurons: The algorithm is not
effective in the presence of mixed inhibitory and excitatory
neurons. Indeed, since it aims to regulate the firing rate of
neurons through the creation and pruning of connections, it
requires a clear understanding of the effect of input on neuron
activity.

In order to increase the firing rate of a neuron, it is necessary
to determine whether the input will have a positive or negative
impact on the rate. The easiest option to ensure this is to make
sure previous neurons have strictly positive or negative output
to properly guide the process.

Consequently, we utilize only excitatory neurons, this choice
limits the computational properties of the ESN, in order to
maintain the desired level of interpretability and functionality
in the algorithm.

C. Experiments

1) Important characteristics of the reservoir: Key charac-
teristics to the reservoir behavior include the spectral radius
of W and the scaling of Win [5].

The spectral radius is the largest eigenvalue λi of the weight
matrix :

sr(W) =
n

max
i=1

|λi| (4)

It influences the rate at which information decays or amplifies
in the reservoir over time. Proper selection of the spectral
radius ensures that the reservoir is capable of producing good
output predictions. In practice, sr(W) is set to maximize
performance on a task, usually to a value around 1.

Input scaling of the weight matrix Win is important in echo
state networks because it affects the dynamic range of inputs
that are fed into the network. A properly scaled input ensures
that the inputs are within a range that allows the network to
capture the relevant information from the input signal. If the
input is not scaled properly, then the network may become
saturated, leading to distorted and inaccurate output.



In our context, input scaling is twice as important because if
the magnitude of the inputs is too high, the network activation
will already be too high and our algorithm will not be able to
combine them to reach the desired target activation. To define
the scaling of the inputs, we try to keep the perceived input
at a maximum amplitude, that is 3 times lower than the target
rate of our HADSP algorithm.

2) Information Processing Capacity: A first characteriza-
tion of information processing within our networks is through
the information processing capacity metric (IPC) [12]. The
IPC generalizes the linear memory capacity [13], and serves
as a quantitative measure of the network’s capacity for non-
linear computation and memory depth. For a network W
whose input is sampled from a uniform random distribution
in the range [-1,1], the capacity to reproduce one function z
is measured by :

CTX, z2
= 1− minW MSET [ẑ]

⟨z2⟩ T

(5)

where ⟨z2⟩T = 1
T

∑T
t=1 z

2[t]
The IPC is calculated by summing the capacities of a

projection of the input onto an orthonormal set of functions.
With this tool, our aim is to assess if and how the network

dynamics of a network that has been formed with HADSP are
different from a network whose weights are randomly sampled
from a uniform distribution.

3) Mackey-Glass benchmark: The IPC offers a task-
agnostic analysis of the computations a network performs
on uniform independent and identically distributed input se-
quences. In a second experiment, we evaluated how HADSP
adapted the network to non-independent and non-identically
distributed inputs and whether this adaptation could be benefi-
cial from a task-based perspective. For this analysis, we used
a benchmark that is consistent with those found in existing
literature [8] [14] even though direct comparison remains
challenging due to our model relying on excitatory connections
only.

We employ the Mackey-Glass series prediction task, a
widely utilized benchmark dataset derived from a time-
delay differential equation to evaluate the performance of
the HADSP generated network [15] [16]. The Mackey-Glass
attractor equations describe the dynamics of an endocrine
system and predict the concentration of a hormone in the
bloodstream over time :

du

dt
= β

u(t− τ)

1 + u10(t− τ)
− γu(t) (6)

where u(t) is the state of the system at time t, β and
γ are positive constants, and τ is the time delay. τ can be
adjusted to leverage the behavior of the system. We evaluated
the prediction performance for two values of the delay: one
resulting in mild chaotic behavior (τ = 17) and another in
strong chaotic behavior (τ = 30).

The task for this reservoir is k-step ahead prediction and
performance is evaluated using the Normalized Root Mean

Fig. 2. Evolution of the activity upon the effects of the activity-dependant
homeostatic plasticity for 5 randomly selected neurons. The blue dotted line
represents the target rate ρ. The activation value of the neurons is constrained
between the red lines of value ρ+ β and ρ− β

Square Error (NRMSE), a commonly used metric for evalu-
ating the accuracy of a model’s prediction. Mathematically, it
is defined as:

NRMSE =

√
1
T

∑T
t=1(y[t]− ytarget[t])2

std(ytarget)
(7)

where T is the number of samples, y[t] is the actual
value for the t-th sample, ytarget[t]s is the predicted value
for the t-th output of the network and σ(ytarget) is the
standard deviation of signal ytarget such that std(ytarget) =√

1
T

∑T
t=1(ytarget[t]− ⟨ytarget⟩T )2

III. ANALYSIS OF HADSP

A. Interpretation of the rule in a rate base context

Explaining the effect of the previous algorithm in a spiking
context [10] was challenging due to the inherently discrete
nature of spikes. In the following section, we demonstrate that
our rate-based rule is much more interpretable.

For each neuron i, the associated growth indicator ∆zi is
linked to its current firing rate xi.

∆zi =
1

β
(ρ− xi) (8)

In order to reach equilibrium, it is necessary for the growth in-
dicator to satisfy the condition ∆zi ∈]−1, 1[, which translates
mathematically to the following constraint for equilibrium.

xi ∈]ρ− β, ρ+ β[ (9)

Therefore, the equilibrium condition of the algorithm can
be directly related to its hyperparameters β and ρ. This is
illustrated in Fig. 2 where the HADSP influence causes the
activity of neurons to fall within the specific range that we
mentioned.

This interpretation can be extrapolated to spiking neural
networks, thus enhancing the comprehension of this set of
plasticity in this other context. For our context, we will see
in the following question that the behavior of the algorithm is
much clearer given this interpretation.

B. Different regimes

As previously mentioned, the hyperparameters of this al-
gorithm include the target rate, ρ, and the growth parameter,
β.



Fig. 3. Different regimes are observed when changing the values of the target rate ρ, and the growth parameter β and the corresponding regime colors.
Simulation was done over 15 000 steps for each graph. The y-axis shows the cumulative number of pruned or added connections and the difference between
them

One method for gaining insight into the behavior of an
algorithm is through the systematic manipulation of its hy-
perparameters. By varying the values of these parameters and
subsequently running the algorithm, distinct regimes within
the system can be identified. This approach not only allows
for a comprehensive examination of the algorithm’s behavior
under various conditions, but also facilitates a more thorough
understanding of its potential applications.

To probe the behavior we start from a randomly-initialized
connection matrix W sampled from a uniform distribution
between [0, 1], bias b is taken from a normal distribution of
mean 0.1 and standard deviation 0.1 and Win from a normal
distribution of mean 1 and standard deviation 0.5. We feed
the network with an input of size 1 × n randomly sampled
over a sequence length of T from a Poisson distribution
that scales in the [0, 1] range. Input scaling is set to 0.1
to ensure that the magnitude of the inputs is low enough
to let the neurons combine different entries to reach their
target rate ρ. Throughout the experiment, these parameters
remain constant and we repeat it for combinations of β ∈
[0.001, 0.01, 0.1, 0.3, 0.5] and ρ ∈ [0.1, 0.5, 0.7, 0.8, 0.95]. We

then examine the connectivity changes of the network by
tracking the number of connections that are created and pruned
at each iteration of the algorithm. The recordings of these
values are presented in Fig. 3. The maximum number of
partners γ has no influence on the cumulative number of
pruned or added connections because if we indeed limit the
number of partners, in our model neurons can have several
connections which means that γ does not limit the number of
connections but rather their distribution. For this experiment
we set γ = 12.

The graphical representation in Fig.3. allows for the visual-
ization of the algorithm’s dynamic behavior and also facilitates
a more intuitive understanding of the underlying processes.

We have identified five distinct regimes that emerge from
the HADSP mechanism, four of which are stable and one is
unstable. On some values, we observe that nothing happens
which is expected behavior as the target range is too broad
and every node activation falls within the range.

The stable regimes can be classified into two categories:
pruning plateaus and adding plateaus.

The pruning plateaus correspond to situations where the

TABLE I
SPECTRAL RADIUS OBTAINED AFTER RUNNING THE HADSP ALGORITHM FOR 15 000 STEPS, STARTING FROM A RANDOMLY DRAWN CONNECTION

MATRIX W, FOR EVERY COMBINATION OF β ∈ [0.001, 0.01, 0.1, 0.3, 0.5] AND ρ ∈ [0.1, 0.5, 0.7, 0.8, 0.95]. VALUES WERE AVERAGED OVER 10 TRIALS.

ρ
0.1 0.5 0.7 0.8 0.95

β

0.001 0.77 ± 0.04 0.85 ± 0.05 1.07 ± 0.04 1.23 ± 0.02 1.79 ± 0.006
0.01 0.90 ± 0.05 0.89 ± 0.03 1.10 ± 0.03 1.22 ± 0.02 1.8 ± 0.002
0.1 2.61 ± 4 0.87 ± 0.004 1.07 ± 0.004 1.20 ± 0.004 1.46 ± 0.002
0.3 0.62 ± 0.005 0.98 ± 0.001 1.02 ± 0.001 1.05 ± 0.003 1.15 ± 0.004
0.5 0.83 ± 0.002 1 1 1.03 ± 0.0002 1.03 ± 0.002



initial activity of the network is stronger than the target
activity, and the network prunes connections in order to lower
its activity. In cases where the input magnitude is particularly
strong compared to the target rate, the network may prune all
connections until none remain.

On the other hand, the normal pruning process may result
in the pruning of too many connections, requiring the creation
of new connections to maintain equilibrium. The adding
plateaus correspond to situations where the initial activity of
the network is weaker than the target activity, and the HADSP
mechanism is employed to add connections in order to increase
its activity. In some cases, the addition of connections may
need to be mitigated through pruning when the overall increase
becomes too high.

However, in some instances, the equilibrium of activity
cannot be reached due to the narrow range of the equilibrium
area, causing the network to continuously oscillate between
over and under the threshold of a suitable activity range
through quick pruning and adding of connections, leading to
an unstable regime.

Generally, if the algorithm fails to converge, the network
undergoes constant reorganization, leading to a changing dy-
namic over time. As a result, for a given input time series, the
network will not form a stable representation of the inputs,
making it impossible to train using the Ridge regression
method. The case β = 0.1, ρ = 0.1 in Table I offers a good
example of the unstable representation that can occur from
an unstable regime. For those values of β and ρ the spectral
radius varies between 0.25 and 12 over our 10 trials.

For values of β that are too low, the target range of activity
is too narrow for the algorithm to converge. When β value
is too high, the target band is not restrictive enough and the
algorithm shows almost no connection creation.

A good way to set the β and ρ is to choose them in order
to get a certain spectral radius. In table I we show the spectral
radius we achieved for our set of parameters after running the
HADSP algorithm for 15 000 steps. As a general guideline
for the rest of the experiments, we always set β value to 0.1,
which showed the most interesting behavior, and ρ value will
be at least 0.7 to ensure the echo state property.

C. Information processing capacity of HADSP

In accordance with theory, we used an input sequence
sampled from a uniform random distribution in the range [-
1,1]. To allow for accurate measurement, we used 106 time
steps and measured IPC using code provided by [12], details
of this implementation can be found in the related paper.

A comparative analysis was conducted to evaluate the
performance of networks generated by the HADSP algorithm,
starting from an empty connectivity matrix WHADSP(t =
0) = 0n×n with parameters β = 0.1 and ρ = 0.7. We
examined the impact of the maximum number of partners γ a
neuron can have on the IPC for γ ∈ [2, 8, 12, 20]. Although γ
does not change the dynamics of the scheme discussed earlier,
this parameter directly influences the sparsity and weight
distribution of the resulting network.

We generate connections by using a pretraining input sam-
pled from the same uniform random distribution in the range
[-1,1]. We freeze the weights and we use IPC to assess the
computational properties of the resulting ESNs.

We compare those networks with a last network generated
using a random distribution as the connectivity matrix. We
set the spectral radius and connectivity of this matrix to the
same value as the generated HADSP matrix with γ = 12 to
ensure they are comparable. The results presented in Fig. 4
show that that even though the two networks have similar
linear processing capacities, their nonlinear processing occurs
for lower degrees (less than 4) for the network generated with
HADSP. Therefore HADSP creates networks whose computa-
tional power is less nonlinear than a randomly drawn network.
Our analysis also reveals that as γ increases, the information
capacity becomes concentrated in the higher degrees (greater
than 4). The relative proportion of computation dedicated
to each degree remains largely consistent, suggesting that
the effect on computation should not be significant. For the
following experiments, we set this value to 12.

An analysis of the linear part of the IPC of the two neural
networks, showed in Fig.5 revealed that they should show
similar performances on memory-related tasks. These findings
are consistent with the memory capacity curves previously
reported in the literature. A curve similar to Fig. 5 can be
seen in [8]. It was also observed that the network generated
using the HADSP method exhibited a higher percentage of
computation for lower degree operations. Therefore, it can
be inferred that in scenarios where the task at hand does
not require a significant degree of non-linearity, the HADSP-
generated network may exhibit superior performances.

IV. ANALYSIS OF HEBBIAN MECHANISM

A. Hebbian like plasticity

We now discuss a 3 phased scenario to illustrate how
Hebbian plasticity can emerge from HADSP rule.

Step 1 : We start from a blank network W = 0n×n of
n = 100 excitatory neurons, bias b sampled from a normal
distribution of mean 0.1 and standard deviation 0.1, target rate

Fig. 4. Measured IPC in terms of non-linearity for a randomly generated
network generated network and an HADSP generated networks for different
values of the maximum number of partners γ. Values were averaged over 10
independent generations



Fig. 5. Memory curves for linear component only, averaged were taken over
10 independent trials.

ρ is set to 0.7 and a growth rate β to 0.1. The input value is
generated as white noise sampled from a Poisson distribution.
This leads the neurons to remodel their connections following
the HADSP algorithm until an equilibrium is reached.

Step 2 : From this equilibrium situation, we clamp a slightly
enhanced input (relatively to the remainder of the network) on
a portion of the network (neurons 51 to 60). This forces the
over-stimulated neurons to prune their incoming connections.

Step 3 : After equilibrium is reached again, the enhanced
input is removed, and the network is driven solely by input
noise again. The activity-dependent structural plasticity algo-
rithm then leads the previously stimulated neurons to establish
connections with each other.

In conclusion, this scenario, although exaggerated here for
the sake of demonstration, highlights that neurons regulated
by HADPS can developed intricate connections based on their
previous correlated over-stimulation. This outcome shows that
our algorithm, although purely homeostatic, display a form of
Hebbian learning.

We hypothesize that this Hebbian mechanism can improve
network performance. When presented with inputs that are
similar, the network can combine those inputs to create new
and more useful dynamics.

B. Prediction of chaotic time series

The inputs we have used so far did not contain any inher-
ent information. To further validate our hypothesis that the
HADSP algorithm can generate meaningful combinations of
otherwise redundant inputs, we turn to the popular benchmark
of Mackey Glass equations. The purpose is not to focus on
the performance on Mackey glass but rather to demonstrate
that the HADSP algorithm can exploit correlation in input
to improve performance. Therefore we didn’t systematically
optimise the hyperparameters of our ESNs.

As previously explained, the equations describing the net-
work are 1 and 2. We use a ”warm up” sequence prior to
training the reservoir. The training of the reservoir is then
done to forecast the subsequent time-step of the time-series
given solely the current time-step. The training procedure
utilizes ridge regression with a commonly efficient parameter
of r = 10−7. After training, the last state of the reservoir

TABLE II
NRMSE AVERAGED OVER 10 TRIALS, FOR MG-17 AND MG-30

BENCHMARKS FOR A NETWORK GENERATED RANDOMLY AND THROUGH
HADSP. THE NRMSE WAS CALCULATED USING 300 STEPS FOR THE

MG-17 AND 100 STEPS FOR THE MG-30

Model τ HADSP random

MG17 1 0.021 0.0075
30 0.57 0.52
100 0.73 0.67

MG30 1 0.0060 0.0043
10 0.53 0.50
30 0.41 0.40

during the training sequence is used the initial state for the
prediction sequence.

We let the network evolve for the pre-training time period in
an unsupervised manner utilizing the HADSP algorithm with
ρ = 0.8 and β = 0.1. As previously explained those values
are chosen to obtain a spectral radius that will ensure that
the networks produce a stable representation of their input,
meaning that the regime of connection formation converges
and that the dynamics of the network are healthy. For this
experiment, in order to capture the correlation in the time
series we choose a smaller increment of value 20 for our
rule, which means that the computation of Deltaz and the
following addition and pruning happen every 20 steps. Once
the plastic unsupervised learning process is completed, the
output weight matrix Wout is calculated in a supervised
manner utilizing the generated ESN to reproduce the signal
τ steps ahead.

We compare this first network with matrix WHADSP

against a additional networks Wrandom of equal size, n =
260, with same connectivity but whose with weights sampled
from a uniform distribution between 0 and 1, we scale the
Wrandom matrix so that its spectral radius is the same than
WHADSP. For the two networks the Win input matrix is
taken from a normalize distribution of mean 1 and standard
deviation 0.5 with connectivity of 0.5. For the two networks
the Win input matrix is taken from a normalize distribution
of mean 1 and standard deviation 0.5.

The results in Table II show that for the version of Mackey
Glass the HADSP algorithm never shows better performances
compared to the randomly instanciated network.

We use a modified approach for this benchmark where
the input is transformed into 130 separate inputs by using
Butterworth bandpass filters of a selected set of frequencies.
The idea is that from inputs that are similar, and thus do not
add to the overall richness of the reservoir, the HADSP will
be able to combine them into a more useful dynamic. We
have used the specific frequencies reported in [14] as band
frequencies for our model. A bandpass filter need a low and
high frequency to be defined. The lowest frequencies are:
flow = [0, 0.04, 0.015 : 0.02 : 0.075, 0 : 0.001 :

0.0995, 0.05 : 0.005 : 0.15, 0.15 : 0.1 : 0.55] π rad/sample
Where a : b : c means that the frequencies are ranged from

a to c with a step of size b.



Fig. 6. Evolution of the connectivity matrices during the experiment: After starting from a blank connection matrix, the neurons create connections between
themselves through a homeostatic mechanism. Larger inputs on neurons 51 to 60 force these neurons to prune their weights in order to achieve homeostasis.
Once the larger input is removed, the other neurons have already reached homeostasis, and neurons 51 to 60 mostly create connections within the depleted
area.

Fig. 7. Typical input curves for our experiment, here nodes 53 and 55
simultaneously received a higher input than node 98 which will eventually
result in 53 and 55 being preferentially connected.

And the highest frequencies are given by the following
relation:

fhigh =

{
flow + 0.01 if flow < 0.05

flow + 0.1 if flow ≥ 0.05
(10)

We obtain 130 different band-filtered inputs which examples
can be seen in Fig. 10. The size of the network was chosen
accordingly to n = 260 so that each incoming input signal is
assigned to only two nodes in the reservoir. The connectivity
matrix Win input matrix is taken from a normal distribution
of mean 1 and standard deviation 0.5. Fig.9 summarizes the
structure of the experiment.

Fig. 8. Setup for our experiments for the classic architecture

We generate a connection matrix through the HADSP
mechanism WHADSP+band of size n = 260 by the same
methods as the previous one with ρ = 0.8, β = 0.1, γ = 12,
and the increment of the algorithm set to 20 steps. Once
again, when the plastic unsupervised learning process has been
completed, the output weight matrix Wout is calculated in a
supervised manner utilizing the generated ESN and the 130
filtered inputs to reproduce the original Mackey glass signal
τ steps ahead.

Again we compare this network to a second matrix
Wrandom+band that we generate from a uniform distribution
between 0 and 1 with the same connectivity, we scale the
Wrandom+band matrix so that its spectral radius is the same
as WHADSP+band. used the same inputs as the first network,
and the Win input matrix is taken from a normal distribution
of mean 1 and standard deviation 0.5 with a connectivity of
1.

In this second study, the HADSP algorithm consistently
demonstrated superior performance to the other randomly
generated network for the MG-17 and MG-30 datasets, across
various steps ahead value τ . For the MG-30 dataset, the results
were less pronounced but the HADSP algorithm still achieved
favorable results even for larger time steps.

Those improvements were not due to hyperparameters
tuning and show that HADSP can improve performance on
specific types of data. Our interpretation is that the network
with HADSP was able to capture the correlation in the band-

Fig. 9. Setup for our experiments when we use band-filtered inputs for the
reservoir



Fig. 10. Typical time series and moving average obtained by applying a band
filter on the inputs

TABLE III
NRMSE AVERAGED OVER 10 TRIALS, FOR MG-17 AND MG-30

BENCHMARKS USING BAND-PASS FILTERS FOR A NETWORK GENERATED
RANDOMLY AND ANOTHER+ THROUGH HADSP. THE NRMSE WAS

CALCULATED USING 300 STEPS FOR THE MG-17 AND 100 STEPS FOR THE
MG-30

Model τ HADSP+band random + band

MG17 1 0.0022 0.0040
30 0.096 0.10

100 0.44 0.47

MG30 1 0.035 0.038
10 0.15 0.17
30 0.24 0.24

filtered data and use it to improve performance.

V. CONCLUSION

We proposed a novel rate-based variant of homeostatic
activity-dependent structural plasticity (HADSP), drawing in-
spiration from previous literature in computational neuro-
science and spiking neural networks. This rate-based model
can reproduce the key behavior of its spiking equivalent and is
much more interpretable. We have provided a clear explanation
of the interpretability of our rate-based rule by explicitly
describing how the hyperparameters constrain the behavior of
the network.

We postulated that this rate-based HADSP algorithm can
enhance the dynamics of a reservoir computing network by
combining redundant inputs into unique and useful ones. To
test this hypothesis, we present a thorough examination of
the computational properties of networks generated entirely or
partially with HADSP. This approach allowed us to prove that
the networks created through HADSP show indeed different
computational behavior than the ones instantiated through
random uniform distributions, in particular networks generated
with HADSP exhibit a lower degree of nonlinearity compared
to randomly generated networks. We further validated our
hypothesis by applying our network to the Mackey Glass
benchmark. Our results show that when two HADSP networks
are presented with either the Mackey Glass time series or
an equivalent representation of multiple band-filtered Mackey
Glass inputs, the latter one exhibits better performance.
We conclude that HADSP effectively leverages the inter-
relationships of network inputs to achieve richer dynamics,

which is a result of the network’s ability to synthesize inputs
that reflect similar dynamics.

Our findings demonstrate the potential for a novel rate-based
variant of homeostatic activity-dependent structural plasticity
to effectively leverage the inter-relationship of network inputs.

For future work, we plan to expand on this promising
direction and systematically evaluate the performance of the
algorithm on a diverse set of tasks and benchmarks, including
other plasticity-based network constructions. This will allow
us to gain a deeper understanding of the effectiveness and
limitations of the algorithm. Furthermore, we plan to explore
the conditions under which the algorithm can improve per-
formance and investigate the underlying mechanisms behind
this improvement, in particular the complementarity between
Hebbian learning and homeostasis mechanisms. Our goal is
to establish a comprehensive understanding of the rate-based
HADSP algorithm and its potential applications in the field of
reservoir computing.
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[5] Mantas Lukoševičius. A practical guide to applying echo state networks.
In Lecture Notes in Computer Science, pages 659–686. Springer Berlin
Heidelberg, 2012.

[6] Gregor M. Hoerzer, Robert Legenstein, and Wolfgang Maass. Emer-
gence of complex computational structures from chaotic neural net-
works through reward-modulated hebbian learning. Cerebral Cortex,
24(3):677–690, nov 2012.

[7] Andreea Lazar. SORN: a self-organizing recurrent neural network.
Frontiers in Computational Neuroscience, 3, 2009.

[8] Guillermo B. Morales, Claudio R. Mirasso, and Miguel C. Soriano.
Unveiling the role of plasticity rules in reservoir computing. Neurocom-
puting, may 2021.

[9] Michael Fauth and Christian Tetzlaff. Opposing effects of neuronal
activity on structural plasticity. Frontiers in Neuroanatomy, 10, jun 2016.
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