
5682 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 34, NO. 9, SEPTEMBER 2023

Parameter Efficient Neural Networks With
Singular Value Decomposed Kernels

David Vander Mijnsbrugge , Femke Ongenae , and Sofie Van Hoecke

Abstract— Traditionally, neural networks are viewed from the
perspective of connected neuron layers represented as matrix
multiplications. We propose to compose these weight matrices
from a set of orthogonal basis matrices by approaching them as
elements of the real matrices vector space under addition and
multiplication. Making use of the Kronecker product for vectors,
this composition is unified with the singular value decomposi-
tion (SVD) of the weight matrix. The orthogonal components
of this SVD are trained with a descent curve on the Stiefel
manifold using the Cayley transform. Next, update equations for
the singular values and initialization routines are derived. Finally,
acceleration for stochastic gradient descent optimization using
this formulation is discussed. Our proposed method allows more
parameter-efficient representations of weight matrices in neural
networks. These decomposed weight matrices achieve maximal
performance in both standard and more complicated neural
architectures. Furthermore, the more parameter-efficient decom-
posed layers are shown to be less dependent on optimization and
better conditioned. As a tradeoff, training time is increased up
to a factor of 2. These observations are consequently attributed
to the properties of the method and choice of optimization over
the manifold of orthogonal matrices.

Index Terms— Cayley transform, Kronecker product, neural
networks, singular value decomposition (SVD), Stiefel manifold,
vector space.

I. INTRODUCTION

ARTIFICIAL neural networks are based on the mathemat-
ical representation (McCulloch–Pitts model) of artificial

neurons [1]. Stacking layers of these neurons separated by
nonlinear activation functions σ(·) creates a model, called
the multilayer perceptron, that allows nonlinear modeling [2].
To obtain optimal weights for the network, these models have
to be trained. In supervised learning, an appropriate objective
function L is minimized over a set of training examples to
achieve this. By using a matrix multiplication to represent
the connections between neurons, the full problem statement
for a single layer is written as follows:

min
W,�b

L(�y(�x), �̂y) (1)

�y(�x) = σ(W�x + �b). (2)

Manuscript received 13 August 2020; revised 9 July 2021 and
4 November 2021; accepted 22 November 2021. Date of publication
23 December 2021; date of current version 1 September 2023. This work
was supported by the Flemish Government through the Onderzoeksprogramma
Artificiële Intelligentie (AI) Vlaanderen Programme. (Corresponding author:
David Vander Mijnsbrugge.)

The authors are with the IDLab, Ghent University–imec, 9052 Gent,
Belgium (e-mail: david.vandermijnsbrugge@ugent.be).

This article has supplementary material provided by the authors and color
versions of one or more figures available at https://doi.org/10.1109/
TNNLS.2021.3130756.

Digital Object Identifier 10.1109/TNNLS.2021.3130756

At the core of this process are the weight matrices or
kernels W that transform each layer before activation. This
kernel describes a set of linear equations between a hidden
state vector and the input of the layer. From a mathematical
standpoint, this kernel is contained in the set of all real
matrices R

M×N , which is a vector space under addition and
scalar multiplication [3]. Consequently, each weight matrix
can be described as a linear combination of basis matrices {Ei}
with span{Ei } = R

M×N as formulated in (3). By taking a
basis, known as either the standard or natural basis [see (4],
the before mentioned neuron interpretation is recovered

W =
∑

i

si Ei (3)

Ei = δN×M
i, j | ∀ j ≤ N × M. (4)

In this natural basis, each basis matrix corresponds to an
adjacency matrix for the connection between an input and
output neuron where each coefficient si represents the weight
of this connection. From the traditional viewpoint, these
basis matrices are fixed and only the coefficients are trained.
We propose a new perspective given the basis decomposition,
which allows to look at the weight matrix and considers it as a
representation of the relationship between two entities. These
entities are described using embeddings (Definition 1) and are
commonly known from the natural language processing (NLP)
domain [4] where they translate words or language entities into
mathematical vectors.

Definition 1: Embeddings are vector representations of
either categorical or continuous variables, often lower dimen-
sional than the original one.

Deep learning embeddings have been observed to obey
semantic rules imposed by the linguistic rules present in
the data. These semantic rules can be expressed as relations
between entities as in (5). Due to the linearity of the matrix
multiplication, we stipulate that these semantic properties can
be a direct consequence of the weight matrix representing the
relationship as portrayed by (6) in Example 1.

Example 1: Given that the embeddings of the words
“Girl”/“Woman” and “young” obey the given relation

�Woman+ �Young ∼ �Girl. (5)

This implies the following rules of relations:
Is_Woman+ Is_Young ∼ Is_Girl. (6)

Generalizing this kind of decomposition leads to the same
decomposition as in (3), where each Ei represents a specific

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-2529-5477
https://orcid.org/0000-0002-7865-6793
https://orcid.org/0000-0002-9918-3438

VANDER MIJNSBRUGGE et al.: PARAMETER EFFICIENT NEURAL NETWORKS WITH SINGULAR VALUE DECOMPOSED KERNELS 5683

relation and si its strength. This interpretation strays away
from the connected neuron interpretation by making both the
coefficients and basis matrices trainable. Now, the transforma-
tion represented by the kernel W can be seen as a combination
of basis transformations and their respective importance or
strength, rather than neuron connections and their individual
weight.

The objective of this article is to introduce this interpretation
of the weight matrix and formalize it into a framework fitting
with the current state of the art on deep learning. We also
show the advantages of this method, i.e., improved parameter
efficiency and generalization while maintaining performance,
through thorough benchmark evaluations.

The remainder of this article is organized as follows. First,
Section II presents the related work. Section III introduces
the concept of Kronecker product to make both the basis
matrices and coefficients trainable with a feasible amount
of parameters. In this section, also the associated training
algorithm is derived. Finally, the presented method is evaluated
on benchmark datasets and the results are consequently linked
to the properties of the method in Section IV. Section V
presents the major conclusions and future work.

II. RELATED WORK

The concept of learning sets of basis blocks is a fundamental
concept of dictionary learning and is often joined with sparsity
constraints [5]. However, to the best of our knowledge, such an
approach has not yet been explored for neural network layers.
The resulting construction of weight matrices using singular
value decomposition (SVD) has been proposed in the context
of recurrent neural networks using householder matrices [6].
Even though this work extends to general matrices, there is no
mention of acceleration or initialization. Furthermore, it does
not make use of the large body of work regarding optimization
on the Stiefel manifold with the Cayley transform [7]–[11].

On the other hand, in [12], the Cayley transform and
corresponding descent curve are effectively used to model
unitary matrices in recurrent neural networks. In this work,
a similar approach is taken for orthogonal matrices, but in the
context of optimizing the orthogonal components of an SVD.
Coincidentally, the SVD has been used to investigate the
properties of neural networks, such as bounding the singular
values for improved training [13] or using the SVD in order to
reduce the latent space to a minimal effective dimension [14].
These works use the SVD retrospectively, while in this work,
the decomposition is proactively taken as the starting point.

III. APPROACH

Starting from the basis decomposition in (3), the proposed
method will treat each layer by storing, initializing, and
training the basis components and coefficients independently.
In the forward pass, the weights are assembled from the
decomposition and used to calculate the output. In the back-
ward pass, each component is updated separately according
to specific update equations. Our approach is divided into
four parts corresponding to the following. First, by using a
matrix decomposition for the basis matrices, a specific form

for basis decomposition is proposed. Second, corresponding
to the update, equations for both the basis matrices and
the coefficients are derived. Third, initialization routines for
each component are constructed. Finally and fourth, stochastic
acceleration for each update equation is discussed.

A. Basis Matrix Decomposition

The interpretation from Section I requires making every
weight in (3) trainable, resulting in O(R · N · M) parameters.
Here, R is the size of the set of basis matrices. To make this
number of parameters feasible, a significant reduction of these
parameters per basis matrix is required. Using the concept of
the Kronecker product [15] of two vectors [see (7)], each basis
matrix is constructed with only O(N+M) instead of O(N ·M)
parameters

Ei = �ui ⊗ �vi[
�a ⊗ �b

]
i j
= �ai · �b j . (7)

This reduction in parameters allows the whole decompo-
sition to consist of O(R · [N + M + 1]) parameters by
substituting (7) into (3). Consequently, if the sets of vectors
{�ui} and {�vi } represented by U and V are orthonormal, the
resulting form corresponds to the SVD of W, as shown in the
following equation:

W =
∑

i

sii [�ui ⊗ �vi] = USVT . (8)

We can give a straightforward interpretation to this result. The
hyperparameter R represents the dimension of the subspaces
in which most of the embeddings that are connected by the
relation reside. The orthogonality of U and V ensures that also
the set of basis matrices is orthonormal [see (9)] under the
Frobenius norm, as derived in Appendix A-D. This changes
the interpretation from the orthonormal basis sets {�ui} and
{�vi} of the embeddings into a single orthonormal basis set
for the relation, which is the same change of interpretation
provided in Example 1. Furthermore, the hyperparameter R
also grants insight into the cases when the parameter reduction
will be useful, namely, in the case where the input and output
data space can be adequately described by an R-dimensional
subspace of R

N and R
M , respectively, or equivalently

when W can be adequately described by an R-dimensional
subspace of R

N×M

< Ei , E j >= δi j | ∀Ei , E j . (9)

Parallel to this interpretation, the approach also addresses a
recurring problem in neural networks, i.e., the ill-conditioned
weight matrices. Ill-conditioned matrices give rise to large
fluctuations of the output of the linear system with respect
to small fluctuations of the input. This property translates
into saddle points in the loss function, which leads to more
confusion during training and less stable networks [16]. The
conditioning number κ and the fraction of the largest and
smallest singular values of the kernel, given by (10), repre-
sent this property. Large values of this conditioning number
correspond to ill-conditioned matrices

κ = σmax

σmin
= max(S)

min(S)
. (10)

5684 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 34, NO. 9, SEPTEMBER 2023

Regularization of singular values has already been shown to
improve training time and performance [13]. Our proposed
method inherently contains this regularization as standard
weight regularization of the network on the decomposition
coefficients. In terms of κ , this means that regularizing the
weights in S leads to soft upper and lower bounds on κ and
consequently avoids ill-conditioned matrices.

B. Update Equations

To effectively train the decomposed layer, there needs to be
a set of update equations for the weights. These weights are
most commonly optimized using stochastic gradient descent
(SGD) [17]. At each iteration k, SGD adds the gradient of the
objective function with respect to the weights at that iteration
(∇wkL), scaled by a learning constant α. The standard form for
an SGD weight update step is given in the following equation:

wk+1 = wk + α∇wkL. (11)

Next, update equations for U, S, and V in the form of (11)
are derived. In light of the general decomposition in (3), the
update equations for both U and V, corresponding to the
basis matrices, and S, regarding the coefficients, are considered
separately. This section starts with defining the necessary tools
and then constructs these update equations for the orthogonal
matrices in the SVD. Using these update equations, consequent
ones for the singular values are derived.

1) Orthogonal Matrices: By construction, the matrices U
and V both describe a set of orthonormal basis vectors in
a rowwise fashion. To preserve this property, update equa-
tions that generate orthogonal matrices at each iteration are
required. Definition 2 describes the manifold on which these
matrices lie.

Definition 2: The Stiefel manifold [see (12)] describes the
set of all the orthogonal matrices under the canonical met-
ric (13), where Z1 and Z2 are elements of the tangent space
of X (TXVN,R) [18]

VN,R = {X ∈ R
N×R : XT X = IR} (12)

< Z1, Z2 >c = Tr

(
ZT

1 ·
[

I− 1

2
XXT

]
· Z2

)
. (13)

Optimization of the Stiefel manifold can be done via the
geodesic described by the matrix exponential. However, for
computational reasons, it is better to use quasi-geodesic meth-
ods [7], [10]–[12]. This quasi-geodesic is a Padé approxima-
tion of the matrix exponential, called the Cayley transform,
described in Theorem 1

Theorem 1: The Cayley transform [see (14)] of any skew-
symmetric matrix is orthogonal1

φν(X) =
(

I− ν

2
X

)−1 ·
(

I+ ν

2
X

)
φν(X)T · φν(X) = I |XT = −X. (14)

Definition 3 describes a parameterized descent curve on the
Stiefel manifold for any objective function L using this
transform.

1Proof in Appendix A-A.

Fig. 1. Representation of descent curve on the Stiefel manifold.

Definition 3: Given a orthogonal matrix X and an objective
function L(X), Y(ν) is a parameterized descent curve for L(X)
on VN,R [18]

Y(ν) = φν(W(X,∇XL))X (15)

W(X,∇XL) = ∇XLXT − X∇XLT . (16)

This descent curve is directly dependent on the derivative
of the specified objective function ∇XL. It is used to define
the action on X as ∇XLXT − X∇XLT . This is a vector
in the tangent space of the Stiefel manifold. Consequently,
the action is transformed by the Cayley transform into an
orthogonal matrix since the action is a skew-symmetric matrix.
Due to the orthogonality restriction and the metric, this
descent curve can be seen as a search over a surface in
the direction that minimizes the loss function. This is visu-
ally represented in Fig. 1. Optimization using this descent
curve normally uses line search [10], [18] to determine step
sizes according to the Armijo–Wolfe conditions, as described
in Definition 4 [19], [20].

Definition 4: The Armijo–Wolfe conditions for curvilinear
search are

L(Y(ν)) < L(Y(0))+ c1 · ν · ∇νL(Y(0)) (17)

∇νL(Y(ν)) > c2 · ∇νL(Y(0)) (18)

0 < c1 < c2 < 1. (19)

These conditions are to be interpreted as an upper and lower
bound on the step sizes, respectively, defined by two coeffi-
cients c1 and c2. As derived in Appendix A-C, they can be
evaluated using the chain rule and the directional derivative of
the Cayley transform with respect to ν given in the following
equation:
∇νL(φν(X)) = Tr(∇φν(X)L · ∇ν(φν(X)))

∇ν(φν(X)) = −1

2

(
I+ ν

2
X

)−1 ·X · (X+ φν(X)). (20)

To obtain the most acceptable step sizes, the coefficients are
often taken to include a large portion of the interval [0, 1],
e.g., c1 = 0.1 and c2 = 0.9. Doing a line search for each
matrix would lead to 2L line searches at each training step
for a network with L layers. Using such a method at each
training iteration would thus increase training time with a
factor proportional to the amount of iterations needed for these
searches to converge. Vaswani et al. [21] noted that these
methods converge faster at the cost of computational time.
In the following derivation, we omit this line search for the

VANDER MIJNSBRUGGE et al.: PARAMETER EFFICIENT NEURAL NETWORKS WITH SINGULAR VALUE DECOMPOSED KERNELS 5685

benefit of training time. Note that using line search can easily
be added when striving for optimal convergence irrespective
of training time.

Using the descent curve with a constant step ν solves this
problem by suboptimally choosing a value for ν. Equivalently,
this is optimizing both U and V by taking equidistant steps
on the optimization surface according to the descent curve.
Equations (21) and (22) hold for U and V, respectively

Uk+1 = φν(Uk,∇UkL)Uk (21)

Vk+1 = φν(Vk,∇VkL)Vk . (22)

The calculation of (21) and (22) requires the inversion of
matrices with dimensions N × N and M × M , respectively.
Theorem 2 manipulates this calculation into a term χν that
requires a 2R × 2R matrix inversion.

Theorem 2: The Cayley transform φν can be written as
the sum of a unit matrix I and a matrix χ that requires the
inversion of a 2R × 2R matrix [18]

φν(X,∇XL) = I+ χν(X,∇XL) (23)

χν(X,∇XL) = −νA(I+ ν

2
BT A)−1BT (24)

A = [∇XL, X]
B = [X,−∇XL].

With this transformation, the update (21) and (22) are also
put in additive form corresponding to the weight update step
defined in (11)

Uk+1 = Uk + χν(Uk,∇UkL)Uk (25)

Vk+1 = Vk + χν(Vk,∇VkL)Vk . (26)

2) Singular Values: The update equations for the coeffi-
cients, or equivalently the singular values, can be calculated
given the two transformations of the orthogonal matrices
and the partial derivatives of the objective function to each
component. Starting from the regular update equation (11) and
the SVD notation in (8) at iteration k + 1, an expression for
the singular values update is obtained by equating both and
solving for Sk+1. Isolating the singular value matrix is done
by using the orthogonality of both U and V. This results in
the expression given by the following equation:

Sk+1 = (Uk+1)T · [Wk + α∇WL] · Vk+1. (27)

The gradient with respect to the assembled matrix in terms of
the component derivatives is given in Theorem 3.

Theorem 3: Derivative of objective function with respect to
a matrix in the function of the derivatives with respect to its
SVD components [22]

∇WL|∇U,S,VL = DVT + UAVT + US
B+ BT

2
VT

A = ∇SL− UD

B = K ◦ [VT∇VL− DUS]
D = [∇ULS−1]diag

K =
{

Sii − S j j, i
= j

0, i = j.
(28)

Substituting (28) into (27) and using (23) gives the update
equation for Sk+1 only in terms of the components at itera-
tion k and partial gradients. This is represented in the following
equation:

Sk+1 = [
I+	T

Uk

] · Sk · [I+	Vk] + αQk

	X = (X)T χν(X)X

Qk = Uk+1,T∇WL|∇U,S,VLVk+1. (29)

Rewriting this as an additive equation gives the final equation
[see (30)] that uses the diagonal components of an update
matrix
SL

Sk+1 = Sk +
SL

SL =

[
	T

Uk Sk + (Sk +	T
Uk Sk)	Vk + αQk

]
diag

. (30)

C. Initialization

Given the update equations from Section III-B, each com-
ponent also needs proper initialization as convergence is
strongly dependent on initial weights [23]. Neural network
weights are initialized by randomly sampling each element
from a specific distribution. Two distributions, namely, the
Gaussian and uniform distribution, are most commonly used
as initialization distributions. In terms of the components in
the proposed decomposition, both U and V are orthogonal
matrices. Any set of vectors can be made orthonormal using
the Gramm–Schmidt procedure [24]. Using this procedure,
R random vectors for both U and V are constructed. Since both
these orthogonal matrices do not determine any distribution
of the resulting composition matrix, the initialization of the
singular value vector is responsible for the weight distribution.
As such, a specific initialization for the R singular values
is needed for both the Gaussian and uniform cases with an
arbitrary variance.

1) Normal: Initialization for the Gaussian case corresponds
to sampling the initial weights from the following distribution:

p(W) = N (0, σW). (31)

Let us now consider the distribution of the singular values
contained in S. According to Fisher–Hsu–Girshick–Roy [25],
the singular values of a random Gaussian matrix have a
marginal distribution described in Theorem 4.

Theorem 4: The marginal distribution for the unordered
singular values λ of X ∼ N (0, 1) ∈ R

M×N is given by

p(λ)r,t = 1

t

t−1∑
k=0

k!
(k + r − t)!

[
Lr−t

k (λ)
]2

λr−tλ−s (32)

Lr−t
k (s) = es

k!sr−t

dk

dsk
(e−ssn+r−t). (33)

Theorem 4 makes use of the Laguerre polynomials (33). These
polynomials are orthogonal with respect to the weighting
function essr−t , as portrayed by the following equation [26]:∫ ∞

0
e−x xk

[
Lk

n(x)
]2

dx = �(n + k + 1)

n! . (34)

5686 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 34, NO. 9, SEPTEMBER 2023

This allows us to define a set of orthonormal functions as
in (35), while the probability distribution takes the form of (36)

φr−t
k (s) =

[
(k + r − t)!

k!
] 1

2

Lr−t
k (s)s

r−t
2 e−

s
2 (35)

p(s)r,t = 1

t

t−1∑
k=0

[
φr−t

k (s)
]2

. (36)

This also shows that ps is a probability distribution since its
integral is one. This can be seen directly from the property
in (34). To extend this to general variance with zero mean,
a change of variables is done

pσ (s)r,t = |σ 2|p(s)r,t . (37)

Initialization can now be performed by sampling values from
this distribution and putting them on the diagonal of S.

2) Uniform: Initialization for the uniform case corresponds
to sampling the initial weights from the following distribution:

p(W) = U(−a, a). (38)

In a similar fashion as Section III-C1, a statement about the
distribution of the singular values of this random matrix is
needed. Theorem 5 states the limiting distribution of the sin-
gular values {σ 2

i } for a uniform distribution given a symmetric
interval and general variance.

Theorem 5: Given Y ∼ U(−(σ/
√

3N), (σ/
√

3N)) ∈
R

M×N , in the limit N, M →∞ at fixed M/N = r ∈ (0,+∞]
the singular values of Y have the Marcenko–Pastur distribution
[see (39)]2

p(λ) = 1

2πλrσ 2

√
(λ+ − λ)(λ− λ−)

λ± = σ 2(1±√r)2. (39)

This theorem, however, is not an exact statement as
Theorem 4, but rather a limiting case. To verify the validity
of the formula, the χ2-statistic, given in (40), for histogram
comparison [27] is calculated as an estimation of the error.
The χ2-statistic represents a measure for the deviation from
the expected amount of counts per bin. c0

i and c1
i are the bin

counts for each histogram using identically binned histograms

χ(c0, c1) = 2
∑

i

(
c0

i − c1
i

)2

c0
i + c1

i

. (40)

Table I gives the deviations over 50k sampled singular values
for different sizes of matrices, where N and M are described
by the columns and rows, respectively. For smaller values
of matrix sizes, there is some discrepancy, but negligible
considering that the maximal deviation is ±1% of the sampled
values. Furthermore, these smaller matrix sizes are practically
irrelevant for neural networks. Based on these results, we can
safely adopt the formula for uniform distributions for initial-
ization of the singular values.

2Proof in Appendix A-B.

TABLE I

χ2-STATISTIC OVER 50k SAMPLES FOR GAUSSIAN (WHITE) AND

UNIFORM (GRAY) INITIALIZATION FOR DIFFERENT MATRIX SIZES

D. Optimizer Dependence

The update equations (25), (26), and (30) all coincide with
regular SGD by construction. Current state-of-the-art neural
networks, however, are commonly trained using various meth-
ods of acceleration for stochastic optimization [28], [29]. The
two main components for acceleration, i.e., momentum and
adaptive learning rates, are discussed from the aspect of both
the basis matrices and the coefficients in the decomposition
in the following. Primarily, the effect of acceleration on the
orthogonality, when optimizing over the Stiefel manifold,
is examined. The necessary changes to a naive implementation
are made and added to the training routine.

1) Momentum: One way of accelerating optimization algo-
rithms is adding momentum to each weight update, as por-
trayed by (41) and (42). Momentum is named after the
phenomenon from physics and is combined with interpretation
of optimization as a ball rolling down a loss surface, which
keeps its previous momentum after a change in direction.
This translates into keeping the gradient of the previous step
partially in mind when optimizing the current iteration

wk+1 = wk + α · θ k (41)

θ k = β · θ k−1 +∇wkL| θ0 = 0. (42)

When considering momentum for (25) and (26), the orthog-
onality of U and V deteriorates with each iteration. Different
implementations, such as moving average momentum imple-
mented in the ADAM optimizer, that scale each new gradient
term in (42) by a factor of 1− β, are technically the identical
and suffer from the same drawback. In light of Theorem 3 and
Fig. 1, this problem can be solved by applying the momentum
step in (42) with the gradient of which the action is calculated.
Due to the linearity of this action, this is equivalent to applying
the momentum step in the tangent space of the manifold,
as in [7], and projecting afterward. To stay consistent, this
same method is applied to the gradients of the singular values.

2) Adaptive Learning Rate: Any gradient update as given
in (11) consists of a gradient part and a step size or learning
rate. By directly changing the latter, the speed of learning can
be accelerated or slowed down. Formally, this is described by

VANDER MIJNSBRUGGE et al.: PARAMETER EFFICIENT NEURAL NETWORKS WITH SINGULAR VALUE DECOMPOSED KERNELS 5687

making the learning rate iteration dependent (α → αk) as in
the following equation:

wk+1 = wk + αk · ∇wkL. (43)

Similar to momentum, running averages of gradient norm are
kept that scale the learning rate as portrayed in (44). The
following equations represent the variable learning rate scheme
used in the ADAM optimization algorithm:

αk = α√
vk + �

vk = γ vk−1 + (1− γ)�∇wkL�2| v0 = 0. (44)

When considering adaptive learning rates, the optimization
on the Stiefel manifold runs into some problems. Since the
calculation of χν requires a scalar value for ν, the adaptive
learning rate has to be addressed before calculation of χν .
Looking at (44), this adaptive learning rate is a scalar scaled
inversely by a matrix, which is done elementwise. By applying
this elementwise operation to the gradient or moment matrix,
as in (41) and (11), respectively, the learning returns to being
a constant scalar and is compatible with the Cayley transform
calculation. This adaptation can be interpreted as scaling of the
gradient or momentum for each matrix entry and is applicable
to all adaptive learning rate schedules that allow extraction
of a scalar. It is here where reintroduction of the omitted
line search from Section III-B1 is also a possibility. However,
as mentioned before, we did not follow this approach for
computational reasons and used standard acceleration schemes
from the state-of-the-art stochastic optimization. In line with
the treatment of the singular value gradients regarding momen-
tum updates, this way of implementing the adaptive learning
rate is also implemented for the singular value updates.

IV. EXPERIMENTS

In this section, all experiments comparing our proposed
method to the standard interpretation of weight matrices
are described. Everything was performed using two Tesla
V100-SXM3-32GB GPU and eight Intel Xeon Platinum 8168
CPU @ 2.70 GHz CPU cores. Each experiment is a specific
implementation of the pseudocode described in Algorithm 1
using Tensorflow 2.2.0. Initialization used for all experiments
using either the standard Tensorflow library or the correspond-
ing initialization from Section III-C. Implementations can be
found in the open-source code.3

Algorithm 1 Accelerated SVD Optimization Scheme

Input: {Uk−1, Sk−1,Vk−1}
for Xk−1 in {Uk−1, Sk−1, Vk−1} do:
∇Xk−1L← GetGradient (Xk−1)
θXk ← Acceleration(∇Xk−1L, θXk−1)

for Xk−1 in {Uk−1, Vk−1} do:
Xk ← Xk−1 + χν(Xk−1, θXk)

Sk ← Sk−1 +
Sν,α({Xk−1}, {θXk })
return Uk , Sk ,Vk

3https://github.com/predict-idlab/svd-kernels

The performed experiments are divided into three sections.
First, regular feedforward networks are evaluated for different
matrix sizes and ranks using optimization with SGD, SGD
with momentum, and ADAM as described in Section III-D.
Second, the proposed method is used to substitute fully
connected layers in residual network (ResNets) architectures.
Finally, the transformer architecture is considered in which
each weight matrix is substituted for its decomposed vari-
ant. This order of experiments is such that the properties
of the decomposed weight matrices can be observed and,
consequently, their performance for relevant architectures
evaluated. For all experiments, visual evaluations are done,
which contains both the learning and accuracy curves during
training, tracking of the orthogonality conditioning number
(κorthogonality), which reflects how orthogonal the U and V
components are at every step, given by (45) and a tracker for
the conditioning number (κconditioning) as defined in (10). All
figures, both discussed in the following and additional ones,
can be found in Appendix B

κ(x) =
√
||xT · x− I||. (45)

A. Feedforward

The first set of experiments compares regular and decom-
posed weight matrices using feedforward networks. For this
purpose, a feature-based dataset is selected, the cleveland-
heart-disease dataset [30] with 32 input features. A single
hidden layer neural network with one sigmoidal output node
for binary classification is evaluated. Binary cross entropy
is used as loss function and binary accuracy as a validation
metric. A comparison for different ranks and hidden layer sizes
is done for each of the three optimization schemes mentioned
before. The results on a 20% validation split are given in
Tables II–IV for standard SGD, SGD with momentum, and
ADAM, respectively. All of these values are averaged over
25 training runs, and for each matrix size, the best performing
architecture has been highlighted.

Tables V and VI contain the amount of parameters and
averaged training times for each model, respectively. Visual
performance evaluation is included for three different parame-
ter combinations. First, the 32 unit matrix size with rank 32 is
selected for its high regular SGD performance, and being the
only matrix size, the regular approach outperforms its decom-
posed variant. Second, for the maximum size matrix 512,
which reaches maximal overall methods, rank 24 variant is
selected since it is the best performing. Finally, matrix size 128
with rank 16 is added for intermediate comparison.

Comparing different optimizer performances in Tables II–IV
shows that, unlike regular weight matrices, the decomposed
matrices are a lot more independent of the chosen optimization
scheme. This observation is attributed to the more directed
search granted by using the Stieffel manifold for optimization
of the orthogonal components of the decomposition. Even-
tually, both approaches reach maximal performance using
the ADAM optimization scheme. From the corresponding
results, presented in Table IV, the decomposed weight matrices
outperform their regular counterparts consistently except for

5688 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 34, NO. 9, SEPTEMBER 2023

Fig. 2. Conditioning curves for the selected feedforward models. Given are the models with (a) 32 units and rank 32, (b) 128 units and rank 16, and
(c) 512 units and rank 24.

TABLE II

FEEDFORWARD MODEL ACCURACY FOR SGD

TABLE III

FEEDFORWARD MODEL ACCURACY FOR SGD WITH MOMENTUM

the square matrix at 32 units. This observation seems in line
with the assumption that decreasing the rank and directly
learning well-conditioned matrices avoid overparameteriza-
tion. This more efficient parameterization is also reflected in
the number of parameters given in Table V. Table VI, however,
represents the downside of the method since, at each rank, the
computational time goes up significantly. When comparing the
conditioning number tracker given in Fig. 2(a) with those in
Fig. 2(b) and (c), this suspicion is reaffirmed. For the regular
square matrix, the conditioning number does not grow out
of bounds with respect to the decomposed ones. In contrast,
for the more rectangular matrices, the conditioning number
keeps rising throughout training, while the decomposed vari-
ants keep themselves well-conditioned. This ill-conditioned
behavior likely negates some of the benefits of the increased
hidden dimension. By using the decomposed matrices, the size
of the hidden dimension can be enlarged sufficiently without
these side effects, leading to increased performance. Both the
256 units/rank 32 and 512 units/rank 24 matrices significantly
outperform the regular implementation at all sizes for the
validation accuracy.

TABLE IV

FEEDFORWARD MODEL ACCURACY FOR ADAM

TABLE V

FEEDFORWARD MODEL PARAMETER COMPARISON

TABLE VI

FEEDFORWARD MODEL TRAIN TIME COMPARISON (s/epoch)

B. Residual Networks

Following the previous results on feedforward networks,
the decomposition layer is also introduced in more compli-
cated state-of-the-art architectures, more specifically ResNets
for image recognition [31]. Both the MNIST and CIFAR10
benchmark datasets are used for evaluation. For MNIST,
a single residual block with 256 filters followed by a single
feedforward layer of 256 units is used, and for CIFAR10,
a triple residual block architecture with 64, 128, and 256 filters
followed by a 1000-unit feedforward layer is used. Each
residual block is separated by a 2 times 2 average-pooling
operation. It is both these feedforward layers that are evaluated
with the regular and decomposed method. In line with the

VANDER MIJNSBRUGGE et al.: PARAMETER EFFICIENT NEURAL NETWORKS WITH SINGULAR VALUE DECOMPOSED KERNELS 5689

Fig. 3. Conditioning curves for (a) MNIST and (b) CIFAR10.

TABLE VII

PERFORMANCE COMPARISON FOR DIFFERENT RANKS OF THE 256 UNIT

FEEDFORWARD LAYER OF THE RESNET ARCHITECTURE ON MNIST

findings from Section IV-A, all optimization is done using
the ADAM optimization scheme since this results in the best
performance for both the decomposed layer and all other
variables such as the convolutional layers. The initial learning
rate used is 0.01 and is decreased to 0.001 after 20 epochs.
L2 regularization with coefficients 0.001 and 0.01 is used for
the convolutional and feedforward layers, respectively. In the
case of the decomposed variants, this regularization is imposed
on the singular values. Tables VII and VIII summarize the
performance comparison between multiple rank decomposed
approaches and the full-rank regular approach for MNIST and
CIFAR10, respectively. The corresponding learning, accuracy
curves, orthogonality, and conditioning numbers are given
in Appendix B-B.
Similar observations as in Section IV-A are seen in the MNIST
evaluation. At smaller ranks corresponding to fewer para-
meters, the same performance as with full-rank matrices is
achieved, and at a similar amount of parameters, rank 128,
the decomposed matrix outperforms the regular weight matrix
slightly. Furthermore, at all ranks, the discrepancy between
train and test error is slightly smaller. This is indicative of
better generalization properties that are linked to the condi-
tioning number of the feedforward layer, as shown in Fig. 3(a).
Here, it is clearly seen that the regular matrix implementation
is much worse conditioned than the decomposed counterparts.
From the training times, a growing discrepancy is seen as
the rank of the decomposition grows. This is due to the
number of matrix multiplications and inverse needed in the
backpropagation step. For CIFAR10, however, no signifi-
cant improvement in performance is observed. This seems

TABLE VIII

PERFORMANCE COMPARISON FOR DIFFERENT RANKS OF THE 256 UNIT

FEEDFORWARD LAYER OF THE RESNET ARCHITECTURE

ON CIFAR10 EVALUATED AT 20 epochs OF TRAINING

Fig. 4. Model accuracies for adversial examples generated using FSGM with
different values of � on a random 1000 image subset of the CIFAR10 test
data.

reasonable since the amount of convolutional parameters
greatly outnumbers the number of weight in the feedforward
layer and is also reflected in no significant computational
discrepancy. However, as presented in Fig. 3(b), the condi-
tioning of these feedforward layers is still much better for the
decomposed layers. Since ill-conditioned matrices lead to large
output fluctuations, these better conditioned matrices have the
potential of being more robust to noisy input. To verify this
assumption, the models are evaluated on a set of adversial
examples generated on the CIFAR10 dataset using the fast
gradient sign method (FSGM) [32] with a parameter epsilon.
This method adds a perturbation to the original image con-
sisting of the gradient of the image with respect to the class
label given a set of model parameters with θ as given in the

5690 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 34, NO. 9, SEPTEMBER 2023

Fig. 5. Conditioning number tracking in the first encoder for different transformers. Each model has depth 64 and width 256 and the vocabulary size used
is 1000 words. (a) First encoder, multihead attention query. (b) First encoder, feedforward layer.

following equation:
xadv = x+ �∇xL(x, �y, θ). (46)

Fig. 4 shows the results at different values for � for 1000 adver-
sial examples created from the CIFAR10 dataset. The rank
128 model outperforms the regular weight matrix consistently
and resists the FSGM attacks much better. This is in line with
the smaller discrepancy between train and test error for the
rank 128 model, as observed in Table VIII. On the other hand,
the lower rank models do not perform well on this test. This
observation shows another potential downside, which is that
when the rank is too small, the decomposed weight matrices
do not have enough expressive capacity, seemingly leading
to worse performance under perturbation. This reiterates the
importance of having a correct R value.

C. Transformer

In the following set of experiments, the transformer archi-
tecture introduced by Vaswani et al. [33] is evaluated on the
TED-Talks English to Portuguese translate dataset from the
tensorflow datasets library. Standard accuracy for the predicted
words is used as an evaluation metric. The transformer archi-
tecture is well suited for the change of regular to decomposed
weight matrices since a single layer consists of a set of
multihead attention and feedforward layers. The attention
mechanism contains four linear weight multiplications and the
feedforward layers each have one. These can all be converted
to decomposed weight matrices. Both the feedforward and
attention have their own size and rank. For the attention
layers, the size is referred to as depth, and for the feedforward
layers, the size is referred to as width. The full transformer
architecture consists of an encoder and decoder that both
have a set number of these composite layers. Each trans-
former is trained using the ADAM optimizer as described in
Section III-D for optimal performance. Preprocessing is done
using a standard word tokenizer with the number of words as
a hyperparameter and the embeddings are trained from scratch
for each implementation.

TABLE IX

COMPARISON OF TRANSFORMER PERFORMANCE FOR DIFFERENT RANKS

(R) AND NUMBER OF LAYERS (L). EACH MODEL HAS DEPTH 64 AND
WIDTH 256 AND THE VOCABULARY SIZE USED IS 1000 WORDS.

THE ITALIC HIGHLIGHTED MODELS ARE THE TWO WITH

QUASI IDENTICAL AMOUNT OF PARAMETERS, WHILE THE
BOLD HIGHLIGHTING REFLECTS THE BEST

PERFORMING ARCHITECTURE

We compare a set of transformer architectures with depth
64 and width 256 using a vocabulary size of 1000 words.
The architectures are summarized by a number of layers for
both decoder and encoder described by the parameter L and
a tuple of ranks for the depth and width, respectively, when
using the decomposed weight matrices. At both values 16/16
and 16/32 for the depth rank and width rank, respectively,
a double-layer encoder and decoder contain less parameters
than the full matrix single-layer transformer. As such, both
the single- and double-layer decomposed architectures are
compared to the single-layer regular transformer. Table IX
summarizes the results, while the corresponding learning and
accuracy curve can be found in Appendix B-C.

For each decomposed transformer model, the training accu-
racy is higher than the regular model, while on the test set,
only the rank 16/32 models outperform and the rank 16/16
models achieve a similar performance. At the same amount of
parameters, the two layers decomposed with rank 16/32 model
achieve a small but significant improvement over the regular
weight matrix transformer, as indicated in bold in Table IX.
It seems that, at these ranks, the separate layers retain enough
expressive capacity, while the reduction in parameters allows
for a second layer, leading to more complex modeling and
eventually increased performance. Fig. 5 shows the condition-
ing of the query weight matrix in the multihead attention

VANDER MIJNSBRUGGE et al.: PARAMETER EFFICIENT NEURAL NETWORKS WITH SINGULAR VALUE DECOMPOSED KERNELS 5691

and the following feedforward layer in the first encoder.
The conditioning numbers behave similarly as in previous
experiments, leading to better conditioned matrices. In terms
of training times, a significant increase of 150% for the single
layer and 200% for the double-layer decomposed transformer
is seen and confirms the main downside of the decomposed
method. This is due to the matrix inversion in (14) being
calculated exactly and the large number of matrix multipli-
cations during backpropagation. In [9], the Cayley transform
is calculated iteratively, which reduces the accuracy in favor
of computation time. Since the orthogonal matrices are stored
instead of the inverse Cayley transformed skew-symmetric
matrix, as proposed in [7], these computations are not present
during inference. We accept the computational downside dur-
ing training in favor of the upsides of increased performance,
generalization, parameter efficiency, and fast inference times.
Moreover, all the training time results used in both the
ResNets as transformers are reported without the calculation
of the SVD decomposition of the regular weight matrix at
each iteration needed for the conditioning and orthogonality
tracking. When access to the singular values is required, the
decomposed formulation has significant advantages.

V. CONCLUSION

In this article, a different way of approaching weight matri-
ces in neural networks is proposed based on the observation
that the set of real matrices is a vector space under addition
and multiplication. As such, any matrix can be described as a
fitting linear combination of basis matrices. Formulating each
basis matrix as a Kronecker product of two vectors makes
the amount of trainable parameters feasible and unifies this
approach with the SVD of the weight matrix. Using the Cayley
transform and a corresponding descent curve on the Stiefel
manifold, we constructed update equations for the orthogonal
matrices of which the basis matrices are composed. This con-
straint on the possible values of the weights allows for a more
directed search, leading to improved performance and gener-
alization. More stable performance over different optimization
methods compared to the regular weight matrix approach is
observed. A first direct consequence of this formulation is
the control over the rank of the weight matrix. Supposedly,
each linear transformation could be sufficiently described or
approximated by a rank-deficient matrix. A second conse-
quence is that direct access to the singular values allows
much better conditioning of the matrices by regularizing the
singular values and consequently the conditioning number κ .
Both these properties are observed in experiments, allowing
for more parameter-efficient formulations of neural networks
without loss of performance. Furthermore, special routines for
both uniform and Gaussian initialization are derived, which
allows the state-of-the-art initialization for each component in
the R-dimensional decomposition.

In future work, other possibilities for the construction of
basis sets can be considered, keeping in mind the constraint
on the number of parameters per layer. Furthermore, the idea
that the relation blocks represented by the basis components
could be reused in different layers can be entertained, thus

leading to a reduction in the number of parameters. Not only
the basis components but also the coefficients and the direct
access to them open up possibilities. Current neural networks
have static architectures and static weights for each sample.
By allowing the coefficients to be a direct function of the input
or, preferably, of the context of the input, dynamic networks
that adapt better to specific inputs could be created.

We are convinced that the proposition of weight kernels
as linear combinations of basis components gives much more
flexibility and will open avenues to more data-efficient and
better learning.

REFERENCES

[1] S. Chakraverty, D. M. Sahoo, and N. R. Mahato, “McCulloch–Pitts
neural network model,” in Concepts of Soft Computing. New York, NY,
USA: Springer, 2019, pp. 167–173.

[2] B. Widrow and M. A. Lehr, “Perceptrons, adalines, and backpropaga-
tion,” in Arbib, vol. 4, 1st ed., Jun. 1995, pp. 719–724.

[3] R. Bhatia, Matrix Analysis, vol. 169. New York, NY, USA:
Springer, 2013.

[4] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and
P. Kuksa, “Natural language processing (almost) from scratch,” J. Mach.
Learn. Res., vol. 12, pp. 2493–2537, Aug. 2011.

[5] B. Dumitrescu and P. Irofti, Dictionary Learning Algorithms and Appli-
cations. New York, NY, USA: Springer, 2018.

[6] J. Zhang, Q. Lei, and I. S. Dhillon, “Stabilizing gradients for deep neural
networks via efficient SVD parameterization,” 2018, arXiv:1803.09327.

[7] K. Helfrich, D. Willmott, and Q. Ye, “Orthogonal recurrent neural
networks with scaled Cayley transform,” 2017, arXiv:1707.09520.

[8] Z. Mhammedi, A. Hellicar, A. Rahman, and J. Bailey, “Efficient orthog-
onal parametrisation of recurrent neural networks using householder
reflections,” in Proc. 34th Int. Conf. Mach. Learn., vol. 70, 2017,
pp. 2401–2409.

[9] J. Li, L. Fuxin, and S. Todorovic, “Efficient Riemannian optimization on
the Stiefel manifold via the Cayley transform,” 2020, arXiv:2002.01113.

[10] X. Zhu, “A Riemannian conjugate gradient method for optimization on
the Stiefel manifold,” Comput. Optim. Appl., vol. 67, no. 1, pp. 73–110,
May 2017.

[11] Y. Nishimori and S. Akaho, “Learning algorithms utilizing quasi-
geodesic flows on the Stiefel manifold,” Neurocomputing, vol. 67,
pp. 106–135, Aug. 2005.

[12] S. Wisdom, T. Powers, J. R. Hershey, J. Le Roux, and L. Atlas, “Full-
capacity unitary recurrent neural networks,” 2016, arXiv:1611.00035.

[13] K. Jia, D. Tao, S. Gao, and X. Xu, “Improving training of deep neural
networks via singular value bounding,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 4344–4352.

[14] S. T. Wauthier, O. Çatal, C. De Boom, T. Verbelen, and B. Dhoedt,
“Sleep: Model reduction in deep active inference,” in Proc. Int. Work-
shop Act. Inference. New York, NY, USA: Springer, 2020, pp. 72–83.

[15] H. Zhang and F. Ding, “On the Kronecker products and their applica-
tions,” J. Appl. Math., vol. 2013, pp. 1–7, Jun. 2013.

[16] C. Jose, M. Cisse, and F. Fleuret, “Kronecker recurrent units,” 2017,
arXiv:1705.10142.

[17] L. Bottou, “Large-scale machine learning with stochastic gradient
descent,” in Proc. COMPSTAT. New York, NY, USA: Springer, 2010,
pp. 177–186.

[18] H. D. Tagare, Notes on Optimization on Stiefel Manifolds. New Haven,
CT, USA: Yale Univ., 2011, p. 33.

[19] W. Sun and Y.-X. Yuan, Optimization Theory and Methods: Nonlinear
Programming, vol. 1. Berlin, Germany: Springer, 2006.

[20] J. Nocedal and S. Wright, Numerical Optimization. Berlin, Germany:
Springer, 2006.

[21] S. Vaswani, A. Mishkin, I. Laradji, M. Schmidt, G. Gidel, and
S. Lacoste-Julien, “Painless stochastic gradient: Interpolation, line-
search, and convergence rates,” in Proc. Adv. Neural Inf. Process.
Syst., 2019, pp. 3732–3745.

[22] C. Ionescu, O. Vantzos, and C. Sminchisescu, “Training deep net-
works with structured layers by matrix backpropagation,” 2015,
arXiv:1509.07838.

[23] S. K. Kumar, “On weight initialization in deep neural networks,” 2017,
arXiv:1704.08863.

5692 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 34, NO. 9, SEPTEMBER 2023

[24] W. Hoffmann, “Iterative algorithms for Gram–Schmidt orthogonaliza-
tion,” Computing, vol. 41, no. 4, pp. 335–348, Dec. 1989.

[25] A. M. Tulino, S. Verdú, and S. Verdu, Random Matrix Theory and
Wireless Communications. Norwell, MA, USA: Now, 2004.

[26] A. D. Poularikas, The Handbook of Formulas and Tables for Signal
Processing. Boca Raton, FL, USA: CRC Press, 1999.

[27] W. G. Cochran, “The χ2 test of goodness of fit,” Ann. Math. Statist.,
vol. 23, pp. 315–345, Sep. 1952.

[28] Z. Allen-Zhu, “Katyusha: The first direct acceleration of stochastic
gradient methods,” J. Mach. Learn. Res., vol. 18, no. 1, pp. 8194–8244,
Jan. 2017.

[29] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014, arXiv:1412.6980.

[30] K. U. Rani, “Analysis of heart diseases dataset using neural network
approach,” 2011, arXiv:1110.2626.

[31] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770–778.

[32] C. Zuo, “Regularization effect of fast gradient sign method and its
generalization,” 2018, arXiv:1810.11711.

[33] A. Vaswani et al., “Attention is all you need,” 2017, arXiv:1706.03762.
[34] P. Yaskov, “A short proof of the Marchenko–Pastur theorem,” Comp.

Rendus Mathematique, vol. 354, no. 3, pp. 319–322, Mar. 2016.
[35] K. B. Petersen and M. S. Pedersen, “The matrix cookbook,” Tech. Univ.

Denmark, vol. 7, no. 15, pp. 1–72, Nov. 2008.

David Vander Mijnsbrugge received the M.Sc.
degree in engineering physics from Ghent Univer-
sity, Ghent, Belgium, in 2019, where he is currently
pursuing the Ph.D. degree in computer science at
the IDLab, with a focus on context-aware machine
learning in eHealth.

During this master degree, he also worked as a
part-time NLP engineer. The focus of this work
is adaptation of deep learning for more dynamic
behavior in different contexts and integration with
knowledge systems.

Femke Ongenae received the Ph.D. degree in
computer science from Ghent University, Ghent,
Belgium, August 2013, pertaining to knowl-
edge discovery and management for eHealth
applications by using ontologies and semantic
reasoning.

She has been a part-time Assistant Professor at
the IDLab, Ghent University, since October 2019.
She is currently a full-time Research Manager and a
Senior Scientist at the imec research hub, Ghent, for
nanotechnologies and digital technologies. During

this time, she worked on several eCare projects to improve the continuous
care of patients in institutionalized care settings. As a Professor at Ghent
University, she is the part of PREDICT and KNOWS research teams. She
performs research into expressive semantic stream and distributed reasoning;
the incorporation of expert knowledge in data analytics algorithms; hybrid
artificial intelligence (AI), fusing semantic models, and machine learning;
and explainable AI by leveraging knowledge graphs. She is also particularly
interested in methodologies for capturing domain knowledge from experts
and using this knowledge to optimize intelligent agents and the way we
interact with them. This research is mainly applied to the domains of predictive
healthcare and industry 4.0 in order to realize context-aware and personalized
decision support systems.

Sofie Van Hoecke received the M.Sc. and Ph.D.
degrees in computer science engineering from Ghent
University, Ghent, Belgium, in 2003 and 2009,
respectively.

Since 2017, she has been an Associate Profes-
sor with the Internet Technology and Data Sci-
ence Laboratory, Ghent University–imec, Ghent. Her
research interests include the study and development
of hybrid machine learning solutions combining
machine learning with semantics, expert knowledge,
and/or physical knowledge, with applications in
predictive maintenance and predictive healthcare.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

