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ABSTRACT

Point cloud video streaming is a fundamental application of
immersive multimedia. In it, objects represented as sets of
points are streamed and displayed to remote users. Given the
high bandwidth requirements of this content, small changes
in the network and/or encoding can affect the users’ perceived
quality in unexpected manners. To tackle the degradation of
the service as fast as possible, real-time Quality of Experience
(QoE) assessment is needed. As subjective evaluations are not
feasible in real time due to their inherent costs and duration,
low-complexity objective quality assessment is a must. Tra-
ditional No-Reference (NR) objective metrics at client side
are best suited to fulfill the task. However, they lack on accu-
racy to human perception. In this paper, we present a cluster-
based objective NR QoE assessment model for point cloud
video. By means of Machine Learning (ML)-based cluster-
ing and prediction techniques combined with NR pixel-based
features (e.g., blur and noise), the model shows high corre-
lations (up to a 0.977 Pearson Linear Correlation Coefficient
(PLCC)) and low Root Mean Squared Error (RMSE) (down to
0.077 on a zero-to-one scale) towards objective benchmarks
after evaluation on an adaptive streaming point cloud dataset
consisting of sixteen source videos and 453 sequences in to-
tal.

Index Terms— Point clouds, Quality of Experience,
objective quality metrics, psychometric curve-fitting, quality
modelling

1. INTRODUCTION

Point cloud video is one of the promising applications in im-
mersive multimedia. In point cloud delivery, objects com-
posed by a dense network of 6D points (referring to geometry
(e.g., x, y, z) and texture (e.g., the three color channels)) are
presented to the remote user’s Head-Mounted Display (HMD)
or, alternatively, projected on a 2D screen. Stringent require-
ments in terms of bandwidth, latency and encoding can result
in low quality rendering, therefore reducing the user’s per-
ceived quality (i.e., Quality of Experience (QoE)).

As subjective evaluations are costly in terms of time and
money, they are not suited for real-time evaluation. Thus, ob-
jective quality assessments are needed. To objectively evalu-
ate the quality of point clouds, two types of approaches exist:
(i) geometric (quality of the point cloud object itself) and (ii)
projection-based metrics (quality of the rendered video) [1].
While geometric metrics give an indication of the quality of
the point cloud as a whole, they fail to capture the quality of
the video actually rendered and displayed to the user. For this
reason, traditional video quality metrics have recently been
investigated as projection-based metrics, assessing the qual-
ity of the projected Field of View (FoV) [2]. They can be
divided in Full-Reference (FR) (full comparison between the
original and distorted sequence), No-Reference (NR) (qual-
ity assessment purely on the distorted received stream) and
Reduced-Reference (RR) metrics (where a number of low-
complexity features are sent over a side channel to the client
for comparison [3]).

Within this type of research, multiple works are worth
mentioning, of which the most prominent are discussed be-
low. Yang et al. presented a FR metric based on the pro-
jection of the point cloud on the six perpendicular planes of
a cube [4]. Combining features values (e.g., color, depth,
texture and edges) from all six planes, a single quality in-
dex is derived. Results show Pearson Linear Correlation Co-
efficients (PLCCs) towards subjective Mean Opinion Scores
(MOSs) ranging from 0.66 to 0.97, depending on the consid-
ered content and the introduced encoding distortions. Diniz et
al. derived a RR point cloud quality assessment model based
on local patterns [5]. In this model, each pixel is assigned a
binary code by thresholding the difference in intensity with
its surrounding pixels. The quality of the point cloud is then
determined by the difference between the histograms of the
original and the distorted content, mapping this distance to a
predicted MOS using a third-order polynomial relationship.
Results show that PLCCs to MOS varying between 0.67 and
0.88 can be achieved, depending on the considered content.
In a subsequent study [6], the same authors developed a FR
metric called BitDance by extracting and comparing differ-
ent color and geometry statistics from both the original and



Fig. 1: Block diagram of the presented methodology. The parts in black are used at client side for real-time quality assessment.
The blue parts are added at server side for training and evaluation purposes.

the distorted content. They realised comparable or even im-
proved results in comparison with well-known metrics such
as PCQM and PointSSIM-Color. Viola et al. created a RR
quality metric by extracting color statistics and constructing
histograms and correlograms from both the original and the
distorted sequence [7]. The distance between both is used to
predict the subjective MOS by applying a curve-fitting ap-
proach. Following up on this work, the authors created a
second RR metric based on a weighted combination of fea-
ture differences in terms of geometry, luminance and nor-
mal [8]. Evaluating both metrics, PLCCs up to 0.90 for the
subjective MOS are achieved for a single publicly available
dataset. In our own previous work [9], we presented an objec-
tive and subjective quality evaluation of point cloud streaming
for multiple scenarios in terms of bandwidth, rate adaptation,
viewport prediction and user motion. The results show high
correlation with MOS for traditional video metrics such as
Peak Signal-to-Noise Ratio (PSNR), Structural Similarity In-
dex Measure (SSIM) and Video Quality Metric (VQM). We
further indicated that the subjective perception of volumet-
ric media lays within a very small interval of the total range
of the objective metrics, which might be a result of the in-
clusion of (too much) background during the quality metric
calculation. In our second study [2], a thorough correlation
analysis of both FR and NR objective metrics to subjective
Double Stimulus (DS) and Single Stimulus (SS) MOS for dif-
ferent volumetric streaming scenarios was performed. Corre-
lations were obtained between each of the NR metrics, the SS
and the DS MOS and Video Multimethod Assessment Fusion
(VMAF). It was noticed that VMAF correlates very well to
both SS and DS MOS, with PLCC values above 0.92 overall
and even above 0.94 on a per-video basis. In terms of NR met-
rics, the blur ratio (BRT) showed the strongest correlation to
both VMAF and the subjective benchmarks of all NR features
in all three videos in terms of PLCC.

The state of the art has shown that FR metrics such as
SSIM [10], VQM [11] and VMAF [12] have the highest
accuracy, where VMAF has obtained the best results. How-
ever, they require high computational complexity as well as
the simultaneous access of both the original and distorted
content. These circumstances make them unsuitable for real-

time evaluations. NR metrics such as blur, blockiness and
noise, however, are more computationally friendly but lack
in straightforward correlation towards subjective perception,
as we showed in our previous work [2]. Encouraged by our
previous results, in this paper, we present a novel NR objec-
tive metric for real-time quality assessment of point cloud
streamed content, which leverages the correlation patterns of
individual NR metrics. By means of a K-Nearest Neighbours
(KNN) clustering mechanism and a per-cluster sigmoidal
mapping of a linear combination of NR pixel-based features,
the model is able to predict the user’s perceived quality with
high correlation to objective FR benchmarks (VMAF). The
model is evaluated on a broad, objectively labeled (VMAF)
point cloud dataset.

The remainder of this paper is structured as follows. Sec-
tion 2 presents our modelling approach. Section 3 discusses
the dataset used, as well as the results. Finally, Section 4 con-
cludes the paper.

2. METHODOLOGY

The purpose of this work is to create a content-independent,
computationally friendly, and accurate objective NR model
for quality assessment of point cloud video. To this end, the
approach presented in Figure 1 was followed. This method
calculates the perceived quality as a sigmoidal fitting of a Lin-
ear Regression (LR) of NR metrics towards an objective FR
benchmark, where the different weights and parameters are
determined based on the particular class of the video. This
classification is needed as our previous work has shown that
different types of videos can rely on totally different types of
NR metrics for quality estimation [3].

Whenever a new video is received at the client side (in-
dicated in black), a set of NR-metrics QNR (i.e., band-
width (BW), blur (BLU) [13], blur ratio (BRT) [13], noise
(NOI) [13], noise ratio (NRT) [13], blockiness (BLK) [14]
and Spatial Information (SI) [15]) are calculated/extracted
on each of the incoming frames. Once a sufficiently large
portion of the video (i.e., a couple of seconds) is received,
the obtained metrics are averaged to characterize the given
video (apart from SI, where the maximum is taken by defi-
nition [15]). The obtained characterization is fed to a KNN



classifier, which is chosen for its fast training and evaluation
times as well as its intuitive interpretation. This classifier is
pre-trained at server side based on prior available sequences,
in order to obtain the class c of the given video. Note that
KNN also allows for easy updating of this classification
whenever new content is added to the server-side database.
Based on this class, the weights wc,i for a linear combination
of the NR-metrics xi as well as the parameters ac and bc
of a sigmoidal mapping (Equation 1) are determined, where
the latter is based upon the well-known Quality of Service
(QoS)-QoE relationship proposed by Fiedler et al. [16] and
previously applied in our former work [3]. The subsequent
calculation of both, results in the quality prediction Q.

Q = σ

(
w0 +

7∑
i=1

wi · xi

)
with σ(x) =

1

1 + eax−b
(1)

At server side (indicated in blue), both the LR and the sig-
moid are trained by minimizing Mean Squared Error (MSE)
against a FR benchmark QFR which is known to correlate
strongly to subjective scores (e.g., VMAF [2]). Note that this
metric cannot be calculated at client side as the undistorted
content is unavailable. Furthermore, QFR is also used for
evaluation of the obtained models (e.g., in terms of PLCC and
Root Mean Squared Error (RMSE)). Note that the calculation
of QFR on new content is only needed if it fundamentally dif-
fers from the current dataset. This can be done on the server
side, however, where computational and time-related require-
ments are less stringent. By sending the appropriate weights
and parameters as well as the classifier to the client at video
request, this provides all tools for client-side quality estima-
tion.

3. EVALUATION

In this Section, the dataset used to evaluate our algorithm will
be first described, followed by an analysis of our method.

3.1. Dataset

For the evaluation of the model, we took the adaptive stream-
ing point cloud dataset from our previous work [2,17] and ex-
tended it with more conditions and video scenes. As a result,
we obtain a set of sixteen source videos (Table 1) between 18
and 50 seconds of length. Each sequence contains the gener-
ated viewport of a scene consisting of four point cloud objects
from the 8i dataset [18], each with a different setup of the fig-
ures (circle, line, semicircle, square) and camera movement
(rotation, zoom, pan, zigzag). These objects were encoded
using the V-PCC encoder [19] with five reference quality rep-
resentations, each between 2.4 Mb/s and 53.5 Mb/s. After-
wards, the resulting videos were streamed using the Dynamic
Adaptive Streaming over HTTP (DASH) protocol with mul-
tiple combinations of bandwidth (15, 20, 60, 100, 140 and

Table 1: Summary of the 16 videos in the dataset in terms of
point cloud constellation, duration and camera movement.

Video Setup Dur. Camera movement
1 line 24s pan left-to-right and back (an-

gle)
2 semi-circle 18s zoom-in/zoom-out + rotate to

next (object 1 and 2)
3 semi-circle 18s zoom-in/zoom-out + rotate to

next (object 3 and 4)
4 circle 24s outside rotation
5 circle 24s outside rotation + zoom in/zoom

out
6 circle 24s outside rotation + zoom in/zoom

out in between figures
7 line 24s pan left-to-right and back (an-

gle)
8 line 24s pan left-to-right and back

(frontal)
9 line 24s rotate left-to-right and back

10 semi-circle 50s zoom-in/zoom-out + rotate to
next

11 semi-circle 24s rotate left-to-right and back
12 semi-circle 24s rotate + pause on figure
13 square 24s outside rotation
14 square 24s outside rotation + zoom-

in/zoom-out
15 square 24s outside rotation + zoom-

in/zoom-out
16 square 24s zig-zag

∞ Mb/s), resolutions (800 × 592 and 1920 × 1080), buffer
lengths (0, 1, 2, 3 and 4 seconds) and allocation algorithm
(greedy, hybrid and uniform). The frame rate was fixed at 30
Frames Per Second (FPS). As such, a total of 453 sequences
was obtained. For each of these, the seven objective NR met-
rics mentioned in Section 2 were calculated in addition to the
FR VMAF, which will be used as benchmark. In addition,
videos 1-3 were also subjectively annotated with both DS and
SS MOS based on two subjective experiments with 30 sub-
jects each. Note that in our previous work [2], we already
showed the overall high correlations of VMAF to SS and DS
MOS for projected point cloud QoE. Therefore, there was de-
cided to evaluate against VMAF to illustrate the envisioned
system without subjective scoring, as the latter is not scalable
and very costly in terms of time and effort and therefore not
suited for live-streaming environments.

3.2. Results

We analysed the performance of the quality method in two
stages: (i) the KNN classifier and the (ii) per-class quality
modelling as a combination of a LR and a sigmoidal mapping.
First, the KNN classifier was implemented using Python’s
SciKit Learn library [20], using 10 runs of the algorithm with
a maximum of 300 iterations per run. The relative tolerance
is set to 0.0001. Note that the NR metrics that do not lay



Table 2: The four different clusters obtained by the KNN
algorithm, as well as their average PLCC and RMSE per fold
for each cluster.

Cluster Videos PLCC RMSE
0 2, 7-9, 11, 12, 14-16 0.983 0.080
1 4-6, 13 0.994 0.047
2 1, 3 0.985 0.135
3 10 0.841 0.053

Table 3: Average PLCCs and RMSEs per video of the pro-
posed solution, compared with the cases with and without
clustering and sigmoidal mapping.

(a) PLCC

Without clustering With clustering
LR 0.826 0.942
LR + sig. map. 0.869 0.977

(b) RMSE

Without clustering With clustering
LR 0.114 0.095
LR + sig. map. 0.199 0.077

within the [0, 1] interval by construction (BW, BLU, NOI, SI)
are first normalized using min-max scaling as the KNN is a
distance-based clustering mechanism. The number of clus-
ters is chosen by optimizing the so-called Silhouette Coeffi-
cient [21]. On the given dataset, this results in a total number
of four clusters with a Silhouette Coefficient of 0.606. To al-
low for easy Cross Validation (CV) within each cluster, videos
that are divided over multiple clusters are completely assigned
to the cluster with the highest number of samples. This has
resulted in the clusters shown in Table 2. Within each cluster,
multiple iterations of the modelling approach were conducted
where in each run all configurations of one of the videos were
held out as a test set while the others were used for training.
For cluster 3, which only contains one video, a 5-fold CV was
performed on the 33 configurations of video 10 itself. Note
that the normalization parameters for BLU, NOI, SI and BW
were recalculated each iteration on the training set only to
avoid data leakage.

Table 2 shows the average PLCC and RMSE obtained per
test fold within each cluster. Note that, for clarity and concise-
ness, the training scores were omitted from the manuscript.
They show similar results as the test scores, however, such
that overfitting is unlikely. As can be seen, high correlations
were obtained (>0.98), with the exception of cluster 3 where
the PLCC is limited to 0.84. A possible explanation is the lim-
ited amount of data, such that not all possible configurations
are seen per training iteration. Given the fact that it ends up
in an isolated cluster, however, can also mean that the video
consists of fundamentally different characteristics in compar-
ison with the other videos, thus proving to be an outlier in the
dataset. This is, for example, illustrated by the significant dif-

Fig. 2: Scatterplot showing the noise ratio and blur ratio of
the different videos.

ference in blur ratio as is shown in the noise ratio vs. blur ratio
plot in Figure 2. Furthermore, a higher RMSE of cluster 2 can
be noticed, while still resulting in a high PLCC of 0.985. This
is a result from the fact that the VMAF of video 3 is consis-
tently underpredicted when trained on video 1 and vice versa.
As such, it can be expected that additional data would provide
a more reliable presentation of the content within the class or
possibly an even improved clustering mechanism. In Table 3,
the average obtained PLCCs and RMSEs per video can be
found compared to the cases with and without clustering and
sigmoidal mapping. As can be seen, the clustering mecha-
nism prior to modelling is improving the non-clustering case
by 0.108-0.116 in terms of PLCC and 0.019-0.122 in terms of
RMSE. Moreover, the sigmoidal mapping shows to be bene-
ficial with PLCC and RMSE gains of 0.035-0.043. In terms
of RMSE, however, the sigmoidal mapping only shows to be
beneficial when combined with clustering (0.028 gain). With-
out clustering, the excess of data seems to withhold the model
from calculating an appropriate fit.

4. CONCLUSION

In this paper, we have presented an NR QoE assessment
model consisting of a KNN-based clustering mechanism fol-
lowed by a per-cluster LR and sigmoidal mapping. PLCCs
up to 0.977 and RMSEs down to 0.077 towards VMAF are
achieved. This method clearly shows to outperform the cases
where either the mapping or the clustering is omitted, there-
fore showing its potential. As QoE modelling is performed at
video level in this work, it is worth further exploring whether
these findings still hold on a per-Group Of Pictures (GOP) or
even a per-frame level. Furthermore, the accuracy of the pro-
posed metric towards other types of compression distortion
such as G-PCC, should be researched.
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