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Abstract—Time delays are inherently present in any physical
or biological network. However, the role of delays in echo state
networks (ESNs) has only been touched upon. In recent years,
the use of local plasticity has been explored in the field of
reservoir computing, and specifically in ESNs. In this paper, we
investigate the role of distance dependent inter-neuron delays
in adaptive reservoirs. We introduce a novel ESN design called
adaptive distance-based delay network (ADDN), that combines
inter-neuron delays with local synaptic plasticity in the reservoir
weights using a delay sensitive version of the Bienenstock-Cooper-
Munro (BCM) rule. We show that ADDNs perform better on
prediction tasks compared to ESNs, regular distance-based delay
networks, and ESNs with conventional BCM connections. We
optimized the hyperparameters of ADDNs and each of the
baseline models using covariance matrix adaptation evolution
strategy (CMA-ES). We prove that with ADDNs, we can evolve a
single set of hyperparameters that can generate networks which,
after unsupervised adaptation, can obtain good performance on
different Mackey-Glass sequences with a range of different time
constants. By adapting its reservoir weights to the dynamics of
the input data, ADDNs can generalize between versions of the
same “class” of tasks.

Index Terms—Echo state networks, Distance-based delays,
Local plasticity, BCM, Delay-sensitive BCM

I. INTRODUCTION

Echo state networks (ESNs) [1] were originally introduced
as an alternative way to train recurrent neural networks. Instead
of optimising all weights in a supervised way, conventional
ESNs do not require any training of the reservoir weights
or the weights that feed the inputs into the reservoir. These
are randomly sampled from a chosen distribution and fixed
throughout use. Only a task-specific readout layer is trained,
which in most cases involves a linear regression between input-
driven network activity and corresponding labels. Estimating
the weights of a readout layer is usually quick and requires
relatively few training samples.

ESNs later became part of the larger field of reservoir
computing, which now covers theoretical simulated dynamical
systems as well as a wide variety of physical implementations
in different substrates. This physical reservoir computing [2],
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[3] uses the reservoir computing paradigm to optimally exploit
the existing interactions and dynamics of hardware implemen-
tations. Provided the internal dynamics and time scales of the
reservoir match the time scales of the input signals, physical
reservoir systems have been argued to perform well on time
series data, and could prove especially beneficial in terms of
speed or power consumption.

Throughout the evolutions, ESNs have often remained
the chosen model system to quantify the effect of varying
system parameters ([4]–[6]) or to demonstrate new learning
paradigms ([7], [8]). However, one key difference between
ESNs, and both their biological and physical counter-parts, is
that they lack inter-node delays. Instead, they are normally
simulated in discrete time. Depending on the form of the
state update equations, all delay is collapsed into either the
nodes or the connections and each such delay equals one
simulation time step. Instead, physical interconnection delays
are usually distance-dependent and in many physical media,
interconection delays are non-negligable and in some cases
even dominant. The recently introduced, biologically-inspired
distance-based delay networks (DDNs) [6] use such naturally
distributed delays, which can in fact be optimized to improve
ESN performance.

A single ESN can be viewed as a sample from a distribution
of possible ESNs, defined by its hyperparameters. As such,
each individual ESN can be viewed as a single sample from a
distribution of possible ESNs, defined by the hyperparameters.
These control, for example, the scaling of the different types of
weights. These hyperparameters determine the computational
properties of the reservoirs and are usually optimized for each
task. Although training a readout-layer for a single network is
quick, hyperparameter optimization is usually a lengthy pro-
cess: each evaluation requires simulating activity for training
and validation of the readout layer. The fact that the chosen
hyperparameters are task specific greatly limits their practical
use. For example, real problems may present variations in
dynamics depending on context-dependent variables, even
when sampled from slightly different versions of the same task
(e.g., forecast of temperatures in different locations). Although
ESNs, like any other machine learning model, generalize to
unseen data, this only happens reliably when the source data



and target data have similar statistics and dynamics. Trying to
optimize a generic set of ESN hyperparameters results in poor
generalization between different versions of the same task, as
we show later in this paper.

Using synaptic plasticity in reservoir weights has been
shown to improve performance by adapting to the dynamics
and patterns of the input data [9]–[12]. DDNs on the other
hand, improve performance by introducing delays which can
be optimized for a task.

In this paper, we introduce a novel ESN model called
Adaptive Distance-Based Delay Networks (ADDNs), which
combines recently proposed multi-reservoir DDNs with the
biologically inspired concept of local synaptic plasticity. We
hypothesize that combining these two features will result in
better representations of input dynamics in ADDN reservoirs,
by matching both delays and reservoir weights to the task
at hand. This should result in better performance on harder
temporal tasks.

Specifically, we propose a delay-sensitive version of the
Bienenstock-Cooper-Munro rule [13] (delay-sensitive BCM)
to update reservoir weights based on input data dynamics.
This aims to learn sequence-specific temporal patterns. We
hypothesize that ADDNs can be optimized to generalize
between different versions of the same task.

In order to investigate this, we optimize the hyperparameters
of models with and without delays and/or plasticity using
covariance matrix adaptation evolution strategy (CMA-ES)
[14]. This evolutionary optimization strategy, combined with a
multi-reservoir architecture allows ADDNs to evolve different
synaptic learning rates (as hyperparameters) for each set of
weights between and within all sub-reservoirs. This flexibility
results in solutions that have both adaptive and fixed reservoir
weights.

Our results show that ADDNs outperform our baseline
models, especially in more chaotic (and otherwise difficult to
predict) versions of the well-known Mackey Glass [15] time
series prediction task. Moreover, we show that distance-based
delays in combination with BCM plasticity obtain better task
performance than these two adaptations separately, i.e., we
find an interaction effect between these two mechanisms on
task performance. We find that ADDNs can generalize better
than previous models by adapting reservoir weights using local
unsupervised learning rules.

The remainder of this paper is organised as follows. In Sec-
tions II and III respectively, we discuss the role of delays and
plasticity in ESNs. We describe the design and implementation
of our ADDN and baseline models in Section IV, and the
experimental setup used to validate our model in Section V.
We present our findings in Section VI and conclude with VII.

II. DISTANCE-BASED DELAY NETWORKS

An essential component of ADDNs are delayed and dis-
tributed signal propagation speeds. This mechanism was in-
troduced in [6] as an extension to the Reservoir Computing
framework, implemented using ESNs as a starting point. The
resulting distance-based delay networks (DDNs) consist of

TABLE I
ADDN HYPERPARAMETERS AS A FUNCTION OF NUMBER OF RESERVOIR

CLUSTERS K .

Standard ESN hyperparameters
Name Symbol Shape Description
Weight scal-
ing

Sw K by K Element Sw,ij is the scaling fac-
tor of the reservoir weights from
cluster i to cluster j.

Bias scaling Sb K Scaling factor of the bias weights,
defined per cluster.

Connectivity C K by K Element Cij specifies the frac-
tion of non-zero weights from
cluster i to cluster j.

Decay a K Element ai specifies the decay
parameter from Equation 1 for
cluster i.

Location-related hyperparameters
Name Symbol Shape Description
Component
means

µl K by 2 Neuron location mean of each
GMM component.

Component
variance

σ2
l K by 2 Neuron location variance along

the x- and y- axis of each GMM
component.

Component
correlation

ρl K Neuron location correlation be-
tween x- and y-axis of each
GMM component.

Mixture
weights

ϕl K GMM-specific mixture weights,
determine the probability that a
sampled neuron belongs to a spe-
cific component.

BCM-related hyperparameters
Name Symbol Shape Description
Learning rate L K by K The learning rates are multiplied

with dW
dt

. Element Lij is mulit-
plied with the weights from clus-
ter i to cluster j.

θ-scaling y0 K Element y0,i specifies the value
y0 from Equation 5 for cluster i.

neurons characterized by a physical location in either 2D or
3D space. DDNs are generated by first sampling the neuron
coordinates. Based on these neuron locations, distance-based
inter-neuron delays are computed. These are then discretized
according to a chosen simulation timestep. As such, the delays
themselves are not optimized, but instead follow from the
sampled neuron locations.

The network activation of DDNs is formalized as follows:

x(n) = (1− a)x(n− 1) + aσ(y(n− 1)) (1)

y(n) =

Dmax∑
d=0

(
Wres

D=dx(n− d) +Win
D=dv(n− d)

)
+ bres

(2)

with x(n), a, σ(·), v(n), and Dmax being respectively, the
reservoir activity at time n, the decay rate, the sigmoid
activation function, the input at time n, and the maximum
delay. Lastly, y(n) is the pre-activation, i.e. the sum of all
neuron inputs before applying the activation function. In our
experiments, Dmax = 23. WD=d refers to a masked weight
matrix, where all elements corresponding to connections with
a delay different from d are set to 0.



In [6], the neuron locations are sampled from a Gaussian
Mixture Model (GMM), leaving only the GMM parameters to
be optimized (i.e., mixture components, covariance matrices
and component means) instead of the individual neuron loca-
tions. Although other means of encoding neuron locations are
possible, using a GMM results in naturally clustered neurons.
Moreover, it is known from which component/cluster each
neuron is drawn. The reservoir is divided into subsets of
neurons from the same cluster. These subsets are treated as
separate interconnected reservoirs, thus resulting in a multi-
reservoir system, similar to other presented multi-reservoirs
such as [7], [8], [16]. Instead of defining ESN hyperparameters
on the whole set of neurons, separate sets of hyperparameters
can be defined for each cluster. Parameters related to neuron
connections, such as connectivity (i.e., the fraction of non-
zero weights) and weight scaling, are defined as matrices, with
the element from row i and column j being the connectivity
between cluster i and cluster j. In the case of connectiv-
ity, the diagonal of such a matrix denotes the intra-cluster
connectivity, and the non-diagonal elements specify the inter-
cluster connectivity. A summary of the DDN hyperparameters
and their respective shape can be seen in the first and second
section of Table I. Here, K refers to the number of Gaussian
components we use for the DDN, and consequently how many
neuron clusters the DDN has. It can also be interpreted as the
amount of reservoirs our multi-reservoir DDN contains.

III. LOCAL LEARNING RULES IN ESNS

In contrast to using fixed weights, the benefit of using
adaptive reservoir weights has been shown before [9]–[12]. In
these implementations, biologically inspired neural plasticity
rules are used to update the weight matrix as a pre-training
step. This is usually done with learning rules that only de-
pends on local neuronal activity (i.e., pre- and postsynaptic
activity) rather than a global error function. Several different
implementations of synaptic plasticity have been explored in
ESNs, including the Oja rule, anti-Oja rule, and BCM rule
[9]–[12].

The original BCM rule for a single post-synaptic neuron is
defined by the following equations [13].

y =
∑

i wixi
dwi

dt = y(y − θM )xi

θM = Ep[(y/yo)]
(3)

Here, y is the activity of a neuron with a linear activation
function, xi is the ith presynaptic neuron activity, wi is the
connection weight between xi and y, θM is an adaptive
threshold, and y0 is the target activity for neuron y. We choose
p = 2. We formalize this for a population of ESN neurons
rather than a single postsynaptic neuron as follows:

∆W = η ⊙ x(n)⊙ (x(n)− θM (n))xT(n) (4)

θM (n) = E2[(x(n)/yo)] ≈

(
1

T

T∑
t=0

x(n− t)

yo

)2

(5)

Where ⊙ is the element-wise multiplication operator, η is the
matrix of learning rates, x(n) is the population activity, and
E[x] denotes the expectation value of x. Here, instead of using
the single, postsynaptic activity y, we use the vector of all
neuron activities at time n: x(n). Instead of the presynaptic
activity xi, we use the transpose of the neuron activity vector.
Hence, the multiplication of postsynaptic-derived values with
presynaptic values becomes an inner product. Multiplications
between different postsynaptic activity-derived values (i.e., y
and y − θM ) become element-wise multiplications at popula-
tion level. Furthermore, in Equation 5 we estimate Ep[(y/yo)]
using an average over a fixed time window of size T . Note
that we also include a learning rate, which, along with y0
is now dependent on new hyperparameters that need to be
optimized similar to how the DDN parameters are optimized.
Specifically, for all weights that go from cluster i to cluster j,
η = Lij , where L is a matrix of hyperparameters (see Table
I). Similarly, for all neurons in cluster i, y0 = y0,i, where y0

is a vector of hyperparameters. Optimizing learning rates for
each cluster-pair means we can naturally arrive at reservoirs
that have both fixed and plastic connections, and anything in
between. As such, it is possible to obtain deep architectures,
similar to [8].

IV. MODELS

In this section, we present the design of the different models
we compare in this paper. Given our hypotheses presented
in Section I, we want to study the effect of using synaptic
plasticity in DDNs (our novel ADDN), compared to regular
DDNs (as described in [6]), regular ESNs with synaptic
plasticity (as in [10]), and a standard ESN. In the remainder
of this section, we describe the design of these four models.

In the case of standard ESNs, task-specific reservoir hyper-
parameters need to be optimized. The most important of these
parameters is the spectral radius of the reservoir (defined in
[1]), which governs the scaling of reservoir weights. These
weights are typically sampled from a uniform distribution, and
are then scaled to achieve the desired spectral radius. After
the initial scaling, the weight matrix is fixed. Spectral radius,
along with other ESN hyperparameters such as input weight
scaling, bias scaling and connectivity, need to be optimized for
a specific task. An overview of ESN hyperparameters can be
seen in the first section of Table I. It should be noted that our
baseline ESN is in fact a multi-reservoir ESN. Specifically,
we use the same clustered hyperparameter representation as
described for DDNs in Section II. In fact, our baseline ESN is
simply a DDN with all of its delays set to 1 simulation step.
As a consequence, the advantage of using multiple clusters for
optimizing ESN hyperparameters will be present in all models
and will not interfere with the variables that we actually want
to research (i.e. plasticity and delays), allowing for a fair
comparison between our four models. For all models we will
use 6 clusters (i.e., K = 6 in Table I) and 300 neurons per
reservoir.



A. Delay-Sensitive BCM

We implement synaptic plasticity in ADDNs using the
BCM rule. We have to make some additional adaptations to
Equation 4 in order to fit within the DDN framework. First,
we have to formalize BCM on a reservoir of sigmoid neurons
with delayed connections (as shown in Equations 1 and 2).
Secondly, note that the change in weight is dependent on
current pre- and postsynaptic firing rate. Although we have
this firing rate readily available, the original BCM rule aplies
only for network simulations without delays. However, if we
would use BCM in DDNs without further change, we would
disregard the delay that is applied to the pre-synaptic activity.
In that case, we actually consider synaptic activity that has not
yet arrived at the “synapse” that we are modelling. To account
for this, we introduce a delay-sensitive BCM rule, which we
formalize similarly to Equation 4:

∆WD=d = η ⊙ x(n)⊙ (x(n)− θM (n))xT(n− d) (6)

Where x(n) is the population activity as obtained from
Equation 1. We thus select the pre-synaptic activity of di
timesteps ago, where di is the delay applied by connection
i. This is explained in more detail in Figure 1. Hence, our
delay-sensitive BCM rule leads to increased weights when
high pre-synaptic activity is followed by high post-synaptic
activity, exactly di steps later. It should be noted that in our
implementation, the historical network activities are saved in
a buffer up to x(n −Dmax), so the term x(n − d) is readily
available for computing the delay-sensitive weight update.

Fig. 1. Diagram showing the flow of activity through the connection between
neuron A and neuron B, with a connection that applies d simulation steps of
delay. Here, xA(n) and xB(n) are the neuron activity at time n of neuron A
and B respectively. Assuming that the synapse with weight wAB is located on
the “body” of neuron B, the weight update for ∆W should depend on local
activity. For the postsynaptic activity, we simply use xB(n). However, the
presynaptic activity that is present at this location has already been delayed
by d simulation steps. Hence, as described in Equation 6, for the presynaptic
activation we use xA(n− d).

For the ADDNs, we need to optimize standard ESN hy-
perparameters, location related (DDN) hyperparameters, and
BCM-related hyperparameters (i.e., all rows from Table I)

V. EXPERIMENTAL SETUP

A. Task

To validate our ADDNs, we use them to predict the state
of Mackey-Glass series, described by Equation 7.

dx

dt
= β

x(t− τ)

1 + x(t− τ)n
− γx(t) (7)

The parameters β, τ, n, γ are real, positive numbers and x(t)
is the state of the system at time t. Here, the goal is to predict
the future states x of such a series based on the current and
previous states.

The Mackey-Glass equations are often used as a bench-
mark task for ESN evaluation [10], [17]. The equation can
display different periodic or chaotic behaviours, depending
on the parameters. As such, varying these parameters can
result in qualitatively different problems, presumably with
different modelling requirements. Notably, when validating
our ADDNs, we intentionally train and test our models with a
range of Mackey-Glass series with different parameter settings
to show potential to generalize over a class of tasks rather than
a single task.

After training the readout, we use our ADDNs to perform
blind prediction on Mackey-Glass series (see for example
[17]). After a warm-up phase, the first input to the ADDN will
be the first value from a Mackey-Glass sequence. The ADDN
predicts the following state. This prediction is then used as
the new input. Due to the fact that any prediction error is
fed into the input, this error will compound over time. Our
performance measure is the prediction horizon, defined as the
amount of steps that the ADDN can predict using the previous
prediction as input (i.e., blind predictions), while maintaining
an absolute error lower than a chosen error margin. In this
paper, we chose an error margin of 0.1 · σ2

l , where σ2
l is the

variance of the labels (i.e. the Mackey-Glass sequence to be
predicted).

B. Hyperparameter optimization using CMA-ES

Similar to the approach presented in [6], [12], we op-
timize these hyperparamters using CMA-ES [14]. This is
an evolutionary algorithm that is well suited for non-linear
and non-convex optimization problems such as the one at
hand. All parameters shown in Table I are first scaled to
the same range and serialized/flattened into one vector. These
are then optimized through CMA-ES using the prediction
horizon as the fitness measure. Since we want to compare
the performance of different types of networks, we perform
a CMA-ES run for each model type, namely, standard ESNs,
DDNs, standard ESNs with BCM connections, and ADDNs.
We use a population size of 20, and run the evolution for
100 generations. For each of these four models, we measure
the performance of 20 candidate hyperparameter solutions
provided by CMA-ES. Five networks are sampled from each
candidate. For the adaptive models (i.e., the ADDNs and
regular ESNs with BCM connections), the reservoir weights



are learned (unsupervised) based on five Mackey-Glass se-
quences of 500 timesteps. For each sequence, this unsuper-
vised learning phase is done by first presenting 400 warm-up
samples while keeping the reservoir weights fixed. Then the
following 500 samples are presented serially, while updating
the reservoir weights at every simulation step, according to
Equation 4 or 6 (for respectively BCM networks or ADDNs).
After this unsupervised phase, the reservoir weights are fixed
again. The readout weights are trained by teacher forcing,
using five sequences of 1000 samples, with the teacher signal
being the same as the input signal, but shifted ahead by one
timestep. In the case of the non-adaptive models (i.e., the
DDNs and regular ESNs) the readout weights are trained using
five samples of 1500 timesteps, such that the total amount
of training samples (supervised samples plus unsupervised
samples) are equal between adaptive and non-adaptive models.
All training sequences are generated using Equation 7, for each
network separately, with a randomly selected starting value
x(0) (sampled from a uniform distribution between 0.5 and
1.2), β = 0.2, n = 10, γ = 0.1, and a random value for τ ,
sampled from a uniform distribution between 12 and 22. In
the case of the adaptive models, the same value for τ is used
in the unsupervised stage as in the teacher-forcing stage.

After training, the prediction horizon of each network is
measured on five validation sequences of 500 samples (each
preceded by 400 warm-up samples, with the same Mackey-
Glass parameters as the sequences used for training (except
for the starting value, which is picked randomly). We define
the performance of this network as the average prediction
horizon over the five validation sequences. Note that, due
to the size of the validation sequences, in our experiments
the theoretical maximum prediction horizon is limited to 500
steps. To determine the fitness of each candidate in a CMA-ES
generation’s population, we take the average performance of
the five networks sampled from the respective hyperparameter
set.

C. Evaluation

We select the hyperparameters resulting in the highest
validation performance achieved during evolution. Based on
these best parameters, 100 different networks are sampled,
which are evaluated on 10 different test datasets. Each test set
contains five Mackey-Glass sequences with random start value
between 0.5 and 1.2, consisting of 500 samples each. Each test
set is generated from a Mackey-Glass equation with a different
(integer) τ , ranging from 12 to 22. We report the average
performance on all 10 test sets, as well as the performance
on each test set separately. For each τ , the network is first
retrained using the same procedure as during hyperparameter
optimization. Then, the trained network is evaluated using
the corresponding test set (i.e., with the same Mackey-Glass
parameters).

VI. RESULTS

In the following subsections, we present the experimental
results for each of the four model types separately and compare

their performances. The average prediction horizons of each
model type can be seen in Table II. We present the test
performances of our models in Figures 3, 4, and 5.

TABLE II
AVERAGE PREDICTION HORIZON PER MODEL, TESTED ON 100 NETWORKS.

BCM Variable Delay Prediction Horizon

False False 54.25
True 168.75

True False 91.00
True 291.21

Fig. 2. Validation performance throughout evolution. The graphs show the
prediction horizon on the validation set of the best performing candidate for
each generation of the CMA-ES evolution run, for each of the four models.

Fig. 3. Test performance of best candidates averaged over all test sets. The
x-axis indicates whether distance-based delays were used, and the color of
the graphs shows whether BCM connections were used. The y-axis shows the
number of time steps the models were able to predict while remaining within
the chosen error margin of .1σ2

l . The error bars represent the confidence
intervals.

It should be noted that the error bars in our figures denote
the confidence intervals. However, the standard deviation of
the prediction horizons was much larger. This can be explained
by the fact that, due to the inherent randomness of reservoirs,
some of the initialized networks perform considerably below
average. Hence, none of the models had normally distributed
test performances, instead having multiple modes. We found
standard deviations of 125.0, 189.3, 152.0, and 164.2 steps for
respectively baseline, DDN, BCM, and ADDN networks.



Fig. 4. Test performance of best candidates on separate Mackey-Glass
sequences with varying values for τ . The x-axis represents the value chosen
for τ in Equation 7 to generate the training and test sequences. The y-axis
is the amount of blind prediction the models were able to predict while
remaining within the chosen error margin of .1σ2

l . The error bars represent
the confidence intervals.

A. Baseline Multi-ESN

We present the validation performance of our baseline
model, averaged over each generation’s population of can-
didate hyperparameters in Figure 2, represented by the blue
dashed line. Note that this validation performance is an
average over networks that have been trained and validated
on sequences with different, randomly selected values for τ .
Given the earlier discussed additional difficulty this introduces,
our baseline model cannot be compared against Mackey-Glass
performance of other ESNs presented in the literature and as
such, we will focus on comparisons between the different mod-
els presented in this paper. Indeed, we note that the population
average of the validation performance for the baseline ESN
remains low throughout evolution. This shows that finding a
common set of hyperparameters which generalizes well to dif-
ferent time constants poses a significant challenge for regular
ESNs. For the baseline ESN, the highest validation score was
achieved in generation 62, with an average prediction horizon
of 193.9 timesteps for the best individual of this generation.
The 100 networks sampled from the best hyperparameters
achieve an average prediction horizon over all test sets of 54.3
timesteps. We present the average prediction horizon for each
test set separately in Figure 4, as the blue line. We observe a
downward trend in prediction horizon when increasing τ . This
is to be expected, because in general, smaller time constants
result in more predictable and periodic behavior, whereas
larger time constants can result in more erratic and chaotic
behavior [15].

B. BCM model

We refer again to Figure 2 for the validation performance of
the BCM model. Compared to the baseline, we observe a faster
increase and a higher final validation performance, becoming
especially prominent after generation 60. The highest valida-
tion score was achieved in generation 74, with an average
prediction horizon of 302.8 steps for the best candidate. As
such, this confirms earlier findings from [9]–[12]: evolving

local learning rules in reservoirs benefits the task performance
compared to only learning a readout layer using teacher
forcing. Moreover, we prove this while also keeping the total
amount of training samples constant between the adaptive and
non-adaptive models, which suggests that using part of the
available training data for unsupervised reservoir adaptation is
a more efficient use of training data than teacher forcing with
the entire training set.

In Figure 4, we see that the BCM networks (in green)
score higher than the baseline networks for τ ∈ [12, 16].
This suggests that, as sequences grow more chaotic and the
task becomes more difficult, the benefits of local learning
are diminishing. It could however also be that more samples
for unsupervised learning are required to see improvement
from using BCM connections, hence further experimentation
is required in this regard.

C. DDN

The next jump in performance can be seen in the DDN
models. In Figure 2, we see that the validation performance
of the DDNs grows quickly from the first generations, with
a higher maximum validation performance compared to pre-
viously discussed models. The best performing parameter
set was found in generation 75, with an average prediction
horizon of 445.80 steps. Average DDN performance on the
test sets was 168.6 steps. DDNs score consistently higher on
the test sets across all τ values compared to baseline and BCM
models (see Figure 4). However, the largest increase in test
performance is seen in lower τ values. This further strengthens
the claims made in [6]: distance-based delays can be optimized
to improve performance on temporally difficult tasks.

D. ADDN

From the four models we have tested, the newly introduced
ADDNs perform best. During evolution it achieves the highest
validation score of 475.2 in generation 92. Although the best
performing candidate is found in generation 92, in Figure 2
we see that the validation performance grows quickly until
approximately generation 40, after which growth continues but
slows down.

For the best candidate hyperparameters, we achieved an
average test performance of 291.2 steps averaged across all test
sets, making this the best-performing model. Looking at Figure
4, we again notice a consistent increase in test performance
compared to previously presented models. However, this time
the highest benefit (compared to the DDN model) can be seen
for higher values of τ . This suggests that ADDNs are better
suited for harder, more chaotic tasks. Hence, we confirm our
hypothesis that combining Hebbian learning rules in reservoirs
(specifically BCM) with distance-dependent delays, results in
a model that is better suited to learn chaotic dynamics at larger
timescales. By adding BCM to the baseline model, it becomes
possible for the network to adapt its reservoir weights to better
capture the input dynamics. Adding variable distance-based
delays to the baseline model also improves task performance,
possibly explained by an increase in memory capacity (as



suggested by [6]). However, we find the largest benefit when
combining these two features. By using our newly introduced
delay-sensitive BCM rule, the networks can co-adapt weights
with the available delays to better represent input dynamics
during the unsupervised stage, while also co-evolving learning
rates and neuron distances during the hyperparameter opti-
mization stage. However, the exact mechanism leading to this
substantial increase in performance requires further research.

E. Interaction

In Figures 3 and 5, we present interaction plots for, respec-
tively, the test performance averaged over all values of τ and
for each τ separately. We see in Figure 3 that the difference
in performance between models with adaptive reservoirs and
models with fixed reservoirs is greater when using distance-
based delays, which suggests an interaction effect between
these two features. However, in Figure 5 we note that the
size and direction of this interaction effect changes drastically
across the different τ values. We observe a negative interaction
for τ = 12, followed by no interaction from 13 to 15, and
positive interaction for τ > 15. This suggests that the use
of delay sensitive BCM is especially useful for harder, more
chaotic tasks, while not offering as much benefit for easier,
more periodic sequences.

F. Generalization

Because Mackey-Glass task with random time constants is a
task that inherently requires generalization across datasets with
different dynamics, we can conclude that any performance
increase consistent across different time constants (see Figure
4) implies better generalization capacities. As such, we can
confirm our second hypothesis, namely that the addition of
BCM to reservoirs allows us to generalize to different datasets,
by first adapting the reservoir to the dynamics of that dataset
through an unsupervised learning phase prior to teacher forc-
ing. More specifically, this adaptation phase is more effective
when combined with evolved delays.

VII. CONCLUSION

In this paper we introduced ADDN, a novel approach
to multi ESN systems that combines distance-based delays
and delay-sensitive BCM connections in a multi-reservoir
architecture. We optimize the hyperparameters of ADDN,
along with a baseline ESN, an ESN using normal BCM
connections, and DDN with fixed reservoir weights, using
CMA-ES. While evolving these hyperparameters, we estimate
the fitness of each candidate solution of these four models
by measuring system approximation performance on Mackey-
Glass sequences with a randomly sampled time constant τ .
Here, the aim was to find a single set of hyperparameters
for each model type, capable of producing networks that
can generalize well between Mackey-Glass sequences with
different time constants. We show that, of the four tested
model types, ADDN performs best, having the highest overall
prediction horizon, and the highest prediction horizon for
each time constant separately. This consistency in performance

Fig. 5. Alternative representation of Figure 4, using interaction plots. The
x-axis indicates whether distance-based delays were used, and the color of
the graphs shows whether BCM connections were used. The y-axis shows the
performance in terms of prediction horizon within the chosen error margin.
The error bars represent the confidence intervals.

across time constants suggests that ADDNs have superior
generalization capabilities. This confirms our hypothesis that
the delay sensitive BCM allows us to generalize to different
datasets, by first adapting the reservoir to the dynamics of that
dataset through an unsupervised learning phase prior to teacher
forcing. Moreover, we show that the addition of delay-sensitive
BCM to DDNs leads to a larger increase in performance
compared to adding regular BCM to conventional ESNs. This
suggests an interaction effect between the two mechanisms,
confirming our second hypothesis.

Note that during hyperparameter optimization of ADDNs,
we optimize the learning rates of each inter-cluster weight



layer, and intra-cluster recurrent weight layer. We also op-
timize the spatial cluster positions and shapes, through the
optimization of cluster means and covariance matrices. Hence,
a possible explanation for our findings is that distances and
BCM learning rates can co-evolve. Moreover, the presence
of delay-sensitive BCM connections might allow ADDNs
to “select” the needed delays from a range of connections
with different delays during the unsupervised learning phase.
Connections that capture temporal relations in the input data
will be strengthened, whereas other connections might be
pruned. However, confirming this explanation requires a bet-
ter understanding of the exact mechanism of delay-sensitive
BCM.

The possibilities of optimizing delays in reservoir com-
puting has important implications for the field of physical
reservoirs. All physical systems inherently contain some delay.
However, delays should be matched to the task at hand. With
the delay-sensitive BCM rule and distributed reservoir delays,
it is possible to achieve this.
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