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A primary task of Non-intrusive Load Monitoring (NILM) is the iden-
tification of appliances that are switched on or off. However, state-of-
the-art machine learning methods such as deep learning do not express
uncertainty of their predictions. Especially in cases where appliances
are confused, it is desirable that an NILM system can suggest multiple
possible predictions to the end-user, including its confidence and cred-
ibility of any given prediction. This can be achieved using conformal
prediction, being an effective way to quantify uncertainty of a given ma-
chine learning model. In this work, conformal prediction is introduced
for NILM and applied to a neural network. The approach is explained
and supported by several examples.

Introduction: Identifying appliances in NILM using machine learning
methods, such as deep learning, relies on finding the class that has the
highest probability of being the true class of the observation [1–10].
However, in cases where appliances are confused, other classes can also
be likely, given the outputs of the model. Many existing appliance clas-
sification models do not express uncertainty of their predictions, which
means there is less information supplied to the end-user or decision sys-
tem. Although some approaches can inherently express uncertainty on
their predictions [11–14], they do not readily return a set of possible ap-
pliances, and the confidence and credibility of the model are difficult to
interpret. Entropy is used as a way of quantifying uncertainty, but only
provides a crude notion of how much uncertainty a model exhibits.

Inductive Conformal prediction (ICP) [15, 16] only requires an ex-
tra holdout calibration dataset with switching events that have not been
trained on, and a measure of conformity (such as the probability of a
class).

Rather than only returning a single (most likely) label of an appliance
class, using conformal prediction, the model can return any combination
of possible classes, or no classes. This conformal prediction can also
be tuned with a parameter ε for the desired error rate, where an error
corresponds to the true class not being present in the prediction set.

In this work, conformal prediction is applied to appliance recognition
in NILM and it is shown how conformal prediction can adequately give
uncertainty estimates by making use of prediction sets, confidence and
credibility. These different concepts surrounding conformal prediction
are explained in the context of appliance recognition, and applications
are discussed.

Inductive conformal prediction: Conformal prediction [15, 17] can be
classified in two types: transductive and inductive [16], with the former
being more computationally expensive than the latter, as the underlying
algorithm needs to be trained for every inference. With modern methods,
such as neural networks, this is infeasible. Instead, inductive conformal
prediction (ICP) is computationally efficient but requires a hold-out cal-
ibration dataset Dcalibration. Note that this can be applied to any appliance
classification model that outputs scores. As many of these models are
based on neural networks, the assumption is made that the model f out-
puts a probability P(y = κ|x) for any given class κ . The process is as
follows:

1. Train the model on training dataset Dtrain. The output of the resulting
model f can easily be transformed to a measure of nonconformity as
follows: αi = 1 − f (xi, yi) = 1 − P(y = yi|xi).

2. Assign a nonconformity score αi to every sample in the calibra-
tion dataset (xi, yi) ∈ Dcalibration. The resulting nonconformity scores
form set A.

3. For a new sample x′, perform the following: For every possible class
κ ∈ K, compute α′(κ ) = 1 − f (x′, κ ).

4. Calculate the p-value for every class κ by finding the proportion of
nonconformity values αi that are greater than or equal to the current
nonconformity value in question, α′(κ ). This can be done as follows:

pα′(κ ) =
∣∣{αi ∈ A|αi ≥ α′(κ )

}∣∣

|A| + 1
. (1)

The resulting p-values for every κ can be used for multiple pur-
poses:

Prediction set Given an error-rate ε, a set of classes Cε (x) can be re-
turned for which p ≥ ε, also called the prediction set.
The probability that the new sample is among the high-
est ε% of nonconformity scores should be low. There-
fore, any p < ε should be rejected.
The prediction set should always contain the correct
class, with the aforementioned error rate ε, where an er-
ror indicates that the prediction set does not contain the
class. The higher ε is set, the smaller the prediction sets
become and vice-versa. Usually ε = 0.01 or ε = 0.05
are used, to signify 99% and 95% confidence levels.

Predicted class The predicted class of the model is the class with the
highest p-value, as this means there are many samples
in Dcalibration with a higher nonconformity score than the
current sample.
The predicted class corresponds to the class with the
highest output probability given by the model. This is
not necessarily the case, however, when using variants
such as label-conditional ICP [18], where another class
with a lower output probability may have a higher p-
value.
This means the F1-score and accuracy of a model are
unaffected by the use of ICP.

Confidence Using the second highest p-value p(2)
x of the prediction,

1 − p(2)
x is the confidence of the prediction of the classi-

fier. In other words, the confidence expresses the prob-
ability that the prediction set is a singleton {κ}. If this
value is high, then no other candidates are likely to be
in the prediction set, and the predicted value is almost
certainly the only possible prediction.

Credibility The value of the highest p-value p(1)
x is the credibility of

the classifier in its prediction. The higher the value, the
more likely it is that the prediction is correct. It must
be noted that this value also denotes the highest error
rate ε for which the prediction set would be empty, as
all candidates would be rejected at that value.

Discussion:

Experimental setup: The performance of ICP is assessed on the PLAID
dataset [1, 19], with a modified version of the Convolutional Neural Net-
work (CNN) model proposed by De Baets et al. [2] as presented in [11].
The time series in PLAID are transformed into VI trajectories as de-
scribed in [2, 20]. The basic structure of the CNN [11] is as follows:
it takes as input a 50 × 50 VI trajectory, normalized to contain values
between 0 and 1. Next, a convolutional layer with 20 filters of size 5, a
pooling layer, another convolutional layer with 20 filters of size 5, an-
other pooling layer, a layer which flattens the resulting features and an
output layer with K nodes are added, where K denotes the amount of
classes available in a given training set.

The following tests are performed using a leave-one-house-out cross-
validation. This means per fold a house is left out for the test set, and the
remaining 54 houses are split into train (40 houses), validation (7 houses)
and calibration (7 houses) sets.

The accuracy obtained with the model is 0.71, AUC ROC is 0.94 and
F1-score is 0.68.

Qualitative results: Figure 1 shows concrete examples for ICP in NILM
applied to PLAID with error rate ε = 0.05, meaning in only 5% of the
cases will the prediction set not contain the actual, ground truth class.
The four samples were chosen at random from all test datasets in the
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Fig. 1 A visualization of four conformal predictions of a random subset of
PLAID. On the left hand side the input VI trajectory can be seen. Above each
trajectory is some context information: The true and predicted class (denoted
with T and P), the confidence in the prediction, and the credibility of the
prediction. All predictions have their associated p-value included. A green
border denotes a correct prediction, a red border a wrong prediction. On
the right hand side the prediction sets can be seen with mean VI trajectories
from the training data. The predicted, most likely class has an orange border,
while a green border shows the correct class. If no green border is shown in
the prediction set, the set does not contain the correct class.

leave-one-house-out cross-validation scheme. A discussion for every
one of the four examples follows.

1. The first example shows a wrong prediction, with the prediction not
being present in the prediction set. Here the confidence is high (0.70),
but the credibility low (0.35). The confidence value indicates there is
a high chance that the predicted output (fridge) is the only possible
output. But the low credibility indicates the sample is not represen-
tative of the training data.

2. The second example is a correct prediction, albeit with low credibil-
ity. Analogous to the first example, we can conclude that according
to the output probabilities in Dcalibration, the sample is not very rep-
resentative of the input data, even though a correct prediction was
given.

3. The third example shows a successful prediction with high confi-
dence and credibility. A high credibility indicates how probable it is
that the prediction is correct, given the possible predictions, with the
confidence stating there is a low chance the prediction set is not a
singleton.

4. The final example also has low credibility, meaning uncertainty that
the sample is part of the training data. This time, however, the correct
label is present in the prediction set.

Conformal error ratio: To quantify the improvement of error detection
using ICP, the conformal error ratio can be calculated as follows:

P(y �= ŷ||Cε (x)| = k)

P(y �= ŷ)
. (2)

In other words, for a given efficiency ε and ICP prediction set size k,
calculate the ratio between the errors found in predictions with this set
size and the general error rate (1 − accuracy). When choosing ε = 0.05,
it is seen that the error ratio for k = 1 is 0.17, whereas the error ratio for

k > 1 is 1.48. This shows that using ICP can greatly decrease the error
rate when a singleton set is returned, while any set containing more than
one class has a larger probability of containing an error. The classifier
trained in this work produces a singleton set for 36.70% of the samples
in the test sets.

Practical notes on implementation for NILM: The aforementioned con-
fidence, credibility, most likely class and prediction set produced by ICP
can all be used to supply more information to the end user. Assuming
the end-user of the NILM system can get feedback and correct false pre-
dictions, the following list summarizes how such a system can make use
of these concepts:

• The prediction sets can be used in cases where many classes exist,
and the implementer of the NILM system wants to give the user an in-
formed choice of possible appliances detected. This reduces the cogni-
tive load on the user, as the application type will very likely be present
in the presented set, according to error rate ε.

• The predicted class can be utilized as it would normally be in an ap-
pliance recognition system, being the most likely class as predicted by
the classifier.

• If the credibility is high enough, a threshold on confidence can be
established to determine whether to request verification from the end-
user for a prediction. Confidence serves as a metric that informs the
user whether the prediction set is a singleton, meaning that a high
confidence prediction is likely to be the only possible outcome.

• Credibility is the lowest error rate ε for which the prediction set would
be empty, with an error defined as the absence of the true class in the
prediction set. Setting a threshold on credibility equivalent to setting
the error rate ε.

• By subtracting the two highest p-values s(x) = p(1)
x − p(2)

x for a given
sample x, the implementer can use the resulting information I = 1 −
s(x) as a measure of informativeness or uncertainty about the sample
x. The highest values of I contain the least amount of information
and can be good candidates for further training in an active learning
scenario [21–23].

These quantities can be very informative to the end-user of a NILM
system to assess and correct an otherwise black-box model. However,
due to the necessity of a calibration set, a sufficiently large dataset needs
to be captured.

Conclusion and future work: This work motivates the utility and poten-
tial conformal prediction could provide for NILM systems. It requires
minimal or no changes to a machine learning pipeline, and provides
more information to supply to an end-user. Examples in a NILM con-
text are discussed, and benefits to calibration are showcased. In future
work, conformal prediction could be evaluated as part of a decision sys-
tem. Also, label-conditional and online inductive conformal prediction
could be explored, as NILM systems are imbalanced and ever changing,
requiring frequent updates.
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