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ABSTRACT
Social touch, and its recognition and classification, is increasingly
important in human-robot interaction. We present a Transformer-
based model trained and evaluated on an open-source dataset.
The dataset, the Human-Animal Affective Robot Touch (HAART)
dataset, was collected for the 2015 Recognition of Touch Gesture
Challenge (RTGC 2015) and contains different haptic actions di-
rected at a robotic animal. The actions are recorded using a multi-
resolution pressure sensor.We feed the output, containing the touch
type to the Nao robot to make the robot sense the touch type. The
proposed transformer-based gesture classification model achieved
72.8% classification accuracy in 2.67 seconds, which outperforms
the best-submitted algorithm of the RTGC 2015 which has a test
classification accuracy of 70.9 % and needed 8 seconds.

CCS CONCEPTS
• Computing methodologies→ Neural networks; • Computer
systems organization → Robotics; • Human-centered comput-
ing → User centered design.
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1 INTRODUCTION
Non-verbal communication is a crucial element of human-human
interaction, and within non-verbal behaviour, tactile interaction
takes up a unique position through its use of physical force to con-
vey social signals. In human-human interaction, tactile interaction
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is considered very important [3, 15], but in HRI –often due to tech-
nical limitations— tactile interaction has been given less attention
than other forms of interaction.

Early work already showed the benefits of including gentle physi-
cal touch in interactions with elderly users [10]. Beyond that, haptic
interaction, and specifically interaction that conveys emotions, can
have therapeutic power [17]. Affective touch helps with commu-
nication and evokes arousal [6]. Key to haptic interaction is the
ability to recognise and correctly classify different touch events.
Touch can express a wide range of meanings and intent, such as
emotions, affection, support, care, and agreement [1], and while
people can readily recognise these, robots’ ability to do so is cur-
rently fairly limited. Correctly recognising touch also allows the
robot to respond appropriately and is an important contributing
factor to the perceived agency of the robot [7]. Flagg and MacLean
[8], for example, demonstrated a system that could recognise 9
key affective touch gestures with the aim to create an emotionally
intelligent system. To support the comparison of different haptic
touch classification methods, a dataset was collected that covered
various social touch gestures by artificial skin: the Human-Animal
Affective Robot Touch (HAART) database consists of seven touch
gestures: no touch, constant, pat, rub, scratch, stroke, and tickle
[14].

Several classification methods, some specific to classifying haptic
gestures and some more generic, have been trained and evaluated
on this dataset. Examples are multi-boost, logistic regression [12],
random forest, and support vector machines classifiers [4, 9, 16].
Recently, a variety of Deep Learning algorithms have been used for
classification with this dataset. A Convolutional Neural Network
(CNN) achieved 83.2% classification accuracy [1] and a 3D CNN
methods achieved 76.1% classification accuracy [19]. Since we aim
to use the classification results for deciding which feedback to give
to a user through a Nao, we have to find a balance between the
classification accuracy and the response time, as sometimes it is
better to sacrifice accuracy for a faster response.

In this paper, we present a Transformer-based Touch Gesture
Classification model (TGC) to achieve a high accuracy that outper-
forms other classification algorithms on the HAART dataset. In
addition, it has low latency and as such fits the requirements of our
application.
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2 METHODOLOGY AND MATERIALS
2.1 Datasets
The HAART dataset1 consists of seven collected touch gestures
from ten participants in twelve conditions performed on the same
sensor that was installed on a robotic animal. Each touch lasts 10
seconds, and the data is capture at 54 frames per second (FPS). This
dataset includes an 8 by 8 frame with pressure values ranging from
0 to 1023 as a CSV file.

2.2 Transformer
TheTransformer is a novel architecture first proposed in [18], which
adopts the self-attention mechanism, differentially weighting the
significance of each part of the input data. It is heavily used in
sequence-to-sequence tasks, such as machine translation. We use
self-attention to capture the contextual relationship between one
frame’s tactile data in the total frame length, which is called the
multi-head attention block, as we use multiple attention vectors.
Then a simple feed-forward neural network is applied to every
attention vector to transform the attention vectors into a form
acceptable for the next encoder layer. Neural attention mechanisms
can allow networks to focus on a subset of their inputs (or features)
and through this select specific inputs. The attention mechanism
can be applied to any input, regardless of its shape. In cases of
limited computational power, the attention mechanism is a resource
allocation scheme that is the main means of solving the information
overload problem by allocating computational resources to more
important tasks. The attention mechanism is used to dynamically
generate weights for different connections, which is called the self-
attention model. Since the weights of the self-attention model are
generated dynamically, it can handle different length sequences of
information.

2.3 Proposed model
TheHAART dataset contains 432 different recordings of seven types
of touch gestures. Each recording is sampled at a rate of 54 Hertz
and each data point has a duration of 8 seconds. As the sensor is
a 2D-matrix, together with the time dimension, the data is three-
dimensional. Since the input for the model has to be of an equal
size, we can use the raw sensor data as input for touch gesture
classification. We propose to use the encoder block in Transformer
for touch gesture classification, as the encoder can learn physical
feature embeddings from the sensor data. After being processed by
the encoder block, we use a multi-layer perception as a classifier.
The outcome of the model is fed to the Nao robot, to give the robot
the ability to sense different forms of touch gestures.

Compared to Convolutional Recurrent Neural Networks (CRNN),
the Transformer-based models can capture long-term dependencies
across the image sequences and process the spatial-temporal fea-
tures simultaneously. We first benchmark the Transformer-based
models on a HAART dataset for classification. Following that, we
show that the proposed Transformer-based Touch Gesture Classifi-
cation model (TGC) outperforms the existing models in the RTGC
2015 with regard to classification accuracy and computational ef-
ficiency. Our final proposed TGC model is a Transformer-based

1https://www.cs.ubc.ca/labs/spin/data/

model with an encoder followed by three dense layers. Our code is
publicly available onGitHub -https://github.com/Yuanbo2020/TGC.

Multi-Head Attention

Add & Norm

Feed Forward

Add & Norm

              

     

 

   

Softma

Input frame block (B, L, 8, 8)

Touch gesture classification

x

   

× N

 Linear layer: 128 units

   

   

Classification layer: 7 units

   

  
Linear layer: 16 units

Linear layer: 4 units

(B, L, 512)

 

  

(B, L, 128)

 

   
 

   
Flatten laye

 (B, L, 16)

 (B, L, 4)
r

 

(B, number of gestures

(B, L × 4)

) 

Figure 1: The proposed model GTC.

The main challenge is to classify the touch gesture in a short
time while still maintaining an acceptable classification accuracy.
Each recording of a touch gesture lasts 8 seconds at a sampling
rate of 54 Hz. However, waiting until the end of the recording
before deciding on which touch category is being sensed would
mean that the robot’s response is unnaturally slow. So ideally we
prefer a fast response over an accurate response, which allows to
robot to quickly react to haptic events. So rather than using the full
recording (8 ×8 ×432) input to the Transformer, we study whether
shorter recordings would still provide sufficient accuracy and low
latency.

The proposed TGC model architecture consists of a Transformer
with an encoder; there are # identical blocks in the encoder, which
consist of two sub blocks. The input frame block has a batch size
�, frame length of the input data !, and 8 × 8 width and height
for each sample. The encoder consists of # identical blocks with
a multi-head attention layer and a feed-forward layer (FF) with
layer normalization. The first sub block implements a multi-head
self-attention mechanism which refers to the Multi-Head Attention
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(MHA) in Fig. 1 and the second sublayer is a fully connected feed-
forward network which is identical to Feed Forward (FF). Each
of these two sublayers has a residual connection around it and a
normalisation layer, abbreviated as Add & Norm in Fig. 1, these
normalise the sum computed between the sublayer input and the
output generated by the sublayer itself. All the parameters in MHA
and FF use Transformer’s default setting [18]. As shown in Fig. 1,
there are four fully connected layers followed by the encoder. And
the final classification layer uses softmax as the activation function.
We first optimised the model using a grid search for the dimensions
of the different layers. The TGC model with 6 blocks achieved the
best performance, as shown in Tab. 2. In addition, we compared
different frame lengths to get an optimal model balancing accuracy
and classification response time.

We tried different frame lengths (9, 27, 54, 72, 108, 144, and 216
frames), which means that we will have a recording with a length
of (8 × 8 × 5 A0<4_;4=) frames or (8 × 8 × 5 A0<4_;4=/54) seconds,
which in essence makes the task similar to event recognition in
short video sequences. Previous research aimed to achieve more
accurate classification results, while ignoring the response time.At
worst, we have to wait for the whole recording to be fed through
the network. This takes 8 seconds in addition to the computing time
needed for the classifier, which is too long for responsive human-
robot interaction. We set ourselves the goal of achieving acceptable
classification accuracy within 5 seconds.

DETAILS ON COMPUTER HERE: The model ran on an Intel(R)
Xeon(R) CPU E5-2680 processor with a card Tesla V100 GPU for
100 epochs.

3 EXPERIMENTAL RESULTS AND ANALYSIS
3.1 Earlier approaches
The random forest algorithm was the most popular algorithm in the
RTGC 2015 challenge [4, 9, 16]. The highest accuracy obtained on
the test set is 70.9% by using random forest. Other machine learning
methodologies have also been explored, such as Support Vector
Machines (SVMs) with 68.5% accuracy on the test dataset and multi-
boosting with 64.5%. Deep learning methods, like CNN and RNN,
had been applied too and got comparable results: CNNs obtained
56.1% test accuracy, and CRNNmodel and Autoencoder-RNNmodel
both achieved 61% test accuracy [13].

Cang et al. [5] report up to 90.3% accuracy by using 20-fold
cross-validation when including subject and condition labels as
features. In addition, earlier studies used leave-one-subject-out
cross-validation to evaluate their model performance, with an accu-
racy of up to 83.2% [2]. However, due to the various data divisions,
conditions, and/or labels used for subject information, direct com-
parisons between the accuracies reported for the RTGC 2015 and
accuracies reported on the HAART test set are not meaningful [14].
Therefore, we use the HAART Data Set in RTGC 2015, including the
training data set, and test dataset provided by RTGC 2015 allowing
us to make meaningful comparisons.

3.2 Experiment results
The input of our network received raw gesture sequences with 8×8
resolution with different frame lengths (9, 27, 54, 72, 108, 144, and
216 frames). The output reports one of 7 gestures corresponding to

the gestures label. Our experiments are conducted on the HAART
dataset of the RTGC 2015. We first explored the number of blocks (1
to 9) to find the optimal model architecture, the accuracy is shown
in the Tab. 2. The optimal number of blocks in the encoder is 6.
Based on this, we explored the test accuracy in function of the
different lengths of recordings.

Tab. 3 shows that the proposed model classification accuracy is
72.79% with a frame length of 144, which means that the proposed
model could give out the classification result in 2.67 seconds from
the start of the gesture, which is much quicker than the typically
reported results which need at least 8 seconds. Specifically, the
optimal proposed model could get 70.8% and 71.4% test accuracy
in 1 second (54 frames) and 1.5 seconds (72 frames), respectively,
while the optimal classification accuracy (70.9%) obtained in the
RTGC 2015 in 8 seconds.

Figure 2: The confusion matrix output by the TGC model on
the test data.

The confusion matrix output by the TGC model for recordings
of length 2.67 seconds is given in Fig. 2. Unsurprisingly, no touch is
classified not confused with any other label. In contrast, the tickle
and rub gestures were harder to classify than other gestures. Most
notably, scratch and tickle is easily confused in short-time gesture
performance, even for human annotators. In addition, rub and pat
were often misclassified as a stroke. Both classification errors can be
explained by the gestures are quite similarly in the first two seconds.
The sensor would output higher values on some point both for rub,
pat, and stoke. In addition, gesture scratch is often misclassified as
rub.

Gesture constant is a touch gesture occurring continuously over
time, so it is easy to distinguish from other touch gestures. The
distribution of the learned representation on the HAART dataset
is visualized in Fig. 3 using t-distributed stochastic neighbor em-
bedding (t-SNE). It is easy to observe that gesture constant is easily
distinguished from other gestures. Gesture tickle is a light touch or
prod to a part of the body, and as there are moments when there
is no force during tickle, it is sometimes classified as no touch. The
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Table 1: Touch gesture classification accuracy comparison of the proposed model against existing classification using HAART
dataset

Researchers[reference] Classification algorithm Accuracy(%)

Balli Altuglu et al. [4] Random forest 61.5
Ta et al. [16] Random forest 70.9
Ta et al. [16] SVM 68.5
Gaus et al. [9] Random forest 66.5
Gaus et al. [9] Multiboosting 64.5

Hughes et al. [13] CNN 56.1
Hughes et al. [13] CRNN 61.4
Hughes et al. [13] Autoencoder-RNN 61.4
Proposed TGC Transformer-based 72.8

Table 2: Test accuracy comparison for different numbers of blocks

N 1 2 3 4

Accuracy 65.6 ± 2.3% 65.9 ± 4.8% 67.9 ± 1.6% 68.6 ± 2.0%
N 5 6 7 8

Accuracy 68.9 ± 1.8% 69.8±2.2% 69.5 ± 0.8% 69.4 ± 0.9%

Table 3: Test accuracy comparison for different frame length

Input length (second) 0.17 second 0.5 second 1 second 1.5 seconds 2 seconds 2.7 seconds 4 seconds

TGC model test accuracy 57.0±1.9% 66.6±1.3% 70.8±1.5% 71.1±1.4% 72.3±1.2% 72.8±1.8% 71.6±1.0%

Figure 3: Visualization of the distribution of the learned
representation by the TGC on the HARRT dataset using t-
SNE [11].

stroke gesture is easy to confuse with pat, as in a stroke the hand is
placed on the sensor surface and slowly moved along the surface,
and in pat the hand is tapped quickly on the sensor, there is a fair
bit of overlap between the two, as seen in the t-SNE plot. Similarly,
scratch and tickle are easily confused. Finally, no touch is sometimes

confused with constant as the sensor sometimes reports non-zero
values which have not been calibrated away.

4 DISCUSSION
We propose a system for classifying touch gestures using a TGC
model which generalises across different subjects. The proposed
TGC system yields an accuracy of 72.8% within 2.7 seconds. The
proposed TGC model has a comparative classification accuracy
without any preprocessing or manual feature extraction, and as
such implements an end-to-end classifier. When faster classification
response are needed, our model obtained 70.77% and 71.14% clas-
sification accuracy within 1 second and 1.5 seconds, respectively.
This is very competitive when compared to the optimal result from
RTGC 2015 challenge, which achieved 70.9% classification accuracy
in 8 seconds. In conclusion, the proposed model outperforms the
state-of-the-art algorithms from the RTGC 2015 and holds promise
for building responsive and accurate haptic interaction with robots.
Furthermore, our model allows for a fast and perhaps inaccurate
classification, allowing the robot to provide an early response, while
still allowing for the classifier to correct to a more accurate response
as more data frames come in. We believe that a low latency response
will lead to higher perceived agency and eventually lead to a higher
quality interaction.
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