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Abstract

Purpose: To introduce a novel imaging and parameter estimation framework for accurate multi-shot diffusion MRI.

Theory and Methods: We propose a new framework called ADEPT (Accurate Diffusion EPI with multi-contrast

shoTs) that enables fast diffusion MRI by allowing diffusion contrast settings to change between shots in a multi-shot

EPI acquisition (i.e., intra-scan modulation). The framework estimates diffusion parameter maps directly from the ac-

quired intra-scan modulated k-space data, while simultaneously accounting for shot-to-shot phase inconsistencies. The

performance of the estimation framework is evaluated using Monte Carlo simulation studies and in-vivo experiments

and compared to that of reference methods that rely on parallel imaging for shot-to-shot phase correction.

Results: Simulation and real-data experiments show that ADEPT yields more accurate and more precise estimates of

the diffusion metrics in multi-shot EPI data in comparison with the reference methods.

Conclusion: ADEPT allows fast multi-shot EPI diffusion MRI without significantly degrading the accuracy and

precision of the estimated diffusion maps.

Keywords: QMRI, Diffusion MRI, Multi-shot EPI, Model-based reconstruction, Phase correction
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Introduction

Single-shot EPI is the most commonly used imaging technique for fast in-vivo diffusion MRI (dMRI). However, its low

effective bandwidth in the phase encoding direction makes single-shot EPI vulnerable to susceptibility artifacts, result-

ing in geometric distortions, signal dropout, and limited spatial resolution (1–4). To reduce such artifacts, segmenting

the k-space readout in multiple EPI shots (multi-shot EPI) has been proposed as an alternative imaging technique for

dMRI (5). The read-out duration of each shot in multi-shot EPI can be much shorter than in single-shot EPI, as only

a fraction of the whole k-space, is traversed. Therefore, multi-shot EPI is less affected by geometrical distortions and

generally displays a higher effective resolution compared to single-shot EPI (6). However, multi-shot EPI also comes

with disadvantages. First, it suffers from a longer acquisition time, which scales with the number of shots. Second,

nondiffusive coherent bulk motion during the acquisition of each diffusion-weighted (DW) shot may introduce phase

shifts in the voxel signal. Indeed, rigid motion (i.e., global translation and rotation) results in linearly varying phase

maps (7), while non-rigid motion, such as brain pulsatile motion, may lead to non-linear phase variations (8). In

multi-shot EPI, this phase map changes for each DW shot, which, if not corrected for during image reconstruction

from different shots, causes ghosting artifacts in the reconstructed images (9).

Various methods have been proposed to correct for phase-related artifacts in multi-shot dMRI. A common ap-

proach is to acquire, for each shot of a multi-shot EPI acquisition, an additional navigator echo that fully samples the

central section of the k-space. This navigator echo is acquired immediately before or after the original imaging echo

with the same diffusion weighting, thereby assuming that the spins experience the same phase errors in both scans. The

navigator scan can then be used to correct the motion-induced phase errors prior to image reconstruction (10). Alter-

natively, to avoid the acquisition of additional navigator data, the phase map can be estimated retrospectively from the

data in a pre-processing step, for example through self-navigated acquisition schemes such as PROPELLER (11, 12),

EPIK (13,14), or interleaved spiral (15). In such schemes, a low-resolution phase map is estimated for each shot from

a densely sampled region in the k-space, which is then used to reconstruct artifact-free images. Finally, phase maps

corresponding to each segment of the k-space can also be estimated without the need for a densely sampled, central

part by using parallel imaging, by using parallel imaging (e.g., SENSE (16) or GRAPPA (17)). Thereby, for each

shot of under-sampled k-space data, a complex-valued image is reconstructed, after which the corresponding phase

maps are incorporated in the reconstruction of the multi-shot magnitude image to correct for the shot-to-shot phase

variations. For example, the multiplexed sensitivity encoding (MUSE) technique (18) uses SENSE reconstructed

phase maps (after smoothing) to reconstruct artifact corrected magnitude images from multi-shot data. Extensions

of MUSE include macroscopic motion effects (AMUSE, (19)) and 3D multi-band imaging (3D-MS-MUSE, (20)).

Similar methods relying on GRAPPA instead of SENSE have also been proposed (9, 21).
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Apart from shot-to-shot phase variations, traditional multi-shot EPI dMRI suffers from error propagation caused

by a two-step approach in diffusion parameter estimation. In this two-step approach, multiple (phase corrected) DW

images are reconstructed from k-space data, after which diffusion parameter maps are estimated by voxel-wise fitting

a diffusion model to the reconstructed images. Since this two-step approach lacks a feedback mechanism that con-

nects the image reconstruction step with the final estimation of the parameter maps, image reconstruction errors may

propagate into the parameter estimation step, introducing a bias. In non-EPI acquisition schemes, diffusion parameter

maps have been estimated directly from k-space data, using so-called model-based reconstruction methods that avoid

the intermediate image reconstruction step (22–24). In multi-shot EPI dMRI, model-based reconstruction has also

been applied, albeit with a pre-processing step to correct for shot-to-shot phase variations. In this approach, a set of

(complex-valued) DW images is reconstructed, for example using parallel imaging reconstruction, from which only

the phase maps are retained. Next, the diffusion parameter maps are directly estimated from the k-space data while

fixing the image phase maps corresponding with the individual shots to their estimates obtained in the pre-processing

step (25, 26). However, for an increasing number of shots segmenting the k-space, parallel imaging reconstruction

becomes a highly under-sampled problem, which makes its solution increasingly sensitive to noise. An alternative ap-

proach, which is advocated in this paper, is to estimate the shot-by-shot phase maps simultaneously with the diffusion

maps of interest.

In this paper, we propose Accurate Diffusion EPI with multi-contrast shoTs (ADEPT). ADEPT is a diffusion pa-

rameter estimation framework that combines model-based reconstruction with an innovative image acquisition strat-

egy, called intra-scan modulation. Intra-scan modulation involves the fully flexible variation of contrast settings across

k-space segments. Whereas conventional multi-shot dMRI reconstructs individual images from shots encoded with

the same diffusion contrast, prior to estimating the diffusion parameters by voxel-wise fitting a diffusion model to the

reconstructed images, ADEPT estimates the diffusion parameter maps directly from k-space data composed of shots

with each a unique diffusion weighting. Moreover, ADEPT accounts for phase mismatches between the different shots

by estimating the phase maps of the individual shots jointly with the diffusion parameters in an iterative procedure, in-

stead of fixing them to values estimated in a pre-processing step (25,26). Through ADEPT, the flexibility of intra-scan

modulation in combination with model-based reconstruction is exploited to substantially improve diffusion parameter

map estimation accuracy compared to that of conventional estimation methods. Using Monte Carlo simulations and

in-vivo animal studies, ADEPT is evaluated in terms of accuracy and precision and its performance is compared with

more conventional multi-shot diffusion estimation frameworks which rely on a pre-processing parallel imaging step

for the estimation of the phase maps. Initial findings of this work were presented in (27, 28).
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Theory

This section describes the signal model of intra-scan modulated multi-shot diffusion data and introduces the ADEPT

framework for joint diffusion and phase parameter estimation.

Diffusion signal model

In what follows, intra-scan modulated, multi-coil, multi-shot imaging is considered, where each shot corresponds to a

different diffusion weighting. Then, the measured k-space diffusion data qqqn,c ∈C
nk×1 of the c-th coil (c ∈ {1, · · · ,nc})

and n-th shot (n ∈ {1, · · · ,ns}), with nk the number of k-space samples per shot, nc the number of coil channels and ns

the total number of shots, is given by:

qqqn,c = AAAnFCCCcuuun + eee , (1)

with uuun = {un j}
nv
j=1 ∈ C

nv×1 the underlying noise-free, fully-sampled, DW image, defined on the grid points rrr =

{rx j,ry j}
nv
j=1 ∈R

nv×2, and nv the number of voxels in the image, AAAn ∈ {0,1}nk×nv selecting the k-space points acquired

in the n-th shot, F ∈ C
nv×nv the Discrete Fourier Transform operator and CCCc ∈ C

nv×nv a diagonal matrix representing

the coil sensitivity map of the c-th coil. Furthermore, eee ∈ C
nk×1 is an additive noise contribution, modeled as a

zero-mean complex-valued Gaussian random variable.

In this work, the diffusion tensor imaging (DTI) model is adopted. According to this model, the diffusion in each

voxel is described by a symmetric 3× 3 diffusion tensor that is fully characterized by six independent parameters.

Let DDD j ∈ R
6×1 denote the vector of diffusion tensor parameters of the j-th voxel, whereas DDD = {DDD j}

nv
j=1 ∈ R

nv×6

denotes the full diffusion tensor map to be inferred. Furthermore, let sss0 = {s0 j}
nv
j=1 ∈ C

nv×1 denote the complex-

valued, non-DW image, which includes a time-invariant phase component caused by scan imperfections, such as B0

and B1 field inhomogeneities, chemical shifts, or susceptibility differences (29) which can produce a non-linear phase

map and let SSS0 = {S0 j}
nv
j=1 ∈R

nv×1 denote the non-DW magnitude image defined as SSS0 := |sss0|, with |·| the point-wise

modulus operator. Assuming rigid coherent small-scale bulk motion during the application of the diffusion sensitizing

gradients, with each shot, a linear phase map φφφ n = {φn j}
nv
j=1 ∈ R

nv×1 is added to the time-invariant phase map, which

varies from shot to shot (7, 30):

φn j = θn0 +θn1rx j +θn2ry j , (2)

with θn0 and (θn1,θn2) the offset and slope parameters of the motion-induced phase map, respectively. Finally, let the

vector θθθ n = {θnp}
2
p=0 ∈R

3×1 denote the motion-induced phase map parameters of the n-th shot, and let θθθ = {θθθ n}
ns
n=1 ∈

R
3ns×1 denotes the motion-induced phase map parameters of all shots. Based on these modeling assumptions, the
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signal intensity of the DW image of each shot can be modeled in each voxel as:

un j = s0 je
−bbbT

n DDD j eiφn j , (3)

with bbbn = [bng2
nx,2bngnxgny,2bngnxgnz,bng2

ny,2bngnygnz,bng2
nz]

T ∈ R
6×1 the vector containing the independent com-

ponents of the 3 × 3 symmetric diffusion weighting b-matrix of the n-th shot, bn the diffusion weighting factor,

and gggn = [gnx,gny,gnz]
T the diffusion gradient direction. In what follows, the DW image uuun will be expressed as

uuun(DDD,sss0,φφφ n) or uuun(DDD,sss0,θθθ n) to indicate its functional dependence on sss0, DDD, and φφφ n or θθθ n, as described by Eq. (2) and

Eq. (3).

ADEPT joint parameter estimation framework

ADEPT involves the joint estimation of the complex-valued non-DW image sss0, the diffusion parameters DDD, and the

linear phase parameters θθθ from the multi-shot multi-contrast k-space data, using the least-squares estimator given by:

D̃DD, s̃ss0, θ̃θθ = arg min
DDD,sss0,θθθ

(

∑
n,c

||qqqn,c −AAAnFCCCcuuun(DDD,sss0,θθθ n)∥
2
2

)
, (4)

The least-squares estimator (4) corresponds with a large-scale non-linear optimization problem which can be solved

using the cyclic Block Coordinate Descent (cBCD) method (31). This method allows to split the main problem (4)

into two less complex sub-problems that are solved alternately in an iterative scheme. In the first sub-problem, the

cost function is minimized with respect to DDD and sss0:

D̃DD
t+1

, s̃sst+1
0 = argmin

DDD,sss0

(

∑
n,c

||qqqn,c −AAAnFCCCcuuun(DDD,sss0, θ̃θθ
t

n)∥
2
2

)
, (4.A)

whereas in the second sub-problem, the cost function is minimized with respect to θθθ :

θ̃θθ
t+1

= argmin
θθθ

(

∑
n,c

||qqqn,c −AAAnFCCCcuuun(D̃DD
t+1

, s̃sst+1
0 ,θθθ n)∥

2
2

)
, (4.B)

with t the iteration number.

Since the optimization problems (4.A) and (4.B) are non-convex, proper initialization of the cBCD algorithm is

vital to find the global minimum. The optimization is started at DDD = D̃DD
t
, sss0 = s̃ss

t
0 and θθθ = θ̃θθ

t
, respectively, with D̃DD

0
=

DDDini, s̃ss
0
0 = sss0,ini and θ̃θθ

0
= θθθ ini the initial values of the parameters, which are determined in a multi-step approach. First,

complex-valued, DW images (vvvn = {vn}
nv
j=1 ∈ C

nv×1) are reconstructed separately for each shot, using the SENSE

algorithm. Next, the diffusion parameters and the non-DW magnitude signal in each voxel are estimated from the

SENSE reconstructed magnitude images by solving the following least-squares problem:

D̂DD j, Ŝ0 j = arg min
DDD j ,S0 j

(
∑
n

||Vn j −S0 je
−bbbT

n DDD j ||22

)
, (5)
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with VVV n := |vvvn| and VVV n = {Vn j}
nv
j=1 ∈ R

nv×1 the magnitude of the SENSE reconstructed images vvvn. The least-squares

estimates obtained are used as initial values in the cBCD approach (DDDini, |sss0,ini|). Furthermore, the phase of sss0,ini is

set equal to zero, whereas the initial values of phase parameters for each shot θθθ n,ini are obtained by fitting the model

described by Eq. (2) to the phase maps of the individually SENSE reconstructed images in the least-squares sense:

θ̂θθ n = argmin
θθθ n

(

∑
j

||∠vn j − rrr′Tj θθθ n||
2
2

)
, (6)

with ∠vn j the phase of the complex-valued, SENSE reconstructed images in each voxel and rrr′j = [1,rx j,ry j]
T ∈ R

3×1.

Methods

This section describes how ADEPT is evaluated as an estimator of diffusion parameters from multi-shot data compared

to the reference methods.

Reference methods

The reference methods, to which ADEPT was compared, all estimate the diffusion parameters from intra-scan modu-

lated multi-shot data, while relying on parallel imaging (PI) to correct for shot-to-shot phase variations. These are:

PI-2step follows a conventional two-step parameter estimation approach (32). First, an image is reconstructed from

each shot of the intra-scan modulated k-q-space data using the SENSE algorithm. This results in ns reconstructed

DW images in total. Next, the diffusion parameters DDD and the non-DW magnitude signal SSS0 are estimated voxel-

wise from the SENSE reconstructed magnitude images solving the optimization problem defined by (5).

PI-MB follows a model-based (MB) approach in which the diffusion parameters DDD and the non-DW image sss0 are

estimated directly from the intra-scan modulated k-q-space data by solving the following optimization problem:

D̃DD, s̃ss0 = argmin
DDD,sss0

(

∑
n,c

||qqqn,c −AAAnFCCCcuuun(DDD,sss0,φφφ n)∥
2
2

)
, (7)

where the phase of sss0 is fixed to zero and the phase maps φφφ n = {φn j}
nv
j=1 corresponding with the individual

shots are fixed to their SENSE reconstructed values, which are obtained in a pre-processing step. This method

exploits the ideas behind MUSE (18) and model-based diffusion tensor estimation in multi-shot EPI (25).

PI-lin-MB incorporates the linear phase model described by Eq. (2). Following a model-based approach, the diffusion

parameters DDD and the complex-valued non-DW image sss0 are estimated by solving the following optimization
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problem:

D̃DD, s̃ss0 = argmin
DDD,sss0

(

∑
n,c

||qqqn,c −AAAnFCCCcuuun(DDD,sss0,θθθ n)∥
2
2

)
, (8)

where the phase parameters θθθ n corresponding with the individual shots are fixed to values estimated in a pre-

processing step. In this step, for each shot, the parameters θθθ n are estimated by fitting the linear phase model (2)

to the phase map of the corresponding SENSE reconstructed image in the least-squares sense. Note that the thus

obtained estimates of the phase parameters correspond with θθθ ini, as previously introduced.

The introduction of these reference methods allows to evaluate how the different key properties of ADEPT (i.e.,

model-based reconstruction, incorporation of a linear phase model, joint estimation of phase parameters) contribute to

its performance.

Implementation

ADEPT and the reference methods were implemented in MATLAB (33). Problems (4.A), (4.B), (7), and (8) were

solved using the trust region Newton algorithm (34) combined with Powell’s dog leg method (35). The first- and

second-order derivatives of the cost functions were computed using our MATLAB implementation of automatic dif-

ferentiation. The least-squares problem (5) was solved using the trust-region-reflective algorithm (36). The parallel

imaging reconstructions used in initializing ADEPT and in the reference methods were performed using the BART

toolbox (37). The coil sensitivity maps (Cc) were estimated from the fully-sampled non-DW k-space constructed using

the acquired non-DW shots using the ESPIRiT technique (37, 38).

Experiments

To evaluate the parameter estimation performance of ADEPT and the reference methods in terms of accuracy and

precision, Monte Carlo simulation experiments as well as in-vivo experiments were performed.

Simulation experiments

For the simulation experiments, multi-shot multi-coil k-q-space data was generated according to the models described

by Eq. (1) and Eq. (3). As ground-truth parameters, 96× 96 diffusion tensor maps and a non-DW image were used,

which were estimated from a real dMRI dataset (39). The phase map estimated from the non-DW image of the in-vivo

dataset was used as the phase of the ground-truth non-DW image sss0 to simulate the time-invariant phase effects. The
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simulated k-q-space data consisted of 60 DW shots, each with a unique diffusion encoding gradient direction (obtained

using electrostatic repulsion (40)) and a constant b-value of 1.15 ms/µm2, as well as 16 non-DW shots. For each of

the DW shots, a linear phase map was generated according to Eq. (2) to simulate motion-induced shot-to-shot phase

variations. The offset ground-truth phase parameter of each shot, θn0, was drawn from a uniform distribution on the

interval [−π, · · · ,π] and the slope ground-truth phase parameters of each shot, θn1 and θn2, were drawn from uniform

distributions on the interval [−π/FOV, · · · ,π/FOV]. These intervals were chosen such that the range of the generated

phase values was similar to that observed in the real data analyzed in this work. Furthermore, the number of coils was

set to nc = 8 and the coil sensitivity maps estimated from a multi-coil scan (41) were used to simulate the diffusion

k-space data.

To construct multi-contrast multi-shot data, first, fully-sampled k-q space data was generated, corresponding with

the 60 DW images and 16 non-DW images described above. Next, these data were retrospectively sub-sampled by ap-

plying binary masks (cfr. AAAn in Eq. (1)) that define the specific k-space trajectories of the shots of an interleaved multi-

shot acquisition. Finally, the multi-contrast multi-shot data was corrupted by additive, complex-valued, zero-mean,

Gaussian white noise. The noise standard deviation was chosen to obtain the SNR values in the range [10, · · · ,30],

where the SNR is defined in image space as the ratio of the spatial average of the noiseless, fully-sampled, non-DW

magnitude image of one coil channel and the standard deviation of the noise (in image space). Considering an nv

point Discrete Fourier Transform, the noise variance in the k-space is derived from the noise variance in the image

space by multiplying the latter by nv (42, 43). For each SNR level, 30 realizations of noisy data were generated for

statistical analysis (nr = 30). To evaluate the performance of ADEPT and the reference methods for various multi-shot

acquisition schemes, the following two simulation experiments were performed:

Performance assessment for different under-sampling rates In this experiment, each method’s performance was

evaluated as a function of the under-sampling rate (R), where the latter is defined as the number of shots required

to fill one fully-sampled k-space. To this end, datasets with different under-sampling rates were generated. Each

dataset consists of 60 DW shots with each a unique diffusion contrast and 16 non-DW shots, where the number

of k-space data points per shot, and hence the total number of data points in the dataset, decreases proportionally

with the under-sampling rate. To create a dataset with an under-sampling rate R, a set of R mutually exclusive

binary sampling masks was generated, where each mask defines a unique sampling trajectory corresponding with

one shot in the k-space. Together, the R different masks cover the full k-space. Additionally, each of the masks

was complemented with the central line of the k-space, being the only part of the k-space shared by all R masks.

The masks were then applied to retrospectively sub-sample the fully-sampled k-space data to create 60 DW

shots with each a unique diffusion contrast and 16 non-DW shots. Following this procedure, datasets with under-

sampling rates 2, 4, 8, and 12 (i.e., 2-, 4-, 8-, and 12-shot datasets) were generated, which were subsequently

corrupted by noise as described above. Next, the diffusion parameters DDD and the non-DW image sss0 were
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estimated from each noisy realization of the simulated datasets using ADEPT as well as the reference methods,

where only non-background voxels were included in the parameter estimation. These voxels were selected using

a brain mask, which was created by thresholding the non-DW image and adding morphological operations to

remove spurious non-brain voxels (44). Finally, the mean diffusivity (MD) and fractional anisotropy (FA)

metrics were calculated from the estimated diffusion parameters.

Performance assessment for different sampling patterns A simulation experiment was set up to evaluate the effect

of including no, one, or four shared central k-space lines on the estimation performance of ADEPT. The ex-

periment was performed for 4-shot and 8-shot data. The sampling masks corresponding to the three sampling

scenarios used to create the 4-shot dataset are illustrated in Fig. 1. All datasets were corrupted with Gaussian

noise (SNR = 15). Next, ADEPT was used to estimate the diffusion parameters DDD and non-DW image sss0 from

these datasets, where again only voxels within the brain mask from the first experiment were included in the

parameter estimation. Finally, the diffusion metrics MD and FA were calculated from the estimated diffusion

parameters.

In-vivo experiments

Dataset In-vivo mouse brain DTI experiments were performed on a 7T small animal scanner (PharmaScan 70/16 US,

Bruker BioSpin GmbH, Germany), equipped with a linear 4-channel array coil designed for mice. The mice

were anesthetized with isoflurane in a mixture of oxygen and nitrogen. The DTI data were collected from 3 mice

using a DW spin-echo single-shot EPI pulse sequence with the following imaging parameters: TE = 46.13ms,

TR = 3000ms, FOV = 18×20mm2, acquisition matrix = (108×90), in-plane resolution = (0.17×0.22)mm2,

slice thickness = 0.8mm, b-value = 0.7ms/µm2, diffusion gradient duration δ = 2ms, and diffusion gradient

separation time ∆ = 8ms. A total of 6 b0 images and 64 DW images, each with a unique diffusion gradient

direction, were acquired within a total acquisition time of 3.5 minutes. The animal study was approved by the

Committee on Animal Care and Use at the University of Antwerp, Belgium (permit number 2014-04 (adapted

2019)). The raw single-shot data was denoised using random matrix theory to increase SNR (45, 46).

Experiments As in the first simulation experiment, the performance of ADEPT and the reference methods was evalu-

ated as a function of the under-sampling rate. To this end, the acquired fully-sampled single-shot in-vivo datasets

were retrospectively sub-sampled using sets of sampling masks introduced in section Simulation Experiments

to generate 2-, 3-, 4-, 5- and 6-shot datasets. Each dataset consisted of 6 non-DW shots and 64 DW-shots each

with a unique diffusion contrast. The sampling trajectory of all mutually inclusive shots in one set was comple-

mented with a shared central line as illustrated in Fig. 1b. The diffusion parameters DDD and the non-DW image sss0

were estimated from each in-vivo multi-contrast under-sampled dataset using ADEPT as well as the reference
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methods (PI-2step, PI-MB and PI-lin-MB). The estimation was performed for the voxels with substantial signal

intensity defined by a selection mask with visually selecting the brain region in the non-DW image. Next, the

metrics MD and FA were calculated from the estimated diffusion parameters.

Evaluation metrics

To quantify the estimation performance in the simulation experiments, the following metrics were used (47):

• Estimation error of an estimated diffusion parameter with respect to its underlying ground-truth value, calculated

as x̂− x, where x̂ is the estimated parameter with ground-truth value x.

• Bias, which quantifies the accuracy of an estimator, calculated as (x̂− x), with x̂ the sample mean of the nr

estimates of the parameter x.

• Standard deviation (std), which quantifies the precision of an estimator, calculated as (Σ(x̂− x̂)
2
/(nr −1))1/2.

• Root mean square error (RMSE), which is a combined measure of accuracy and precision, calculated as (Σnr
i=1(x̂i − x)2/nr)

1/2.

Additionally, the spatial average of bias, std, and RMSE maps were calculated inside the brain region.

The estimation performance in the in-vivo experiments was quantified in terms of the regional RMSE (rRMSE), which

was calculated as (Σ
n′v
j=1(x̂ j − x j)

2/n′v)
1/2, where x̂ j is the estimated parameter in the j-th voxel, n′v is the number of

voxels within the brain region and x j is the underlying ground-truth value of the estimated parameter. The ground

truth parameters for the in-vivo experiments were obtained by solving problem (5) for magnitude images that were

reconstructed from the fully-sampled single-shot EPI dataset using the SENSE algorithm.

Results

Simulation study

The estimated MD and FA maps from the simulation experiments, along with their corresponding RMSE values,

are illustrated in Fig. 2 and Fig. 3, respectively. The corresponding difference maps are shown in section D of the

supplementary file. These figures show the results for ADEPT along with those of the reference methods for 2-, 4-, 8-,

and 12-shot datasets for SNR = 15. It can be observed that for the 2-shot data (top rows in Fig. 2 - Fig. 3), all methods

estimate the diffusion parameters with a comparably low RMSE. The RMSE increases with the under-sampling rate,
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but not for all methods to the same degree. It can be seen that for the 12-shot dataset the results of PI-2step (Fig. 2a

- Fig. 3a) and PI-MB (Fig. 2b - Fig. 3b) are highly affected by noise and artifacts with nearly 10 times larger RMSE

values compared to the corresponding ones of the 2-shot dataset. In contrast, the parameter maps of PI-lin-MB (Fig. 2c

- Fig. 3c) and ADEPT (Fig. 2d - Fig. 3d) are much less corrupted by artifacts and have lower RMSE values. Indeed, for

the 12-shot dataset, the RMSE value of MD increases with a factor of about 4 for PI-lin-MB and with a factor of about

3 for ADEPT compared to the 2-shot dataset. Furthermore, it follows from Fig. 2 and Fig. 3 that ADEPT outperforms

PI-lin-MB in terms of RMSE (for both FA and MD), which suggests the added value of the joint estimation of the

phase maps along with the diffusion parameters.

The superior performance of ADEPT becomes more obvious when plotting the error distributions of the diffusion

parameters. Fig. 4 shows these distributions for ADEPT as well as the reference methods for 8-shot datasets simulated

with SNR = 15, where for each of the 30 noise realizations the estimation errors were averaged over a region of

interest in the white matter. It can be observed that the widths of the error distributions corresponding to ADEPT

and PI-lin-MB are comparable and substantially smaller than the widths of the error distributions corresponding to

PI-MB and PI-2step. This suggests that ADEPT and PI-lin-MB have a superior precision. Furthermore, the ADEPT

error distributions are most symmetrical around zero. This suggests that ADEPT outperforms all reference methods

in terms of accuracy. This can also be observed in Fig. 5, which demonstrates the performance of all methods as a

function of the SNR. The figure shows the average values of the bias, std, and RMSE over the entire brain region for

MD (top) and FA (bottom), estimated from the simulated 8-shot dataset. It can be observed that ADEPT estimates MD

and FA with a lower bias (Fig. 5a) and lower RMSE (Fig. 5c) compared to PI-lin-MB, whereas both methods perform

comparably in terms of precision, with ADEPT slightly outperforming PI-lin-MB for SNR < 20.

In the second simulation experiment, the effect of modifying the sampling pattern was investigated. Fig. 6 shows

the estimated MD (Fig. 6a and Fig. 6c) and FA maps (Fig. 6b and Fig. 6d) using ADEPT, along with the corresponding

bias, std, and RMSE measures. The figure shows the estimated maps using the conventional multi-shot sampling

pattern without shared lines, the sampling pattern suggested in the ADEPT estimation framework with one shared

central line, and the pattern with four shared central lines. Results are shown for 4-shot (top) and 8-shot (bottom)

datasets, which correspond with R = 4 and R = 8, respectively. It can be observed from Fig. 6 that for the 4-shot

datasets, adding shared lines to the sampling patterns hardly increases precision and accuracy, whereas for the 8-shot

dataset both bias and precision are substantially increased by adding extra lines, where the difference between adding

zero or one line is most significant.
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In-vivo study

Fig. 7 and Fig. 8 show the estimated MD and FA maps for subject 1 in the in-vivo study, respectively, along with their

corresponding rRMSE values. The corresponding difference maps are shown in section D of the supplementary file.

The results for PI-2step, PI-MB, PI-lin-MB, and ADEPT are shown for retrospectively sub-sampled 2-, to 6-shot in-

vivo datasets. Table 1 summarizes the results for all three in-vivo scanned subjects, reporting the rRMSE of MD and

FA estimation using ADEPT and the reference methods. Similar to the simulation study, for all methods an increasing

trend can be found in the rRMSE values as the under-sampling rate increases. Moreover, it is observed that for datasets

with R > 2, ADEPT outperforms all reference methods in terms of rRMSE for both FA and MD. The figures related

to subjects 2 and 3 are provided in the section A of the supplementary file.

Discussion

We introduced ADEPT as a framework that enables fast, phase-corrected multi-shot dMRI by combining a flexible,

intra-scan modulated data acquisition strategy with model-based reconstruction. ADEPT efficiently exploits redun-

dancies in the DW multi-shot k-q space data by estimating the diffusion parameter maps directly from the acquired

data. It was demonstrated in both simulation and in-vivo experiments that for high under-sampling rates (R > 2),

ADEPT outperforms reference methods that rely on parallel imaging to correct for phase variations across shots in a

pre-processing step. In particular, for such under-sampling rates, ADEPT and PI-lin-MB estimate diffusion parameter

maps with a lower RMSE (cfr. Fig. 2, 3, and 5) and rRMSE (cfr. Fig. 7, 8; Table 1) than PI-2step and PI-MB. This

superior performance of ADEPT and PI-lin-MB, which becomes more pronounced with increasing under-sampling

rate, can be attributed to their capacity to more accurately estimate the phase maps. Moreover, benefiting from the

joint estimation of the phase parameters along with the diffusion parameters, ADEPT outperforms PI-lin-MB in terms

of RMSE and rRMSE. For R = 2, however, PI-2step and PI-MB show a similar (in simulations) or even superior (in

in-vivo experiment) performance compared to ADEPT and PI-lin-MB. A possible explanation is that for an under-

sampling rate as low as 2, parallel imaging algorithms have been shown to reconstruct the underlying complex-valued

image quite accurately (48), which may explain why PI-2step and PI-MB can provide accurate phase-corrected diffu-

sion parameter maps. More specifically, in the case of the in-vivo experiments, PI-2step and PI-MB can correct for

possible small-scale non-rigid motion, while PI-lin-MB and the current implementation of ADEPT assume this motion

to be rigid. However, for increasing under-sampling rates, the image reconstruction performance of parallel imaging

declines rapidly, which explains the observed inferior performance of PI-2step and PI-MB compared to ADEPT and

PI-lin-MB for R > 2.
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As can be seen from Fig. 5, which shows the simulation experiments with varying levels of SNR, ADEPT consis-

tentlyperforms better compared to the references methods in terms of bias and RMSE, independent of the SNR. For

example, for a dataset with SNR = 15 and R = 8 (cfr. Fig. 5), ADEPT outperforms the reference methods PI-2step,

PI-MB and PI-lin-MB in terms of the RMSE of MD by a factor of about 7, 6, and 1.5, respectively. Similar results were

found for FA estimation, where ADEPT outperforms PI-2step, PI-MB and PI-lin-MB in terms of RMSE, by a factor

of about 5, 4, and 1.5, respectively. It can also be observed from Fig. 5 that ADEPT (as well as the reference methods)

show a rather abrupt decrease in performance for SNR = 10 compared to SNR = 15. This decrease is caused by the

degraded quality of the SENSE reconstructed images at low SNR and high under-sampling rates. Since ADEPT is

initialized with parameter estimates obtained from SENSE reconstructed images, a poor SENSE reconstruction qual-

ity will directly affect ADEPT’s performance. Indeed, for SNR = 10 and under-sampling factor R = 8 or R = 12,

additional results of this experiment reported in section B of the supplementary file show that for some shots the phase

parameters of the linear phase model are estimated with a large error from the SENSE reconstructed images, resulting

in poor initial estimates for ADEPT. This suggests that ADEPT’s initialization strategy at high under-sampling rates

and low SNR (R > 4 & SNR < 15) can still be improved.

Finally, simulation experiments were performed to evaluate the effect of complementing the sampling pattern of

each shot of ADEPT’s multi-shot multi-contrast acquisition scheme with additional central k-space lines shared by

all shots. The results of these experiments (cfr. Fig. 6) showed that for 4-shot data, the gain in accuracy and precision

obtained by adding up to 4 central lines is only marginal, whereas for 8-shot data, a significant gain in terms of

RMSE (up to a factor of 4 for FA and up to a factor of 10 for MD) can be obtained by adding these central lines.

This observation may be explained by the fact that the non-linear estimation problem considered becomes more and

more challenging with an increasing under-sampling rate, up to the point where adding even the smallest piece of

information or data can have a huge impact.

It should be noted that ADEPT models the phase map of each shot as the sum of a static component (which is

constant across the shots) and a dynamic component (which varies across shots) (29). The static component accounts

for the effect of B0 and B1 field inhomogeneities, chemical shift, susceptibility differences, etc. It corresponds with

the phase map of the non-diffusion weighted image, which will generally be non-linear. ADEPT estimates this (non-

linear) phase map along with the other parameters of interest. Complementarily, the dynamic component of the phase

map represents the phase accrued due to (small-scale) motion during the diffusion-encoding. In the current version

of ADEPT, the dynamic phase component is modeled by a linear phase model for each shot, which accounts for

the effect of rigid motion. We showed that even with such a possibly non-comprehensive additional phase model,

the artifacts caused by the shot-to-shot phase inconsistencies are substantially reduced, even in real diffusion MRI

experiments. Nevertheless, the impact of non-linear dynamic phase contributions on ADEPT performance has been

investigated in section C of the supplementary material. In particular, following a similar approach as in (49), dynamic

14



phase components were generated that are described by a second-order spatial polynomial with uniformly distributed

coefficients. The results show a low sensitivity of ADEPT to moderate nonlinear phase contributions suggested by the

literature (49) with only a marginal increase of RMSE compared to the linear case.

Furthermore, the current implementation of ADEPT does not correct for geometrical distortions caused by mag-

netic field inhomogeneities. The in-vivo multi-shot dataset used in this study was generated by retrospective sub-

sampling of single-shot EPI data. Due to the long read-out duration of single-shot EPI, the retrospectively sub-sampled

multi-shot data was affected by geometrical distortions to a larger extent than what can be expected for prospectively

acquired multi-shot data. However, in a prospectively acquired multi-shot dataset, these distortions are expected to

become less significant, as multi-shot EPI acquisition allows for a shorter read-out time per shot. Moreover, in our

experiments, the effective value of TE (46.13ms) was chosen sufficiently small relative to T2 to assume that the

differences in TE across the acquired k-space lines can be considered negligible and all lines experience a similar

T2-weighting (1, 4, 50). Note that the shorter read-out time of multi-shot EPI compared to single-shot EPI allows the

use of shorter echo times, which makes multi-shot EPI less sensitive to artifacts related to T2-decay, as well as phase

accruals caused by off-resonant spins (4).

ADEPT can be extended in different directions. First, to fully exploit the increased number of degrees of freedom

offered by ADEPT in comparison with traditional data acquisition schemes, the framework can be complemented with

statistical experiment design (47), which allows finding the data acquisition settings that maximize the precision of the

estimated diffusion parameters for a given acquisition time. Equivalently, guided by statistical experiment design, the

additional degrees of freedom of ADEPT may be exploited to achieve a target precision using fewer shots (i.e., less

acquisition time) than a conventional multi-shot data acquisition scheme that doesn’t include intra-scan modulation.

Second, while in the current work ADEPT has been evaluated for Cartesian sampling trajectories and a DTI signal

model, ADEPT can be extended to include non-Cartesian acquisition schemes such as rotating EPI (12) and higher-

order diffusion models such as diffusion kurtosis imaging (51). Third, ADEPT can be expanded to simultaneous

multi-slice (SMS) imaging. To this end, the proposed model-based framework should be modified to allow for slice

unfolding exploiting coil sensitivity variations in three directions, using a similar formulation as (20,52). Note that this

framework should still account for different phase variations for each individual shot, since motion effects may vary

for different slice locations (53). Fourth, the current implementation of ADEPT does not address macroscopic inter-

shot motion as it is expected to be negligible in small anesthetized animal studies. For human data, this macroscopic

motion can be of a higher level, which may result in voxel misregistration (19). To address this issue, ADEPT may

be extended to account for macroscopic inter-shot motion, which is considered future work. A potential strategy is to

extend the signal model with additional parameters that define the motion between the shots and then estimate these

motion parameters along with the diffusion and phase parameters, following a similar approach as in (54). Finally,

ADEPT’s initialization strategy can be improved to make it more robust at both high under-sampling rates and low
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SNR. A possible approach could be to denoise the complex SENSE-reconstructed images prior to calculating the

phase maps and fitting the linear phase model to these phase maps. Alternatively, the currently used unweighted least

squares estimator described by Eq. (6) could be replaced by a weighted least squares estimator to account for the fact

that the SENSE-reconstructed phase maps have a non-stationary (i.e., spatially varying) variance (55, 56).

While further research is needed to explore its full potential, the current work has demonstrated that ADEPT can

become a highly competitive method for quantitative dMRI. Using a multi-shot EPI acquisition scheme, ADEPT is

less sensitive to susceptibility artifacts than single-shot EPI dMRI, which contributes to a higher estimation accuracy.

At the same time, ADEPT’s intra-scan modulation strategy, especially when complemented with optimal experiment

design, allows it to estimate accurate and precise diffusion parameter maps from a limited number of shots, being

comparable to the number of images used in a conventional single-shot approach. That is, ADEPT has the potential

to provide more accurate diffusion parameter maps than single-shot EPI approaches, while requiring a comparable

acquisition time, which is well below the acquisition time of conventional multi-shot EPI approaches that do not

include intra-scan modulation. This potential will be further explored in future studies.

Conclusion

We presented ADEPT, a framework that allows accurate and precise estimation of diffusion parameter maps from

under-sampled multi-shot EPI data. ADEPT combines a novel image acquisition strategy with a model-based recon-

struction approach in which diffusion parameter maps are estimated along with shot-to-shot phase variations. It was

shown that ADEPT’s combined parameter estimation strategy allows to strongly reduce artifacts caused by shot-to-

shot phase variations, especially at high under-sampling rates. Moreover, simulation and in-vivo experiments showed

a superior estimation performance (in terms of accuracy and precision) of ADEPT compared to conventional multi-

shot EPI methods that rely on parallel imaging for phase correction. Finally, ADEPT enables intra-scan diffusion

modulation by allowing individual shots of the multi-shot acquisition to have a different diffusion weighting, thereby

substantially increasing opportunities for optimal experiment design.
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6-shot 0.32 0.92 0.37 0.21 6-shot 0.38 0.46 0.41 0.23

S3

2-shot 0.023 0.031 0.037 0.044 2-shot 0.022 0.019 0.023 0.024

3-shot 0.16 0.20 0.070 0.062 3-shot 0.17 0.12 0.074 0.039

4-shot 0.27 0.51 0.12 0.11 4-shot 0.31 0.28 0.12 0.086

5-shot 0.28 0.45 0.14 0.11 5-shot 0.31 0.31 0.11 0.095

6-shot 0.28 0.63 0.15 0.13 6-shot 0.34 0.37 0.28 0.22

Table 1: MD and FA rRMSE values for the in-vivo study for 3 subjects (S1, S2, S3).
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Figure 1: A graphical presentation of the k-space sampling trajectory of the individual shots in a 4-shot EPI acquisition used in

simulation experiments. Each shot is acquired with a different diffusion contrast (represented by a different color). Solid lines

indicate the sampled points in the k-space, whereas dashed lines indicate the non-sampled points.
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Figure 2: MD maps estimated from simulated multi-shot data with SNR = 15 using PI-2step (a), PI-MB (b), PI-lin-MB (c), and

ADEPT (d), along with the corresponding RMSE. From top to bottom row, MD maps estimated from the 2-, 4-, 8-, and 12-shot

datasets are shown.
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Figure 3: FA maps estimated from simulated multi-shot data with SNR = 15 using PI-2step (a), PI-MB (b), PI-lin-MB (c), and

ADEPT (d), along with the corresponding RMSE. From top to bottom row, FA maps estimated from the 2-, 4-, 8-, and 12-shot

datasets are shown.
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Figure 4: Distribution of the DTI parameter estimation errors for the voxels in the indicated region of interest. The errors are shown

for ADEPT and three reference methods in the 8-shot simulation experiment with SNR = 15.

Figure 5: Spatial averages of the absolute bias (a), standard deviation (b), and RMSE (c) maps of MD (top) and FA (bottom),

estimated from simulated 8-shot datasets with different SNR values. The error bars correspond to the standard error of the spatial

average.

28



Figure 6: Estimated MD (a,c) and FA (b,d) maps using ADEPT and the corresponding spatial averages of bias, std, and RMSE in

the simulation experiments. Results are shown for the 4-shot dataset (top) and the 8-shot dataset (bottom).
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Figure 7: MD maps estimated from the in-vivo dataset using PI-2step (a), PI-MB (b), PI-lin-MB (c), and ADEPT (d), along with

the corresponding rRMSE. From top to bottom row, MD maps estimated from the 2-, 3-, 4-, 5-, and 6-shot datasets are shown.
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Figure 8: FA maps estimated from the in-vivo dataset using PI-2step (a), PI-MB (b), PI-lin-MB (c), and ADEPT (d), along with the

corresponding rRMSE. From top to bottom row, FA maps estimated from the 2-, 3-, 4-, 5-, and 6-shot datasets are shown.
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