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Abstract Goal recognisers attempt to infer an agent’s intentions from a sequence
of observed actions. This is an important component of intelligent systems that
aim to assist or thwart actors; however, there are many challenges to overcome. For
example, the initial state of the environment could be partially unknown, agents
can act suboptimally and observations could be missing. Approaches that adapt
classical planning techniques to goal recognition have previously been proposed
but, generally, they assume the initial world state is accurately defined. In this
paper, a state is inaccurate if any fluent’s value is unknown or incorrect. Our
aim is to develop a goal recognition approach that is as accurate as the current
state of the art algorithms and whose accuracy does not deteriorate when the
initial state is inaccurately defined. To cope with this complication, we propose
solving goal recognition problems by means of an Action Graph. An Action Graph
models the dependencies, i.e., order constraints, between all actions rather than
just actions within a plan. Leaf nodes correspond to actions and are connected
to their dependencies via operator nodes. After generating an Action Graph, the
graph’s nodes are labelled with their distance from each hypothesis goal. This
distance is based on the number and type of nodes traversed to reach the node
in question from an action node that results in the goal state being reached.
For each observation, the goal probabilities are then updated based on either the
distance the observed action’s node is from each goal or the change in distance.
Our experimental results, for 15 different domains, demonstrate that our approach
is robust to inaccuracies within the defined initial state.
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1 Introduction

By observing the behaviour of an agent, artificially intelligent systems can at-
tempt to determine the agent’s intentions. Knowledge of an agent’s intentions is
essential in numerous application areas. These include computer games in which
non-playable characters must adapt to players’ actions [8]; intelligent user help
for human-computer interaction scenarios [22, 23]; offering humans energy sav-
ing advice [33]; robot sports playing (e.g., table tennis [56]); interfering (and thus
preventing) the intentions of computer network intruders [13, 37]; determine the
location a human is navigating to (e.g., for airport security) [34], and to enable
proactive robot assistance [11, 30, 31]. Rather than developing domain specific in-
tention recognition algorithms, a symbolic representation of the world and agents’
actions can be provided as input to non-domain specific algorithms [48, 55].

Intention recognition can be split into several categories, namely, activity recog-
nition [32, 53, 57], plan recognition [13, 36, 51], and goal recognition [39, 44]. Our
work falls under the category of goal recognition (GR), in which the aim is to label
a sequence of observations (e.g., actions) with which goal the observee is attempt-
ing to reach. For instance, when provided with a sequence of move actions, GR
methods will attempt to select (from a predefined list) which location the agent
is intending to reach. For the Kitchen domain by Ramı́rez and Geffner [44], the
sequence of observed actions includes taking different items and using appliances
(e.g., a toaster), and the returned classification indicates if the observee is likely to
be making breakfast, dinner or a packed lunch. Goal and plan recognisers operate
on discrete observations/actions, and thus assume that data streams have been
preprocessed, e.g., sensor data have been processed by activity recognisers.

Our GR method aims to overcome several challenges. First, the defined ini-
tial world state could be inaccurate; for instance, if an item or agent (e.g., cup
or human) is occluded its location is indeterminable, and thus possibly defined
incorrectly. Second, the observed agent could act suboptimally [44]; therefore, all
plans (including suboptimal plans) are represented within the underlying struc-
ture generated by our approach. Third, actions could be missing from the sequence
of observations [40], e.g., due to sensor malfunction or occlusions. Finally, an ob-
servation should be rapidly processed, so there is little delay in determining the
observee’s goal. The cited GR works have investigated handling suboptimal ob-
servation sequences and handling missing observations, but they do not consider
inaccurate initial states.

We define the term inaccurate initial state as an initial state containing flu-
ents (i.e., non-static variables) whose value is unknown (i.e., undefined) and/or
incorrect (i.e., set to the wrong value). Inaccurate initial states have been han-
dled by task planners [5, 38]. Moreover, GR with probabilistic, partially observ-
able state knowledge and stochastic action outcomes has previously been inves-
tigated [26, 45, 60]; however, these systems require the probability of each state
and action outcome to be known (and thus defined within the GR problem). GR
with incomplete domain models, i.e., problems containing actions with incomplete
preconditions and effects, have also been considered [41] but the initial state was
assumed to be accurately represented. Our system makes no assumptions about
the correctness of the initial value assigned to a fluent.

In this paper, we aim to answer two research questions. i) Can a structure
similar to those created by library-based approaches be generated from a PDDL
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defined GR problem? ii) When the initial state is inaccurately defined, how can a
goal recognition approach be prevented from suffering a major loss of accuracy?

To answer these questions, we develop a novel technique for transforming GR
problems into an Action Graphs, a structure inspired by AND/OR trees. Leaf
nodes correspond to actions and are connected to their dependencies via operator
nodes. Operator nodes include DEP (short for dependencies), ORDERED-AND, UNORDERED-
AND and OR nodes. After transforming the action definitions and world model into an
Action Graph, the Action Graph’s nodes are labelled with their distance from each
hypothesis goal, i.e, each goal the observee could be intending to achieve. Both
these processes are performed offline. For each observation, the online process
updates the goal probabilities based on either the distance the observed action’s
node is from each goal or the change in distance. Our distance measure is based
on the number and type of nodes traversed to reach the node in question from
an action node that results in the goal state being reached. The goal(s) with the
highest probability are returned as the set of candidate, i.e., predicted, goals. An
Action Graph does not contain a perfect representation of all plans; as mentioned
by Pereira et al. [40], unlike task planning, this is not a requirement of GR. A
conceptual overview of our system is provided in Fig. 1.

Fig. 1: Conceptual overview of the goal recognition process described in this paper.
As indicated by the grey boxes, our approach contains three main processes: (1)
create the Action Graph (see Section 4), (2) label the Action Graph’s nodes with
how many steps away from each goal state they are (see Section 5), and (3) use
these labels/distances to update the goals’ probabilities when an action is observed
(see Section 6).

Our previous work on GR employed an acyclic (rather than cyclic) Action
Graph [18], and thus for many domains did not achieve a high accuracy. Moreover,
our previous method cannot handle an inaccurate initial state. Action Graphs
have also been applied to goal recognition design, in which the aim is to reduce
the number of observations required to determine an agent’s goal [17]. This paper
introduces a novel method for inserting the actions into an Action Graph and
presents an alternative approach for updating the goals’ probability.

The remainder of this paper is structured as follows. Section 2 presents some
background information. A formal definition of our Action Graph structure is
provided in Section 3, and Section 4 describes the algorithm that generates the
Action Graph. Section 5 introduces our distance measure and how the nodes are
labelled with their distance from each goal. The different goal probability update
rules, that are executed when an observation is received, are described in Section 6.
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Our experimental results, discussed in Section 7, show that our GR method is
unaffected by inaccuracies in the initial state.

2 Background

Symbolic task planning and goal recognition problems are often defined in Plan-
ning Domain Definition Language (PDDL) [35], a popular domain-independent
language for modelling the behaviour of deterministic agents. A PDDL defined
problem includes action definitions, objects, predicates and an initial state; an
example of each is provided in Listing 1. Our GR approach transforms a PDDL
problem into a multi-valued problem by running the converter of [19]. The multi-
valued problem is then transformed into an Action Graph. The goal of this section
is to provide readers unfamiliar with PDDL and goal recognition the background
information required to understand the data provided as input and the notations
used. This section first describes why a multi-valued representation is used. The
task planning and GR (also known as inverse planning) problem definitions are
provided, in the subsections, from a multi-valued problem perspective.

Listing 1: Example of a PDDL defined action, set of objects, set of predicates and
initial state. Based on the International Planning Competition’s (IPC’s) Easy-
IPC-Grid domain1.

# Example action definition :
(:action move :parameters (?1 ?2 - position)

:precondition (and (at ?1) (not (at ?2)) (adjacent ?1 ?2) )
:effect (and (at ?2) (not (at ?1)) )

)
# Example set of objects:
(:objects 1_1 1_2 - position)
# Example predicates :
(: predicates (at ?1 ?2 - position) (adjacent ?1 ?2 - position))
# Example initial state:
(: init (at 1_1) (adjacent 1_1 1_2) (adjacent 1_2 1_1) )

To create a concise, grounded representation of a problem, a PDDL defined
problem is often converted into a multi-valued representation [19, 20]. This rep-
resentation uses finite variables rather than boolean propositions. For example,
rather than a move(1 1 1 2) action (which symbolises an agent moving from grid
position 1 1 to 1 2) removing the proposition (at 1 1) from the current state
and inserting the proposition (at 1 2), a variable, i.e., fluent, that represents the
agent’s location is changed from (at 1 1) to (at 1 2). This enables a more concise
representation of the problem to be produced, from which the relations between
the different propositions can be extracted. Moreover, a (grounded) action is only
created, from an action definition, if its static preconditions appear in the PDDL
defined initial world state. For example, to create the move(1 1 1 2) action, posi-
tions 1 1 and 1 2 must be adjacent. Which locations are adjacent can be statically
defined; in other words, no action modifies which locations are adjacent. Further
details on the benefits of this representation are given in [20].

1http://www.icaps-conference.org/index.php/Main/Competitions

http://www.icaps-conference.org/index.php/Main/Competitions
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2.1 Symbolic task planning

In symbolic task planning, a problem contains a single goal state, and task plan-
ners, e.g., Fast Downward [19], find the appropriate set of actions, i.e., a task plan,
that can transform the initial world state into the desired goal state. Definitions
for states, actions and planning problems are provided below.

Definition 1 Planning Problem: A planning problem P can be defined as P =
(F, I,A,G), where F is a set of fluents, I is the initial state, G is a goal state, and
A is a set of actions [12, 15].

Definition 2 Fluent: A fluent (f ∈ F ) is a state variable.

When assigned a value, a fluent can be represented by a grounded predicate.
Grounded predicates are also called atoms. For instance, (at 1 2) is an atom
which denotes that the observed agent is at the position 1 2.

Definition 3 State: A state contains all fluents, each of which is assigned a value.

The initial state (I) contains all fluents; whereas, the goal (G) could be a
partial state, containing a subset of fluents. To transition between states, the
value of fluents are altered by actions. An action is formally defined as follows:

Definition 4 Action: An action (a) is comprised of a name, a set of objects, a
set of preconditions (apre) and a set of effects (aeff ). Preconditions and effects
are composed of a set of valued fluents. Preconditions can contain or and and

statements.

Action a is applicable to state s if the state is consistent with the action’s
preconditions. Applying action a to state s will result in state s′, where aeff ⊆ s′

and ∀(f ∈ s′, f /∈ aeff ) : (f ∈ s)

Definition 5 Planning Problem Solution: A solution to a planning problem is a
sequence of actions π = (a0, a1, ..., ai ∈ A) such that applying each action in turn
starting from state I results in a state (si) that is consistent with the (partial)
goal state G, i.e., si ⊇ G.

Planners search for the optimal solution to a planning problem. An optimal
solution is the solution with the lowest possible cost. In our work the cost of an
action is 1, and thus the cost of a plan is equivalent to its length.

2.2 Goal Recognition

Goal recognition is often viewed as the inverse of planning, as the aim is to label a
sequence of observations with the goal the observed agent is attempting to reach.
This section provides the formal definition of a GR problem, and describes the
observation sequences and output of our GR approach.
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Definition 6 Goal Recognition Problem: AGR problem is defined as T = (F, I,A,
O,G), where G is the set of all possible (hypothesis) goals and O is a sequence of
observations [44].

Definition 7 Observations: O is a sequence of observed actions (observations),
i.e., O = (a1, a2, ..., ai ∈ A).

A completed sequence of observations with no missing actions can be applied
to an initial state I to reach a goal state G ∈ G. This sequence can also be incom-
plete, have missing observations or/and be suboptimal. An incomplete sequence
of observations contains the first N actions that are required to reach a goal; in
other words, the goal has not yet been reached. An action could be missing from
anywhere within a (incomplete or complete) sequence of observations. Observa-
tions are suboptimal if any number of additional, unnecessary actions have been
performed to reach the goal.

GR approaches attempt to select the real goal from the set of hypothesis goals
G. Our GR approach produces a probability distribution over the hypothesis goals,

i.e.,
∑|G|

i=1 P (Gi|O) = 1. In other words, we aim to find the likelihood of a given
observation sequence O under the assumption that the observee is pursuing a goal
Gi, i.e., P (O|Gi). The goal(s) with the highest probability are returned as the
set of candidate goals C. As goals can be equally probable, there can be multiple
candidate goals, i.e., |C| ≥ 1. Nevertheless, we assume that there is only a single
real goal. Note, our evaluation metrics (see Section 2.7.1) take into account that
multiple goals could be returned.

3 Action Graph Structure and Formal Definitions

Action Graphs model the possible order constraints between actions by linking
actions (dependants) to their dependencies. They are constructed of action nodes
and operator nodes, namely, DEP (short for dependencies), ORDERED-AND, UNORDERED-
AND and OR nodes. Action nodes are always leaf nodes and their dependencies are
conveyed through their connections (via operator nodes) to other actions. This
section defines dependencies, provides a definition of an Action Graph, describes
how the Action Graph structure links actions to their dependencies and briefly
mentions related structures.

Definition 8 Action’s Dependencies The set of dependencies of action a ∈ A is
formally defined as: D(a) = {a′ | (a′eff ∩ apre) ̸= ∅}.

Definition 9 Action’s Dependant Action a is a dependant of action a′ if a′ ∈
D(a).

In other words, action a′ is a dependency of action a if at least one effect of a′

fulfils at least one of a’s preconditions, i.e., a′ ∈ D(a) if a′eff ∩ apre ̸= ∅. In that
case, action a is called the dependant of the dependency a′. The order in which
dependencies are likely to be observed can be conveyed by the nodes of an Action
Graph.
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Definition 10 Action Graph AG = (NO, NA, E), where NO is a set of opera-
tor nodes, NA are action nodes and E are edges 2. Operator nodes are of type
DEP, UNORDERED-AND, OR and ORDERED-AND nodes, i.e., NO = (NOR, NDEP , NO-AND,
NU-AND). The root node is of type OR. All nodes (except the root) have a set
of parents. All operator nodes (NO) have a set of children, those children can be
operator nodes or action nodes. NA are leaf nodes.

The operator node types are described in the list below and depicted in Fig-
ure 2. The precedes operator ≺ denotes that the list of actions on the left pre-
cede (are dependencies of) the action on the right. Standard maths notation is
used to denote if a set of actions is unordered or ordered, that is, curly brackets
denote the actions are unordered and angle brackets show the actions are or-
dered [47]. Moreover, rather than writing or constraints as two statements, e.g.,
a4 ≺ a1 OR a5 ≺ a1, a shortened form is given, e.g., or(a4, a5) ≺ a1.

Fig. 2: The different types of order constrains on actions that achieve a1’s precon-
ditions, i.e., {a2, a3, or(a4, a5), ⟨a6, a7⟩} ≺ a1. Solid arrows point to the dependant
and dashed arrows point to the dependencies. UNORDERED-AND is shortened to U-AND

and ORDERED-AND to O-AND.

– DEP nodes indicate that an action’s dependencies are performed before the
action itself, e.g., D(a1) ≺ a1. The second (i.e., last) child of a DEP node is
the action node itself; the first child could be of any type.

– UNORDERED-AND nodes denote that different dependencies set different precondi-
tions (and there are no order constraints on the dependencies), e.g., if a2 ∈
D(a1), a3 ∈ D(a1) and (a1pre ∩ a2eff ) ̸= (a1pre ∩ a3eff ) then (a2∧a3) ≺ a1.

– OR nodes express the multiple (alternative) ways a precondition can be reached,
e.g., if a4 ∈ D(a1), a5 ∈ D(a1) and (a1pre ∩ a4eff ) = (a1pre ∩ a5eff ) then
or(a4, a5) ≺ a1.

– ORDERED-AND nodes indicate there are order constraints between an action’s de-
pendencies. Such constraints are required when executing one dependency
could unset the preconditions of another. For example, if a6 ∈ D(a1), a7 ∈
D(a1) and both a6pre and a7eff contain the same fluent but with different
values, then a6 is performed before a7, i.e., ⟨a6, a7⟩ ≺ a1. This is because
the effects (fluents) of a7 are preconditions of a1 but to perform a6 those flu-
ents must be assigned a different value. If these constraints are cyclic, e.g.,
{⟨a6, a7⟩, ⟨a7, a6⟩} ≺ a1, then the constraint is ignored; in other words, the
dependencies are considered to be unordered.

Dependencies are actions, and thus they can also have dependencies. For ex-
ample a8 could depend on a9, which depends on a10, i.e., a10 ≺ a9 ≺ a8. If an

2Nx denotes a set of nodes that are of a specific type (x).
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action has dependencies, its only parent is the DEP node linking it to its dependen-
cies (and dependants). Thus, continuing with the example, the left child of a8’s
parent DEP node is a9’s parent DEP node.

Cyclic dependencies can also occur, e.g., a1 could depend on a2 which depends
on a1 (i.e., ...a2 ≺ a1 ≺ a2...). This causes cycles to appear within the Action
Graph. These cycles can also be caused by indirect dependencies, e.g., ...a2 ≺ a3 ≺
a1 ≺ a2... in which a1 is a dependency of a2 and a2 is an indirect dependency of
a1.

Our Action Graph structure does not contain states. An Action Graph only
captures information about which actions fulfil each action’s preconditions. This
is similar to the structures of library-based intention recognition and planning
approaches [21, 28, 49, 52]. For instance, Goal-Plan trees contain (sub)goals with
plans that can contain subgoals [49, 52]. Goal-Plan trees do not contain knowledge
of the environment’s current state. In particular, the Action Graph structure was
inspired by the work of Holtzen et al. [21], who represented a library of plans as
AND/OR trees. Differently, our approach takes PDDL rather than a library of
plans as input, and enables suboptimal and cyclic dependencies to be represented.

Moreover, the definition of a dependency is similar to causal links from Partial-
Order Causal Link (POCL) planning [16]. Like dependencies, a causal link ex-
presses that an action’s preconditions are contained within another action’s ef-
fects. Differently, POCL structures represent complete plans (to reach a single
goal state from the initial state), edges rather than nodes are used to denote the
order constraints and they can contain ungrounded actions. As GR does not re-
quire a completely valid plan, Action Graphs are simpler to construct than POCL
structures.

4 Cyclic Action Graph creation

Our goal recognition method creates an Action Graph, labels the nodes with their
distance from each goal, then for each observation updates the goals’ probability.
This section describes how an Action Graph is generated from a GR problem. The
modifications to the preprocessing step, that transforms a PDDL problem into a
multi-valued problem, are described. Subsequently, the action insertion algorithm
is detailed, followed by an example.

4.1 Preprocessing: multi-valued problem generation

This paper only provides the details of the transformation, from a PDDL de-
fined problem to a multi-valued problem, that are key to understanding our ap-
proach and that differ from [19]. A single goal statement is required by the
coverter of Helmert [19]; therefore, prior to calling the converter, a goal state-
ment is created by placing all hypothesis goals (G) into an or statement, i.e.,
G = or(G1, G2, ..., G|G| ∈ G).

The converter’s parameter, to keep all unreachable states, is set to true and,
after parsing the PDDL, all groundings of the actions’ effects are inserted into
the initial state (I). This forces actions, and all fluents’ values, to be inserted
into the resulting representation even if the actions’ fluent preconditions, and thus
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possibly the goals, are unreachable from the defined (original) initial state. For
instance, if an agent’s location is missing from I, e.g., because it is unknown, and
no transition between an unknown and known location exists, then move actions
would not be inserted as their preconditions can never be met. To prevent this,
all (at ?location) groundings are inserted into I. Additional static atoms are
not inserted into I; thus, continuing with our example, move(1 1 1 2) is only
appended to the set of actions A if (adjacent 1 1 1 2) is declared in the defined
initial state.

4.2 Inserting actions into an Action Graph

An Action Graph is initialised with an OR node as the root; then each action (a ∈ A)
is inserted into the graph in turn by connecting it to its dependencies. Actions can
be inserted in any order. Finally, the graph is adjusted so only the Goal Actions’
parent DEP nodes are connected to the root. This process is detailed below and the
pseudo-code is provided in Appendix A.

If an action has no dependencies, because either there are no actions that fulfil
its preconditions or it has no preconditions, it is simply appended to the root’s
children. In all other cases, the root is linked to a new DEP node. The DEP node’s
two children are set to an UNORDERED-AND node, proceeded by the action node itself.
If this action node was already created, because it is a dependency of an already
processed action, the action node’s prior parents are moved to be the DEP node’s
parents.

The UNORDERED-AND node’s children are set to one or more of the following: the
action nodes (or parents) of the dependencies, OR nodes if there are multiple ways in
which a precondition can be met, and/or ORDERED-AND nodes. OR nodes’ are inserted
by setting their children to the action nodes of the dependencies that set the
same precondition(s). If a dependency has dependencies, the corresponding child
becomes the dependency’s parent. This is because actions that have dependencies
can only ever have a single parent, of type DEP. Note: if an operator would only
have one child, the operator node is not inserted.

ORDERED-AND nodes indicate that there are order constraints on the dependencies
themselves. This is detected by checking if a fluent has a value in a dependency’s
preconditions which is different in another dependency’s effects (see Section 3);
and thus the former dependency must be performed first. If this constraint is
bidirectional/cyclic, the ORDERED-AND node is not inserted; instead, the dependencies
become the children of the UNORDERED-AND node. Only the preconditions/effects of
direct dependencies are checked, the algorithm does not check if a dependence’s
dependency could undo/unset a dependency’s precondition. Performing this check
would be computationally complex and a perfect representation of the plans to
reach of the actions’ effects is not required.

The ORDERED-AND node’s children could also be of type UNORDERED-AND or OR. When
multiple dependencies could unset a dependency’s preconditions, an UNORDERED-

AND is inserted as the child of the ORDERED-AND node’s right-branch. Moreover, the
dependencies that set the same precondition(s) of the dependant are grouped
together as the children of an OR node. Therefore, if one of these dependencies is
affected by (or effects) another dependency, the OR node becomes the ORDERED-AND
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(or UNORDERED-AND) node’s corresponding child. Without this feature, the graph’s
structure would become more complex, i.e., be of greater depth and/or breadth.

4.3 Identifying Goal Actions

An action is a Goal Action if its effects fulfil a goal’s atoms, i.e., aeff ⊇ G, where
G ∈ G. After all actions have been inserted, the root node’s children are modified
so that only the Goal Actions are attached to the root. If multiple actions are
required to fulfil a goal, e.g., (a1eff ∪ a2eff ) ⊇ G, then an auxiliary Goal Action
(ax) is created. Auxiliary Goal Actions are linked to the multiple actions that
fulfil the goal via a DEP node, e.g., {a1, a2} ≺ ax. They are connected to their
dependencies, i.e., the goal’s dependencies, in the same way as all other actions
are.

Identifying and creating Goal Actions simplifies traversing the graph to find
all nodes belonging to a single goal. All children, including indirect children, of
a Goal Action’s parent DEP node could appear in a plan (from any initial state)
to reach the goal the Goal Action fulfils. Therefore, the graph can be traversed,
in a depth-first or breadth-first manner, to find all the nodes, and thus actions,
belonging to a goal.

4.4 Example

An example is provided, in this section, to demonstrate how our creation algorithm
works for the grid-based navigation problem depicted in Fig. 3. Fig. 4 shows the
Action Graph after each action, and its dependencies, have been inserted. The four
insertions, detailed below, were selected to show the different structural features
of an Action Graph. A figure with all actions inserted into the graph would be
unreadable, and thus is not provided.

The example starts by inserting the goal action, move(2 0 1 0). The precon-
ditions of move(2 0 1 0) are met by executing one of two possible actions, i.e.,
or(move(1 0 2 0), move(2 1 2 0)) ≺ move(2 0 1 0); therefore, it is inserted by
connecting it to its dependencies via a DEP node and a OR node (see Fig. 4a).
Likewise, when move(1 0 0 0), whose preconditions are reached by one of three

Fig. 3: Example problem from the Easy-IPC-Grid domain. Before an agent can
move to position (2,1), it must be unlocked. The lettered arrows indicate the
actions inserted to produce the sub-figures of Fig. 4. Based on the GR Easy-IPC-
Grid problems developed by Ramı́rez and Geffner [43], based on a domain from
the official IPC1.
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actions (i.e., or(move(2 0 1 0), move(1 1 1 0), move(0 0 1 0)) ≺ move(1 0 0 0)),
is inserted, an OR node is created. As one of its dependencies has already been in-
serted, the appropriate child of the OR node is set to move(2 0 1 0)’s parent DEP

node. This is shown in Fig. 4b.

Inserting move(0 0 1 0) causes the graph to become cyclic (Fig. 4c) because
it depends on one of its dependants, i.e., move(1 0 0 0) ≺ move(0 0 1 0). Fig. 4d
displays the graph after move(1 1 2 1) has been inserted. This action requires
location 2 1 to be unlocked with key1, and thus its dependencies include unlock

actions. As unlock actions’ preconditions contain the location of the agent, they
must be performed prior to the move actions required by the dependant. There-
fore, an ORDERED-AND node is created during the insertion of move(1 1 2 1), i.e.,
⟨or(unlock(2 1 2 0 key1), unlock(2 1 1 1 key1)), or(move(0 1 1 1),
move(2 1 1 1), move(1 0 1 1))⟩ ≺ move(1 1 2 1).

(a) The Action Graph after move(2 0 1 0) and its dependencies have been inserted.

(b) move(1 0 0 0) has been inserted into the Action Graph along with its dependencies. As
move(2 0 1 0) was previously inserted, the new OR node was connected to it via its parent
(DEP) node.

(c) move(0 0 1 0)’s dependency was already inserted into the graph. Connecting it to its
dependency has caused a cyclic to occur.

(d) The order constrains on move(1 1 2 1)’s dependencies required an ORDERED-AND node to
be inserted as performing a move action could undo a precondition of an action that unlocks
position 2 1.

Fig. 4: Example of the steps taken to insert four actions, and their dependencies,
into an Action Graph. This example has been simplified, i.e., in the original Easy-
IPC-Grid problems, keys have different shapes. Solid pale arrows show the root
node’s connections (prior to the Goal Actions being discovered).
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5 Node distance initialisation

Each node has a set of distances associated with it, which indicate how far the
node is from each goal, i.e., the number of DEP and ORDERED-AND nodes that must be
traversed to get from the Goal Action’s parent to the node in question. These dis-
tances are set by means of a breadth-first traversal (BFT). A BFT was implement
because this will result in the nodes being visited in the order they are likely to be
performed. An explanation of this algorithm is provided, followed by an example.
The pseudo-code can be found in Appendix B.

5.1 Node value initialisation algorithm

During the BFTs, that start from each Goal Action’s parent node, the current
node’s distance is set, the count (i.e., distance measure) is increased if the node is
of type DEP or ORDERED-AND, and each of the node’s children are pushed onto the BFT-
queue. This distance measure provides an indication of how far each node is from
each goal whilst attempting to minimise favouring shorter plans (see Section 6 for
the calculations of the goal probabilities). The same node could be visited multiple
times during a BFT; however, if the current distance/count is greater than or equal
to the node’s already assigned distance, it is not reprocessed. As well as allowing
the shortest distance to be assigned to each node, this prevents an endless loop
from occurring when two actions depend on each other (e.g., ...a2 ≺ a1 ≺ a2...).

As an action could appear in a plan multiple times, some nodes require multiple
distances for the same goal; this is the case for the descendants of ORDERED-AND

nodes’ right branch. Therefore, a node contains a map for each goal, from the
last traversed ORDERED-AND to the node’s distance from the goal via the ORDERED-AND

node. When the right branch of the ORDERED-AND node has been fully observed, the
distance of the node, returned when calling a get distance method, will be the
distance associated with that ORDERED-AND node. As the initial state is unknown
and plans are not perfectly represented, the distances assigned to the left branch
of ORDERED-AND nodes are not based on the depth of the right branch.

Labelling nodes with multiple distances per goal increases the worst case time
complexity from O(n2) to O(n3), with respect to the number of actions. This is
because each action in the graph could be a dependency of all other actions; thus,
for all actions all other actions could be visited. When labelling the nodes with
multiple values this process could be repeated n times. Therefore, to help minimise
the number of nodes the BFTs traverse, when an UNORDERED-AND node is reached, its
children’s (including indirect children’s) distance is not associated with the prior
ORDERED-AND node(s). Developing this component greatly reduced (≈halved) the run
time of our experiments (Section 7.3.2) and had negligible impact on the accuracy
of our approach.

The offline component of our system finishes by setting the prior probability
of each goal. We chose to use a uniform prior probability as, since no actions have
been observed, all goals are assumed to be equally likely.
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5.2 Example

The Action Graph depicted in Fig. 5 shows the resulting action nodes’ distance
from each goal for a simplified version of the Kitchen domain by Ramı́rez and
Geffner [43]. In this example, there are two Goal Action nodes, namely, pack-
lunch() and make-dinner(). By executing the BFTs described above, each node is
labelled with their distance from each goal. This example will be used in Section 6,
to demonstrate how an observation affects the goals’ probability, and thus why this
node value initialisation procedure has been implemented.

Fig. 5: Example of an Action Graph with the action nodes labelled with their
distance from each goal. G1 represents the goal (made lunch), which is reached
by performing the pack-lunch() action and G2 represents (made dinner), which
is reached by performing the make-dinner() action. This example is based on
the Kitchen domain developed by Ramı́rez and Geffner Ramı́rez and Geffner [44]
based on the work of Wu et al. [57]. To make this figure readable, it has been
simplified, i.e., many nodes and edges are not included.

6 Updating the goal probabilities

When an action is observed, the probability associated with each goal is updated
based on either its distance from the observed action or the difference between its
distance from the prior observation and the current observation. These two update
rules are described in turn along with their advantages and disadvantages. The
experiments section presents results for both these update rules separately, as well
as combined. The pseudo-code, for the rules combined, is provided in Algorithm 1.

6.1 Update rule 1: Distance from observed action

Each goal’s probability is updated based on how close the goal is to the observed
action and how unique the observation is to the goal. The probabilities of the goals
closest to the observation are increased, whilst those furthest from the observation
are decreased. If an observation only belongs to a single goal, that goal’s prob-
ability is increased and all other probabilities are decreased. This is performed
by multiplying each goal’s probability by its distance from the observed action’s
node divided by the sum of all goals’ distances (lines 7-10); then normalising the
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Algorithm 1: Update the goal probabilities.

Data: ot observed action, ot−1 previously observed action, G set of hypothesis goals
with current probability

Result: G set of hypothesis goals with updated probability
1 if ot−1 ̸= null and areConnectedViap/OAndNodes(ot, ot−1) then
2 foreach G ∈ {G′ | G′ ∈ G, ot.hasDisFromGoal(G′)} do
3 c(G) = σ(ot−1.getDisFromGoal(G)− ot.getDisFromGoal(G))
4 v(G) = P (G)(1 + c(G))

5 end

6 else
7 foreach G ∈ G do

8 c(G) =
ot.getDisFromGoal(G)∑

G′∈G ot.getDisFromGoal(G′)

9 v(G) = P (G)(1 + c(G))

10 end

11 end

12 foreach G ∈ G do P (G) =
v(G)∑

G′∈G v(G′) ▷ probabilities sum to 1

13 updateNodeDistancesIfo-andLeftBranchFullyObserved(ot)

resulting values (line 12). Note, if the observation is not within a plan to reach the
goal G, 0 is returned by the getDisFromGoal method (line 8) so that c(G) = 0
and, so long as another goal’s plan contains the action, its probability is reduced.

For the example shown in Fig. 5, there are two goals, both with a prior probabil-
ity of 0.5. When the take(plate) action is observed, the resulting probabilities are
unaltered as its node’s distance to each goal is equal. More nodes must be traversed
to reach take(plate) from pack-lunch(), than from make-dinner(). Neverthe-
less, the goal with a shorter plan was not favoured as the distance counter (see
Section 5) was only increased when a DEP or ORDERED-AND node was traversed. If
take(knife) is observed, the probability of making a pack lunch is increased, i.e.,
P ((made-lunch)) = 0.67 and P ((make-dinner)) = 0.33, as the observed action is
unique to this goal.

The main disadvantage of this approach is that the probabilities of goals with
shorter, strongly ordered, plans are increased more than those with longer plans.
Therefore, the list of returned candidate goals C often contains the goal(s) with
a shorter plan. For instance, if an incomplete sequence of observations contains
actions that approach both G1 and G2, whichever of these two goals has the
shortest plan length will be returned as a candidate goal, the other will not be.
The subsequent update rule aims towards mitigating this disadvantage.

6.2 Update rule 2: Change in distance from the observed actions

If the previous observation (ot−1) and the current observation (ot) are connected
via a DEP or ORDERED-AND node, the goal probabilities are updated based on the
change in distance, i.e., the difference between the goal’s distance from the previous
and current observations (lines 2-5 of Algorithm 1). To check if the observations are
connected, an upwards traversal (in a depth-first manner) is performed, starting
from the action node of ot−1, to find a DEP or ORDERED-AND node whose right branch’s
child is the action node of ot.
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If the list of observations is not missing any actions, the change in distance
will always be 1, 0 or -1. As an observation could be missed (e.g., due to sensor
failure), our algorithm needs to account for the difference being within a wider
range of values. A negative difference indicates the observee moved further from
the goal, whereas a positive difference indicates they moved closer. The sigmoid
function converts the difference into a value between 0 and 1 (i.e., σ from line 3);
the goal’s value is multiplied by this (line 4) then normalised (line 12). If either
observation does not belong to the goal, the value of v(G) is equivalent to setting
the result of the sigmoid function to 0; in other words, the difference is −∞. This
update rule results in the probability of the goal the observee is moving towards
at the highest rate to be increased the most.

When this rule is used independently from the first rule, if the previous ob-
servation is null or the current and previous observations are not connected via
a DEP or ORDERED-AND node (as detailed above), then c(G) = 0.5 for the goals de-
pendent (or indirectly dependent) on the current observation and c(G) = 0 for all
other goals. This prevents the goals that have shorter plans from being favoured;
however, goals for which the observation appears in a (very) suboptimal plan are
treated equally to those for which an optimal plan contains the observation.

In the example depicted in Fig. 6, if the observee moves from position 2 1 to
1 1 then to 0 1, the goal probabilities remain equal. As the distance to both goals
is reduced at the same rate, the real goal is indiscernible. If the observee were to
move vertically, and thus step towards one goal (and away from the other), the
corresponding goal’s probability is increased, e.g., observing move(2 1 1 1) then
move(1 1 1 0) results in P (G1) = 0.58 and P (G2) = 0.42.

Fig. 6: Action nodes’ distance from each goal, represented on a depiction of a grid-
based navigation environment. G1 and G2 are goals and arrows represent move
actions.

6.3 Processes common to update rules 1 and 2

In both update rules, 1+ c(G) is calculated, rather than just c(G), so that a goal’s
probability is never set to 0. If the probability of a goal were to be set to 0, it cannot
be increased; thus, the heuristic would not be able to recover from receiving an
incorrect (noisy) observation. These update rules, along with the graph’s structure,
enable our system to handle noisy observations as well as suboptimal plans and
missing observations.
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When an action has been observed, which operator nodes have been completed
are updated by traversing up the graph, in a depth-first manner, from the observed
action’s node (line 13). OR nodes are set as completed if one of their children has
been completed, DEP nodes are complete if the child connected to their right branch
has been observed and UNORDERED-AND nodes are set as completed if all their children
are. If a node is not set to completed, its parents are not traversed. When an
ORDERED-AND node’s left branch has been completed, the nodes attached to its right
branch are informed, so that their distance associated with that ORDERED-AND node
is used when the next observation is received (as described in Section 5).

7 Experiments

Through experiments we aim to demonstrate the accuracy of our GR approach,
after 10, 30, 50, 70 and 100 % of actions in a plan have been observed, on 15
different domains. This section describes the evaluation metrics, followed by the
setup and results of the different experiments. A comparison between our different
update rules and the goal completion heuristic, namely, hgc, by Pereira et al.
[39, 40] is provided, on problems for which differing percentages of fluents have
been set to incorrect values. Our method is then compared to hgc on a dataset
containing GR problems with a known, and thus correctly defined, initial world
state.

Pereira et al. [39, 40] recently improved the accuracy and computational time of
GR by finding landmarks, i.e., states that must be reached to achieve a particular
goal. After processing the observations, the resulting value of each goal (G ∈ G)
is based on the percentage of its landmarks that have been completed. hgc takes
a threshold value as a parameter. Any goals whose value is greater than or equal
to the most likely goal’s value minus the threshold are included in C. When the
threshold is 0.0, like our approach, only the most likely goal(s) are included in
C. Therefore, we present the results of their approach for 0.0 as the threshold.
The compiled version of hgc, provided by Pereira et al. [39], was ran during the
experiments3. We provide a detailed comparison to hgc as it has been very recently
developed and was shown to outperform alternative methods; other approaches to
GR will be discussed in the related work section (Section 8).

The dataset created by Ramı́rez and Geffner [44] and Pereira et al. [39]4 forms
the basis for our experiments. Details on generating the lists of observations and
the inaccurate initial states are provided in the setup sections, specific to each
experiment. A brief description of each domain is supplied in Appendix C. Ex-
periments were ran on a server with 16GB of RAM and a Intel Xeon 3.10GHz
processor.

7.1 Evaluation metrics

Our approach is evaluated on the number of returned candidate goals (i.e., |C|)
and standard classification metrics, namely, accuracy (sometimes referred to as

3https://github.com/ramonpereira/Landmark-Based-GoalRecognition/blob/master/
goalrecognizer1.1.jar

4https://github.com/pucrs-automated-planning/goal-plan-recognition-dataset

https://github.com/ramonpereira/Landmark-Based-GoalRecognition/blob/master/goalrecognizer1.1.jar
https://github.com/ramonpereira/Landmark-Based-GoalRecognition/blob/master/goalrecognizer1.1.jar
https://github.com/pucrs-automated-planning/goal-plan-recognition-dataset
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quality), precision, recall and F1-Score [10, 24]. A definition for each of these is
provided below. Subsequently, performance profiles, which are provided to show a
comparison of the approaches’ run-times, are introduced.

7.1.1 Classification metrics applied to goal recognition

Accuracy (QP,S), precision (MP,S), recall (RP,S) and F1-Score (F1P,S) are pro-
vided in Eqs. 1, 2, 3 and 4 respectively. The definitions of TP, FP, FN and TN are
provided, from a GR perspective, in Table 1. In these definitions GP is the actual
goal (ground truth) for problem P , CP,S is the set of candidate goals returned by
solution/approach S and GP is the set of hypothesis goals. TP is 1 if the true goal
is in the set of candidates or 0 if it is not; FN is the inverse of TP; FP is the
number of returned candidates that are not the real goal, and TN is the number
of goals correctly identified as not the real goal. For each metric, the average over
all problems per domain is displayed in the results.

Table 1: Definitions of True Positive (TP), False Positive (FP), False Negative (FN)
and True Negative (TN) results of solution/approach (S) on a goal recognition
problem (P ).

TP =

{
1, if GP ∈ CP,S

0, otherwise
FP =

{
|CP,S | − 1, if GP ∈ CP,S

|CP,S |, otherwise

FN =

{
0, if GP ∈ CP,S

1, otherwise
TN = (|GP | − 1)− FP

QP,S =
TP + TN

TP + TN + FN + TP
(1)

MP,S =
TP

TP + FP
(2)

RP,S =
TP

TP + FN
(3)

F1P,S =

{
2 ∗ MP,S∗RP,S

MP,S+RP,S
, if GP ∈ CP,S

0, otherwise
(4)

Prior goal recognition papers [7, 39, 44] defined the accuracy/quality as the
number of times the actual goal appeared in the set of candidate goals, i.e, they
did not take |C| into consideration when calculating accuracy. This resulted in
approaches being reported as 100 % accurate, even when more than one candidate
goal was returned. In our paper, this is equivalent to recall (RP,S). By using the
definitions provided in this paper, an approach can only have an accuracy of 1
(i.e., 100 %) if it always returns one candidate goal, i.e., the real goal.
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7.1.2 Performance profiles

The computation times (T ) are presented in performance profiles, as suggested by
Dolan and Moré [6]. This enables the results to be presented in a more readable
format, and all datasets can be grouped into a single result to prevent a small
number of problems from dominating the discussion. To produce the performance
profile an approach (S ∈ S), i.e., of our Action Graph approach and of hgc, the
ratio between its run-time (TP,S) and the quickest run-time for a problem (P ∈ P)
is calculated, as shown in Eq. 5. Eq. 6 calculates the percentage of problems an
approach solved when the ratio is less than a given threshold, τ . When τ = 0,
the resulting PS(τ) of an approach is the percentage of problems it solved quicker
than the other approach. How much τ must be increased for 100% of problems to
be solved depends on how far off the best approach that approach is.

ΓT
P,S =

TP,S

min (TP,S : S ∈ S) (5)

PS(τ) =
1

|P| |P ∈ P : ΓT
P,S ≤ τ | (6)

7.2 Goal recognition with an inaccurate initial state

The main aim of our approach is to be able to perform GR when the initial state of
the environment is defined inaccurately. A fluent’s value could be incorrect if it is
unknown, and thus incorrectly guessed, or an error has been made while determin-
ing the environment’s state. Therefore, a dataset containing differing percentages,
i.e, 10, 20, 40, 60, 80 and 100 %, of fluents set to incorrect values was produced.
How this dataset was generated is discussed, followed by the results produced by
our Action Graph approach and hgc.

7.2.1 Setup

A dataset containing problems with varying amounts of fluents set to incorrect
values was generated from the dataset containing the first N % of observations,
i.e., that was used in the experiments of Section 7.3.3. For each problem, contained
in the aforementioned dataset, 10, 20, 40, 60, 80 and 100 % of fluents were chosen
at random and their value set to a randomly selected incorrect value. As there are
elements of randomness, for each percentage of fluents, 5 problems were created.
The changes that can be made to the initial state I were (manually) defined based
on the actions’ effects.

For instance, in a Zeno-Travel problem, containing 5 cities, 4 people, 3 aircraft
and 2 fuel-levels, there are 10 fluents whose initial value can be altered. Each person
can be at a city or in an aircraft; thus, a fluent indicating a person’s location can
be changed to one of the 7 alternative (incorrect) values. Each aircraft has two
fluents associated with it, i.e., is in a city and has a fuel-level; both of these can
be changed to an alternative value.

These state changes could cause some (or all) goals to be unreachable from
the defined initial state (e.g., in the Sokoban domain, the robot could be unable
to navigate to a location from which one of the boxes can be pushed) and the
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Fig. 7: Graph showing the effect increasing the amount of incorrect fluents in the
initial state had on the accuracy of our Action Graph approach and hgc by Pereira
et al. [39]. Our Action Graph approach is indicated by solid lines, the dash lines
show the approach of Pereira et al. [39]. Each line colour indicates a different %
of observations.

initial state itself could be invalid/contradictory (e.g., in the Blocks-World domain,
blockA’s fluent could express the block is on the table and the gripper’s fluent
could indicate it is holding blockA). The changes made to the initial state are
outlined in Appendix C and a detailed table of possible changes can be found at
https://doi.org/10.5281/zenodo.3621275. No modifications were made to the
lists of observations.

7.2.2 Results discussion

The accuracy of our approach was not affected by setting fluents in the initial
state to incorrect values, whereas the accuracy of hgc greatly reduced (see Fig. 7
and Appendix D). When building the Action Graph, the initial values of fluents
are ignored. As a result, no matter what the initial values of fluents are defined
as being, the same Action Graph is produced. The initialising of the nodes’ values
uses the goal states, but not the initial state. Therefore, the output of our goal
recognition approach is unaffected by incorrectly initialised fluents. Previously,
researchers have used the initial state in their approach, and as a result, their
accuracy will deteriorate. When 20 % of the fluents’ were set to incorrect values,
a large decrease in the accuracy of hgc was observed, and as this percentage was
increased, the accuracy further reduced. For several domains, i.e., Kitchen, Rovers
and Intrusion-Detection, the resulting M and R of hgc rose when 100 % of fluents
(rather than 80 %) were incorrect. This is because at 100 %, for these domains,
all goals were contained in the set of candidate goals, and thus the real goal was
contained within C. Other approaches to GR are also unable to handle inaccurate
initial states because they attempt to find the plans/states that reach each goal

https://doi.org/10.5281/zenodo.3621275
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from the defined initial world state. These are discussed further in the related work
section.

7.3 Goal recognition with a known initial state

After describing the experiment setup, this section compares the computational
time of our Action Graph approach to hgc. The accuracy of these approaches, when
ran on problems with accurate initial states, are then discussed. This includes GR
problems where the observations are the first N % of actions in a plan and ones
for which the observations are a random N % of actions in a plan (i.e., is missing
observations).

7.3.1 Setup

The GR problems in the original dataset4 contain 10/30/50/70/100 % of observ-
able actions in the plan to reach a goal; these observations/actions were selected
at random. Therefore, for each of the original problems that contain 100 % of
the observations, we generated GR problems by selecting the first 10, 30, 50, 70
and 100 % of observations. As a task planner (which is not guaranteed to find an
optimal plan) was ran to create the problems produced by Pereira et al. [39], some
observation sequences are suboptimal.

The accuracy results for our two goal probability update rules (described in
Section 6), when ran independently and combined, are presented. In the results
table these are named AG1 (i.e., the first update rule), AG2 (the second update
rule) and AG3, which is the combination of the two rules (i.e., Algorithm 1).

7.3.2 Run-times

The Action Graph heuristic took an average of 0.02 s to process all observations,
whereas hgc took 0.66 s. Labelling the nodes with their distance from the goals
is computationally expensive; therefore, when the offline processing times (which
includes the PDDL to Action Graph transformation steps) are included, Actions
Graphs took an average of 2.38 s per problem. The performance profiles are dis-
played in Fig. 8 and the results per domain are shown in Table 2. These run-times
were produced while processing the GR dataset containing the first N % of obser-
vations, which contains 2705 problems.

When the whole process is included in the run-times, our approach GR out
performed hgc on 64 % of problems; however, the difference in run-time was greater
for the problems our solution was slower at (than for the problems hgc was slower
on). This is indicated by how much τ must be increased before 100 % of problems
were solved. At τ = 17.45, hgc solved all problems and at τ = 100.00 all problems
were solved by our approach. If only the online process is included, our approach
solves 100 % of problems quicker than hgc, and τ must reach 20426 before hgc

solves 100 %. Note: for hgc, the landmarks could be discovered offline, and thus
the online computational time reduced. This is only possible if the initial value of
each fluent is known in advance.
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(a) Run-time comparison, which includes the
graph initialisation (offline) time for our ap-
proach.

(b) Run-time comparison, which excludes the
graph initialisation time for our approach.

Fig. 8: Performance profiles comparing the recognition time of our Action Graph
approach to the goal completion heuristic by Pereira et al. [39]. These values were
produced using the dataset containing GR problems with the first N % of actions
in a plan as observations.

Table 2: The run-times, in seconds, of our Action Graph approach, including and
excluding the Action Graph initialisation (i.e., creation and node labelling) time,
and hgc [39] per domain. ALL is the total/average over all problems.

Action Graphs
(incl. graph
initialisation)

Action Graphs
(excl. graph
initialisation)

hgc

Domain |probs|
∑

t t̄ ±std
∑

t t̄ ±std
∑

t t̄ ±std
Blocks-World 460 109.54 0.24 0.38 0.27 0.00 0.00 213.73 0.46 0.37
Campus 75 5.02 0.07 0.00 0.01 0.00 0.00 22.50 0.30 0.07
Depots 140 193.62 1.38 1.99 0.15 0.00 0.00 108.78 0.78 0.24
Driverlog 140 1964.08 14.03 17.56 0.24 0.00 0.00 96.03 0.69 0.49
DWR 140 243.17 1.74 2.49 0.11 0.00 0.00 116.04 0.83 0.26
Easy-IPC-Grid 305 1269.91 4.16 5.53 16.64 0.05 0.12 174.89 0.57 0.24
Ferry 140 124.39 0.89 1.48 2.23 0.02 0.03 53.17 0.38 0.15
Intrusion-Detection 225 12.64 0.06 0.00 0.04 0.00 0.00 85.84 0.38 0.10
Kitchen 75 3.79 0.05 0.00 0.00 0.00 0.00 20.73 0.28 0.07
Logistics 305 709.73 2.33 5.21 6.39 0.02 0.06 259.74 0.85 0.85
Miconic 140 520.12 3.72 5.75 17.71 0.13 0.25 120.04 0.86 0.66
Rovers 140 207.68 1.48 1.04 0.13 0.00 0.00 119.06 0.85 0.48
Satellite 140 108.35 0.77 0.84 0.20 0.00 0.00 133.58 0.95 0.69
Sokoban 140 92.30 0.66 0.42 0.07 0.00 0.00 125.74 0.9 0.32
Zeno-Travel 140 877.03 6.26 4.68 0.96 0.01 0.01 141.02 1.01 0.43

ALL 2705 6441.37 2.38 6.03 45.15 0.02 0.08 1790.89 0.66 0.51

Both the size and the structure of an Action Graph impact the run-times of
our approach. Domains with relatively few actions have much shorter initialisa-
tion time (e.g., Kitchen, Intrusion-Detection and Campus). For larger domains, the
structure of the graph had a greater impact as the run-time was affected the num-
ber of times each node was visited. Our node labelling algorithm, which performs
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Table 3: The average size of the Action Graph per domain. ALL is the average
over all problems. The Nodes column provides the total number of action, DEP,
ORDERED-AND, UNORDERED-AND and OR nodes.

Domain Edges Nodes Actions DEP O-AND U-AND OR

Blocks-World 13994.16 1096.39 180.89 180.89 151.87 252.46 330.28
Campus 1656.00 420.00 123.00 123.00 25.00 14.00 135.00
Depots 43174.71 3338.00 440.29 440.29 410.00 732.29 1315.14
Driverlog 24999.57 3747.86 813.14 813.14 448.00 329.29 1344.29
DWR 37562.14 3679.14 489.29 489.29 481.43 750.14 1469.00
Easy-IPC-Grid 6595.90 3097.62 1034.82 1034.82 50.23 0.00 977.75
Ferry 15777.29 1190.29 233.86 233.86 162.57 170.14 389.86
Intrusion-Detection 294.33 230.33 102.33 92.33 0.00 34.67 1.00
Kitchen 102.00 71.00 34.00 12.00 0.00 18.00 7.00
Logistics 15595.05 4467.52 991.51 991.51 768.13 10.39 1705.98
Miconic 38783.71 2798.14 928.29 928.29 12.29 6.00 923.29
Rovers 5127.14 1966.43 535.71 517.43 232.14 220.71 460.43
Satellite 10427.29 2116.14 644.43 644.43 67.00 77.86 682.43
Sokoban 16895.14 4600.14 649.43 649.43 698.29 920.29 1682.71
Zeno-Travel 107562.00 6463.00 1104.00 1104.00 1098.00 914.29 2242.71

ALL 20497.93 2619.68 574.28 571.89 305.62 261.16 906.74

BFT, does not visit nodes if their already assigned distance is lower than the cur-
rent distance. Moreover, an UNORDERED-AND node’s children are not associated with
the prior ORDERED-AND node, and thus are visited fewer times than if no UNORDERED-

AND node is traversed. As a result, for example, although the Action Graph of the
Zeno-Travel domain contains more nodes than Driverlog’s, its run-time is shorter.

We have identified two ways in which the total processing time of our approach
could be reduced. Rather than calculating all the nodes’ distances from the goals
upfront, this process could be performed for just the observed actions; however,
observations would be processed at a reduced rate. Second, the nodes’ distances
for each goal could be computed in parallel; as we envision this process being
performed offline (thus the computational time of this is of lesser importance) and
the performance gain would be hardware dependent, this was not implemented.

7.3.3 Results after processing the first N % of observations

Our Action Graph approach outperformed hgc when 10 %, 30 % and 50 % of
observations had been received, at 70 % and 100 % hgc slightly outperforms our
approach. As described in [40], the lower the number of observations the less likely
it is that a landmark is observed; therefore, hgc cannot disambiguate the goals.
Fig. 9 displays the average F1-Score, produced by AG3 and hgc, at each percent of
observations; Table 4 shows the results per domain for AG1, AG2, AG3 and hgc.
The ALL result is the average overall domains rather than problems, so that the
result is not weighted towards the domains with the most problems.

Action Graphs have a low precision and recall for the Sokoban domain. GR
problems for the Sokoban domain contain observations to navigate to and push
two boxes to different locations. The actions for collecting and pushing one box
were observed, before the second box was acted on. Whilst observing the actions
to push the first box to its goal location, our Action Graph approach increased
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Fig. 9: Average F1-Score, after the first 10, 30, 50, 70 and 100% of observations
have been processed, for our Action Graph approach and hgc by Pereira et al. [39].

the probability of the appropriate goals (i.e., the goals the box was becoming
closer to). When the observed agent started to navigate to the second box, the
aforementioned goals’ probability was decreased. Therefore, when the second box
is pushed, any of the goals containing a location it is being pushed towards could
appear in the set of candidate goals. In other words, the goal probabilities lose
information about the first goal atom to be achieved. We considered increasing
the probability of the goals with fully observed atoms; however, in problems from
other domains some goals’ atoms are sub-goals of another goal.

For the Kitchen domain, our Action Graph approach reduced the number of
candidate goals significantly more than hgc as few landmarks were observed. On the
other hand, due to the structure of the produced graph, Action Graphs produced
a low R and M for the Depots and Blocks-World domains. The plans for these
domains are highly state dependent, which is not captured by the Action Graph
structure. For instance, in a Blocks-World problem, picking up blockA requires
the gripper to be empty by putting down all blocks (including blockA). The graph
structure captures the dependencies of actions; however, does not account for the
prior state(s) of the environment, e.g., the gripper could already be empty.

AG2 only outperformed AG1 on the Easy-IPC-Grid domain. In this domain
there are strong constraints on the order in which actions are performed and a
false goal could be traversed on-route to the real goal. Therefore, for this do-
main, update rule 2 prevented the shortest plan being favoured and successfully
increased the probabilities of the goals the observed agent was navigating towards.
Nevertheless, this update rule could not determine the real goal for the majority
of domains. This is because all goals, whose plans contain the observed action,
were multiplied (increased) by the same amount when the current and previous
observations were not connected via a DEP (or ORDERED-AND) node. All suboptimal
plans are encoded in an Action Graph’s structure; therefore, for many domains, all
actions are included within a plan to reach any of the goals. Combining AG2 with
AG1 increased the results of the Easy-IPC-Grid domain without greatly affecting
the results produced for the other domains. The subsequent sections just show the
results of AG3.
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Table 4: Accuracy results for the dataset containing the first 10 %, 30 %, 50 %,
70 % and 100 % of observations. AG1 is the first update rule, AG2 the second
update rule and AG3 is the combination of the two rules (see Section 6).

AG1 AG2 AG3 hgc

Domain |G| O% |C| Q R M |C| Q R M |C| Q R M |C| Q R M

Blocks-
World

20.28

10 9.65 0.52 0.52 0.05 20.01 0.05 1.00 0.05 9.65 0.52 0.52 0.05 1.80 0.87 0.10 0.05
30 4.08 0.79 0.40 0.11 20.01 0.05 1.00 0.05 4.08 0.79 0.40 0.11 1.22 0.91 0.22 0.18
50 1.99 0.89 0.36 0.20 20.01 0.05 1.00 0.05 1.99 0.89 0.36 0.20 1.34 0.91 0.32 0.27
70 1.35 0.94 0.53 0.45 19.99 0.05 1.00 0.05 1.35 0.94 0.53 0.45 1.27 0.94 0.58 0.49

100 1.10 0.99 0.90 0.87 19.91 0.05 0.99 0.05 1.10 0.99 0.90 0.87 1.36 0.98 1.00 0.86

Campus 2.00

10 1.27 0.87 1.00 0.87 2.00 0.50 1.00 0.50 1.27 0.87 1.00 0.87 1.27 0.60 0.73 0.60
30 1.00 1.00 1.00 1.00 1.80 0.40 0.80 0.40 1.00 1.00 1.00 1.00 1.07 0.97 1.00 0.97
50 1.00 0.93 0.93 0.93 1.13 0.07 0.13 0.07 1.00 0.93 0.93 0.93 1.00 1.00 1.00 1.00
70 1.00 0.80 0.80 0.80 1.13 0.07 0.13 0.07 1.00 0.80 0.80 0.80 1.00 1.00 1.00 1.00

100 1.00 0.87 0.87 0.87 1.13 0.13 0.20 0.13 1.00 0.80 0.80 0.80 1.00 1.00 1.00 1.00

Depots 8.86

10 5.71 0.40 0.68 0.14 8.86 0.11 1.00 0.11 5.71 0.40 0.68 0.14 1.61 0.75 0.21 0.13
30 3.32 0.61 0.39 0.22 8.86 0.11 1.00 0.11 3.32 0.61 0.39 0.22 1.71 0.76 0.29 0.21
50 1.96 0.79 0.54 0.41 8.86 0.11 1.00 0.11 1.96 0.79 0.54 0.41 1.36 0.85 0.50 0.42
70 1.29 0.89 0.68 0.59 8.86 0.11 1.00 0.11 1.29 0.89 0.68 0.59 1.25 0.93 0.82 0.72

100 1.14 0.98 1.00 0.96 8.86 0.11 1.00 0.11 1.14 0.98 1.00 0.96 1.04 1.00 1.00 0.98

Driver-
log

7.14

10 3.93 0.49 0.71 0.20 7.04 0.16 1.00 0.15 3.93 0.49 0.71 0.20 1.64 0.71 0.29 0.22
30 2.11 0.73 0.57 0.38 6.61 0.23 1.00 0.18 2.11 0.73 0.57 0.38 1.21 0.80 0.43 0.37
50 1.82 0.77 0.61 0.51 6.61 0.23 1.00 0.18 1.79 0.79 0.64 0.53 1.21 0.87 0.64 0.55
70 1.50 0.86 0.75 0.69 6.61 0.23 1.00 0.18 1.50 0.86 0.75 0.69 1.18 0.91 0.75 0.71

100 1.11 0.96 0.93 0.89 5.54 0.34 1.00 0.24 1.07 0.97 0.93 0.90 1.21 0.97 1.00 0.90

DWR 7.29

10 3.00 0.61 0.57 0.21 7.29 0.14 1.00 0.14 3.00 0.61 0.57 0.21 1.21 0.82 0.43 0.38
30 1.71 0.78 0.54 0.36 7.29 0.14 1.00 0.14 1.71 0.78 0.54 0.36 1.14 0.87 0.57 0.54
50 1.25 0.84 0.54 0.43 7.29 0.14 1.00 0.14 1.25 0.84 0.54 0.43 1.11 0.86 0.54 0.50
70 1.14 0.87 0.57 0.50 7.29 0.14 1.00 0.14 1.14 0.87 0.57 0.50 1.11 0.89 0.64 0.59

100 1.00 0.99 0.96 0.96 7.29 0.14 1.00 0.14 1.00 0.99 0.96 0.96 1.00 0.98 0.93 0.93

Easy-
IPC-
Grid

8.36

10 1.64 0.75 0.30 0.21 5.80 0.34 0.74 0.12 1.51 0.76 0.26 0.20 3.62 0.58 0.51 0.20
30 1.43 0.76 0.25 0.19 3.16 0.61 0.52 0.22 1.52 0.77 0.33 0.27 2.85 0.66 0.44 0.21
50 1.59 0.76 0.33 0.28 1.85 0.79 0.61 0.46 1.34 0.87 0.61 0.56 2.70 0.69 0.51 0.32
70 1.20 0.85 0.44 0.44 1.85 0.83 0.72 0.58 1.10 0.89 0.57 0.57 2.57 0.74 0.64 0.45

100 1.07 0.97 0.87 0.87 1.00 1.00 0.98 0.98 1.00 0.98 0.90 0.90 1.00 1.00 1.00 1.00

Ferry 7.57

10 6.54 0.26 1.00 0.19 7.57 0.13 1.00 0.13 6.54 0.26 1.00 0.19 1.79 0.76 0.54 0.34
30 1.93 0.87 1.00 0.70 7.57 0.13 1.00 0.13 1.93 0.87 1.00 0.70 1.29 0.89 0.75 0.67
50 1.25 0.97 1.00 0.88 7.57 0.13 1.00 0.13 1.25 0.97 1.00 0.88 1.04 0.97 0.89 0.88
70 1.11 0.98 1.00 0.95 7.57 0.13 1.00 0.13 1.11 0.98 1.00 0.95 1.00 0.99 0.96 0.96

100 1.07 0.99 1.00 0.96 7.57 0.13 1.00 0.13 1.07 0.99 1.00 0.96 1.00 0.99 0.96 0.96

Intru-
sion-
Detec-
tion

16.67

10 1.00 0.88 0.07 0.07 6.27 0.68 1.00 0.18 1.00 0.88 0.07 0.07 1.91 0.86 0.31 0.16
30 2.89 0.88 1.00 0.41 2.89 0.88 1.00 0.41 2.89 0.88 1.00 0.41 1.62 0.87 0.31 0.20
50 1.51 0.97 1.00 0.78 1.51 0.97 1.00 0.78 1.51 0.97 1.00 0.78 1.40 0.96 0.89 0.70
70 1.04 1.00 1.00 0.98 1.09 0.99 1.00 0.96 1.04 1.00 1.00 0.98 1.04 1.00 1.00 0.98

100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Kitchen 3.00

10 2.00 0.67 1.00 0.63 2.00 0.67 1.00 0.63 2.00 0.67 1.00 0.63 2.87 0.38 1.00 0.38
30 1.40 0.87 1.00 0.80 1.40 0.87 1.00 0.80 1.40 0.87 1.00 0.80 2.87 0.38 1.00 0.38
50 1.33 0.89 1.00 0.83 1.33 0.89 1.00 0.83 1.33 0.89 1.00 0.83 2.87 0.38 1.00 0.38
70 1.33 0.89 1.00 0.83 1.33 0.89 1.00 0.83 1.33 0.89 1.00 0.83 2.33 0.56 1.00 0.56

100 1.13 0.96 1.00 0.93 1.13 0.96 1.00 0.93 1.13 0.96 1.00 0.93 1.93 0.69 1.00 0.69

Logis-
tics

10.40

10 4.41 0.68 1.00 0.31 4.41 0.68 1.00 0.31 4.41 0.68 1.00 0.31 2.80 0.69 0.33 0.15
30 2.69 0.83 1.00 0.51 2.72 0.83 1.00 0.50 2.69 0.83 1.00 0.51 1.89 0.78 0.33 0.22
50 1.80 0.92 1.00 0.66 1.90 0.91 1.00 0.64 1.80 0.92 1.00 0.66 1.72 0.86 0.66 0.44
70 1.67 0.93 1.00 0.71 1.74 0.93 1.00 0.68 1.67 0.93 1.00 0.71 1.51 0.91 0.80 0.58

100 1.00 1.00 1.00 1.00 1.64 0.94 1.00 0.71 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Miconic 6.00

10 2.96 0.61 0.82 0.31 3.29 0.56 0.82 0.26 3.00 0.61 0.82 0.31 2.00 0.67 0.50 0.27
30 1.61 0.88 0.93 0.69 1.75 0.82 0.82 0.53 1.61 0.85 0.86 0.62 1.32 0.90 0.86 0.73
50 1.18 0.97 1.00 0.92 1.21 0.94 0.93 0.83 1.18 0.97 1.00 0.92 1.07 0.94 0.86 0.82
70 1.07 0.99 1.00 0.96 1.18 0.96 0.96 0.89 1.07 0.99 1.00 0.96 1.04 0.98 0.96 0.95

100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Continued on next page...
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... Table 4 continued.
AG1 AG2 AG3 hgc

Domain |G| O% |C| Q R M |C| Q R M |C| Q R M |C| Q R M

Rovers 6.00

10 3.64 0.54 0.93 0.32 4.61 0.40 1.00 0.30 3.64 0.54 0.93 0.32 2.00 0.65 0.46 0.24
30 1.61 0.88 0.93 0.70 2.25 0.77 0.93 0.62 1.61 0.88 0.93 0.70 1.14 0.88 0.71 0.66
50 1.11 0.96 0.93 0.88 1.64 0.89 1.00 0.73 1.11 0.96 0.93 0.88 1.14 0.94 0.89 0.83
70 1.07 0.99 1.00 0.96 1.18 0.97 1.00 0.91 1.07 0.99 1.00 0.96 1.11 0.97 0.96 0.93

100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Satellite 6.43

10 4.00 0.51 1.00 0.39 6.25 0.19 1.00 0.16 4.00 0.51 1.00 0.39 2.11 0.71 0.68 0.42
30 3.43 0.60 1.00 0.49 5.36 0.33 1.00 0.25 3.43 0.60 1.00 0.49 1.96 0.76 0.75 0.51
50 1.43 0.90 0.89 0.71 2.21 0.81 1.00 0.64 1.43 0.90 0.89 0.71 1.21 0.92 0.86 0.77
70 1.11 0.93 0.86 0.80 1.46 0.92 1.00 0.85 1.11 0.93 0.86 0.80 1.04 0.96 0.89 0.88

100 1.04 0.99 1.00 0.98 1.11 0.98 1.00 0.95 1.04 0.99 1.00 0.98 1.07 0.99 1.00 0.96

Sokoban 7.14

10 1.57 0.68 0.18 0.12 7.00 0.15 1.00 0.15 1.57 0.68 0.18 0.12 2.36 0.63 0.43 0.17
30 1.14 0.77 0.32 0.30 6.82 0.16 0.96 0.14 1.14 0.77 0.32 0.30 1.89 0.66 0.32 0.20
50 1.11 0.81 0.39 0.38 6.82 0.16 0.96 0.14 1.11 0.81 0.39 0.38 1.21 0.87 0.64 0.57
70 1.04 0.81 0.39 0.39 6.82 0.16 0.96 0.14 1.04 0.81 0.39 0.39 1.14 0.91 0.75 0.70

100 1.04 0.84 0.50 0.50 6.64 0.18 0.93 0.13 1.04 0.84 0.50 0.50 1.00 1.00 1.00 1.00

Zeno-
Travel

6.86

10 4.14 0.49 0.79 0.32 6.86 0.15 1.00 0.15 4.14 0.49 0.79 0.32 1.50 0.73 0.32 0.24
30 2.96 0.66 0.71 0.43 6.86 0.15 1.00 0.15 2.96 0.66 0.71 0.43 1.61 0.77 0.54 0.38
50 1.82 0.84 0.82 0.61 6.79 0.16 1.00 0.15 1.82 0.84 0.82 0.61 1.36 0.89 0.79 0.70
70 1.14 0.96 0.93 0.86 6.79 0.16 1.00 0.15 1.14 0.96 0.93 0.86 1.11 0.97 0.96 0.95

100 1.00 1.00 1.00 1.00 6.57 0.20 1.00 0.16 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ALL 8.26

10 3.70 0.60 0.70 0.29 6.62 0.33 0.97 0.22 3.69 0.60 0.70 0.29 2.03 0.69 0.46 0.26
30 2.22 0.79 0.74 0.49 5.69 0.43 0.94 0.31 2.23 0.79 0.74 0.49 1.65 0.79 0.57 0.43
50 1.48 0.88 0.76 0.63 5.12 0.48 0.91 0.39 1.46 0.89 0.78 0.65 1.45 0.86 0.73 0.61
70 1.20 0.91 0.80 0.73 4.99 0.50 0.92 0.44 1.20 0.92 0.81 0.74 1.31 0.91 0.85 0.76

100 1.05 0.97 0.94 0.92 4.76 0.54 0.94 0.51 1.04 0.97 0.93 0.92 1.11 0.97 0.99 0.95

7.3.4 Missing observations results discussion

Our Action Graph approach and hgc were also ran on the 6313 GR problems4

produced by Pereira et al. [39] and Ramı́rez and Geffner [44], that contain missing
observations. These problems contain a random 10, 30, 50, 70 and 100 % of obser-
vations. The F1-Scores are depicted in Fig. 10 and a table containing the results
per domain can be found at https://doi.org/10.5281/zenodo.3621275.

These results show a similar trend to the previous experiment, i.e., our ap-
proach produced a higher F1-Score than hgc at 10 %, 30 % and 50 % of obser-
vations (and vice versa after 70 % and 100 % of observations). Both approaches
perform better on the dataset containing missing observations, than they did in
the previous experiment, as each GR problem could contain observations that are
close to the goal (due to random actions in a plan having been selected).

8 Related work

Methods for intention recognition can be broadly categorised as data-driven and
knowledge-driven (i.e., symbolic) methods [42, 59]. Data-driven approaches train
a recognition model from a large dataset [1, 3, 50, 59]. The main disadvantages of
this method are that often a large amount of labelled training data is required and
the produced models often only work on data similar to the training set [46, 58].
Since our work belongs to the category of knowledge-driven methods, data-driven
methods are not further discussed.

Knowledge-driven approaches rely on a logical description of the actions agents
can perform. They can be further divided into approaches that parse a library of

https://doi.org/10.5281/zenodo.3621275


26 Helen Harman, Pieter Simoens

Fig. 10: Average F1-Score produced by our Action Graph approach and hgc

by Pereira et al. [39] on the dataset containing missing observations (in other
words when 10, 30, 50, 70 and 100 % of actions had been observed).

plans (also known as “recognition as parsing”), and approaches that solve recogni-
tion problems, defined in languages usually associated with planning, i.e., “recogni-
tion as planning” [29]. Our GR approach derives a graph structure, similar to those
used by some recognition as parsing methods, from a PDDL defined (planning-
based) GR problem. Recognition as planning is often viewed as more flexible and
general because a library of plans is not required and cyclic plans are difficult to
compile into a library [44]. We chose to transform a PDDL planning problem into
an Action Graph to enable the goal probabilities to be updated quickly, all plans
(including suboptimal plans) to be represented, cyclic plans to be expressed and
inaccurate initial states to be handle. Our approach takes advantage of the fact
that a perfect/complete representation of plans is not required to perform GR.
In this section, recognition as parsing and recognition as planning approaches are
discussed in turn.

8.1 Recognition as parsing

In recognition as parsing, hierarchical structures are usually developed which in-
clude abstract actions along with how they are decomposed to concrete (observ-
able) actions [28]. Several prior approaches have represented these hierarchical
structures as AND/OR trees [14, 21]. As previously mentioned, our graph struc-
ture was inspired by these works. The recognition as parsing approaches, men-
tioned in this section, enable both the goal and plan of the observed agent to be
recognised but do not mention handling invalid initial states or suboptimal plans.

Kautz et al. [27, 28] introduce a language to describe a hierarchy of actions.
Based on which low level actions are observed, the higher level task(s) an agent is
attempting to achieve is inferred. Their paper presents one of the earliest plan/goal
recognition formal theories that aimed to handle simultaneous action execution,
multi-plan recognition and missing observations.
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A set of action sequence graphs is derived from a library of plans in [54]. This set
is compared to an action sequence graph, created from a sequence of observations,
to find the plan most similar to the observation sequence. Their approach was
shown to perform well on misclassified (incorrect) sensor observations and missing
actions; but to generate the library of plans a planner is called, and thus a known
initial state is required.

8.2 Recognition as planning

Recognition as planning is a more recently proposed approach, in which languages
normally associated with task planning, such as STRIPS [9] and PDDL [35], define
the actions agents can perform (along with their preconditions and effects) and
world states. In recognition as parsing there are usually only action definitions,
whereas planning-based approaches allow for the inclusion of state knowledge, such
as what objects are found within the environment and their locations.

In [43, 44] it was proposed to view goal recognition as the inverse of planning.
To find the difference in the cost of the plan to reach the goal with and without
taking the observations into consideration, a planner is called twice for every pos-
sible goal. Therefore, the performance would greatly deteriorate when exposed to
inaccurate initial states. In [4] the work from [44] was extended, to find the joint
probability of pairs of goals rather than a single goal. Their work aimed to han-
dle multiple interleaving goals. Although initial approaches were computationally
expensive as they required a task planner to be called multiple times [4, 43, 44],
the latest advances in recognition as planning algorithms have greatly improved
this [7, 39].

Plan graphs were proposed in [7]. A plan graph, which contains actions and
propositions labelled as either true, false or unknown, is built from a planning
problem and updated based on the observations. Rather than calling a planner,
the graph is used to calculate the cost of reaching the goals. Our Action Graph
structure differs greatly from a plan graph, as Action Graphs only contain actions
and the constraints between those actions.

More recently Pereira et al. [39, 40] significantly reduced the recognition time
by finding landmarks. Our experiments show a comparison to this approach. This
work has been expanded to handle incomplete domain models [41], i.e., GR prob-
lems with incomplete preconditions and effects. In future work, we will explore
applying our work to incomplete domain models.

9 Conclusion

Our novel approach to goal recognition aims to handle problems in which the
defined initial state is inaccurate. An inaccurate initial state contains fluents whose
value is unknown and/or incorrect. For instance, if an item or agent (e.g., cup
or human) is occluded its location is indeterminable, and thus possibly defined
incorrectly. Our approach transforms a PDDL defined GR problem into an Action
Graph, which models the order constraints between actions. Each node is labelled
with the minimum number of DEP and ORDERED-AND nodes, traversed to reach it
from each goal. When an action is observed, the goals’ probability is updated
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based on either the distance the action’s associated node is from the goals or, if
the current and prior observation are connected via a DEP or ORDERED-AND node,
the change in distance. Experiments proved that when the fluents have incorrect
values in the initial state, e.g., because they are unknown or sensed/determined
incorrectly, the performance of our approach is unaffected.

In future work, we intend to apply our Action Graph method to further chal-
lenges associated with symbolic GR. As well as the defined initial state being
inaccurate, the domain model (i.e., action definitions) could be incorrect [41].
Therefore, we will experiment with adapting the Action Graph structure based on
the order observations are received. To create a more compact structure, and thus
reduce the computational time of this, we will investigate grouping related actions
into a single node. For instance, in the Sokoban domain, the same actions can
be performed on both box1 and box2; therefore, actions, such as push(box1 loc1

loc2) and push(box2 loc1 loc2), can be grouped into a single node. Moreover,
we intend to apply our GR approach to problems in which either the observed
agent has multiple goals, or multiple agents have individual or joint goals [25].

Another direction for future research is to modify our approach so that the
Action Graph structure expands over time. As more observation are made, new
actions could be inserted and the links between actions could be adjusted. This
could enable actions and sequences to be learnt. The performance of our current
method could be compared to this and to recurrent neural networks (RNN) based
approaches [3] using real world data.

As developing the PDDL can be time consuming and challenging, researches
have attempted to replace this manual process, with deep learning methods [1, 2].
We will explore the potential of learning the Action Graph structure from pairs
of images, and then converting the Action Graph into a PDDL defined domain.
Which, subsequently, could be provided as input to task planners as well as goal
recognisers.
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Appendix

A Action Graph creation algorithm

The pseudo-code for our Action Graph creation method, described in Section 4, is provided in
Algorithm 2.

B Algorithm to the nodes’ distance from each goal

The pseudo-code for the BFT that labels the nodes with their distance from each goal, de-
scribed in Section 5, is provided in Algorithm 3.
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Algorithm 2: Action Graph creation

Data: A set of all actions, G set of hypothesis goals
Result: Action Graph

1 rootn ← ORnode(∅) ▷ Create OR node with no children
2 foreach a ∈ A do
3 Da ← [∅] ▷ 2D array - array per precondition
4 foreach p ∈ apre do Da += {a′ | p ∈ a′eff} ▷ Get dependencies

5 if Da = [∅] then ▷ e.g. because a has 0 preconditions
6 rootn.children += node(a) ▷ append a’s Action Node to root
7 continue

8 end
9 depn ← DEPnode(∅) ▷ Create DEP node

10 rootn.children += depn
11 if |Da| = 1 then ▷ e.g. because a has 1 precondition
12 depn.children = [ORnode(Da[0]), node(a)]
13 continue

14 end
15 u-andn ← UANDnode(∅) ▷ Create UNORDERED-AND node
16 depn.children = (u-andn, node(a))
17 foreach Dp ∈ Da do
18 orn = ORnode(Dp) ▷ Actions that set the same precondition are

always the children of an (the same) OR node
19 if {a′ | a′ ∈ Dp, a′ is affected by any {a′′ | a′′ ∈ D′

p, D
′
p ∈ Da} } ̸= ∅ and Da

does not have cyclic order constraints then
20 o-andn ← OANDnode(orn, affecting actions) ▷ Add O-AND node, and

U-AND node when >1 affecting actions
21 u-andn.children += o-andn
22 else if Dp not already decedents of u-andn then
23 u-andn.children += orn
24 end

25 end

26 end
27 createGoalActionsAndSetRootsChildren(G ∈ G, root.children)

C Domains

The list below describes each domain in turn, and describes the fluents whose initial value was
modified to generate the dataset for the experiments described in Section 7.2. Further details
on the modified fluents are provided at https://doi.org/10.5281/zenodo.3621275. These GR
domains were produced by Ramı́rez and Geffner [44], Pereira et al. [39]4, based on the work
of Wu et al. [57] and the IPC domains1.

– Blocks-World: A hand stacks blocks on top of one another to create a tower.
– A block can be placed on the table or another block, a block can become unclear, and

the hand can be empty or holding a block.
– Campus: In the campus domain a university student navigates to different locations (e.g.,

the library, a cafe, ect.) to perform different activities.
– The student’s location can change and if an activity has been performed (or not) can

be modified.
– Depots: In this domain, crates are relocated by trucks and hoists.

– Crates can change location, a crate could be on another create or in a truck, and a
hoist could be lifting a crate or available.

– Driverlog: Trucks are driven by different drives, so that objects can be relocated.
– Trucks, drivers and objects can change location, an object could be in a truck, and a

driver can be driving a truck.
– DWR: Robots and cranes relocate containers, which are piled on top of each other.

– The location of a robot, which pile a container is in (and/or on top of), if a container
has been loaded onto a robot and if a crane is holding a container can be changed.

https://doi.org/10.5281/zenodo.3621275
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Algorithm 3: Nodes’ distance from each goal initialisation

Data: Ag set of goal action nodes, Action Graph
Result: Action Graph with nodes’ distance from each goal

1 foreach ag ∈ Ag do setNodeValueBFT(ag .parent, 0, ag .goal)
2 Function setNodeValueBFT(node, startCount, G)
3 queue = ∅
4 queue.push(BftNode(node, startCount, null))
5 while queue ̸= ∅ do
6 currentNode, count, o-and = queue.pop()
7 if currentNode.getDisFromGoal(G, o-and) ≤ count then
8 continue
9 currentNode.setDisFromGoal(count,G, o-and)

10 if currentNode.type is DEPnode() or OANDnode() then
11 count = count+ 1
12 foreach child ∈ currentNode.children do
13 if child.getDisFromGoal(G, o-and) ≤ count then continue
14 if child.type is actionNode then
15 child.setDisFromGoal(count,G, o-and)
16 else
17 if child.type is UANDnode() then
18 queue.push(BftNode(child, count, null))
19 else if currentNode.type is OANDnode() and

currentNode.children[1] = child then
20 queue.push(BftNode(child, count, currentNode))
21 else
22 queue.push(BftNode(child, count, o-and))
23 end

24 end

25 end

26 end

27 end

– Easy-IPC-Grid: A robot navigates a grid to reach a goal location, and along the way must
collect keys to unlock locations.
– A location can be unlocked, and the location of the robot and if a key is being carried

can be modified.
– Ferry: A ferry transports cars to different locations.

– The ferry’s location and if a car is at a location or on the ferry can be changed.
– Intrusion-Detection: An intruder accesses, modifies and downloads information from a

computer system.
– What information has been accessed, modified or downloaded can be changed.

– Kitchen: The observed agent takes different items and performs kitchen-based activities
(e.g., makes toast). Note that: “activities” are not included in the list of observations.
– Which items have been taken, what equipment has been used and what activities have

been performed can be changed.
– Logistics: Packages are transported to different locations and airports by air planes and

trucks.
– Which airport, location, truck or airplane a package is at/in; a truck’s airport/location,

and an airplane’s airport can be changed.
– Miconic: A lift takes different passages to there desired floor.

– The floor the lift starts on, which passages are in the lift and which passages have
been served can be changed.

– Rovers: A rover navigates a planet collecting rock samples, soil samples and images.
– The location of the rover, if a camera has been calibrated, if the robots store is emp-

ty/full, what data has been collected, which data has been communicated and if a
channel is free can be modified.

– Satellite: In the satellite domain, satellites take images in different modes and directions.
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– Which direction a satellite is pointing in, if the power is being availed, if the power is
on, if the an instrument is calibrated and if an image has been taken can be modified.

– Sokoban: A robot must push two boxes to different locations.
– The location of the robot and the boxes can be modified.

– Zeno-travel: People travel on aircraft, to reach different cities.
– Which city/aircraft a person is in/at, which city an aircraft is in and an aircraft’s fuel

level can be changed.

D Inaccurate initial state detailed experimental results

As described in Section 7.2, experiments where performed in which varying amounts of fluents
were set to incorrect values. A breakdown of the results, per domain, for these experiments
are provided in Tables 5 and 6.

Table 5: Effect increasing the amount of incorrect fluents in the initial state had
on the accuracy of our Action Graph approach and on hgc [39] per domain.

ANY % 20 % 40 %
Action Graphs hgc hgc

Domain |G| O% |C| Q R M |C| Q R M |C| Q R M

Blocks-World 20.28

10 9.65 0.52 0.52 0.05 3.24 0.81 0.20 0.09 4.73 0.74 0.30 0.09
30 4.08 0.79 0.40 0.11 3.38 0.81 0.26 0.10 4.95 0.74 0.37 0.11
50 1.99 0.89 0.36 0.20 3.35 0.82 0.33 0.13 5.95 0.70 0.43 0.11
70 1.35 0.94 0.53 0.45 3.42 0.82 0.46 0.23 5.20 0.74 0.52 0.16
100 1.10 0.99 0.90 0.87 3.86 0.85 0.97 0.52 6.26 0.71 0.77 0.32

Campus 2.00

10 1.27 0.87 1.00 0.87 1.07 0.57 0.60 0.57 1.00 0.47 0.47 0.47
30 1.00 1.00 1.00 1.00 1.00 0.73 0.73 0.73 1.00 0.53 0.53 0.53
50 1.00 0.93 0.93 0.93 1.07 0.77 0.80 0.77 1.07 0.83 0.87 0.83
70 1.00 0.80 0.80 0.80 1.07 0.90 0.93 0.90 1.13 0.47 0.53 0.47
100 1.00 0.80 0.80 0.80 1.07 0.90 0.93 0.90 1.07 0.97 1.00 0.97

Depots 8.86

10 5.71 0.40 0.68 0.14 2.18 0.70 0.25 0.12 2.71 0.66 0.32 0.10
30 3.32 0.61 0.39 0.22 2.07 0.71 0.25 0.09 2.25 0.71 0.32 0.20
50 1.96 0.79 0.54 0.41 2.18 0.75 0.46 0.24 3.14 0.61 0.29 0.06
70 1.29 0.89 0.68 0.59 1.79 0.79 0.46 0.33 2.71 0.69 0.46 0.25
100 1.14 0.98 1.00 0.96 1.89 0.77 0.39 0.33 3.21 0.63 0.43 0.15

Driverlog 7.14

10 3.93 0.49 0.71 0.20 1.14 0.76 0.21 0.20 1.32 0.71 0.18 0.15
30 2.11 0.73 0.57 0.38 1.29 0.78 0.36 0.30 1.21 0.82 0.50 0.44
50 1.79 0.79 0.64 0.53 1.36 0.76 0.39 0.31 1.36 0.79 0.46 0.33
70 1.50 0.86 0.75 0.69 1.04 0.89 0.64 0.64 1.50 0.79 0.50 0.45
100 1.07 0.97 0.93 0.90 1.11 0.92 0.79 0.76 1.25 0.90 0.75 0.71

DWR 7.29

10 3.00 0.61 0.57 0.21 1.36 0.77 0.32 0.29 1.29 0.77 0.32 0.26
30 1.71 0.78 0.54 0.36 1.11 0.82 0.39 0.38 1.32 0.72 0.14 0.13
50 1.25 0.84 0.54 0.43 1.14 0.78 0.29 0.24 1.29 0.76 0.25 0.20
70 1.14 0.87 0.57 0.50 1.14 0.82 0.43 0.43 1.25 0.81 0.43 0.35
100 1.00 0.99 0.96 0.96 1.07 0.90 0.68 0.66 1.07 0.84 0.46 0.45

Easy-IPC-Grid 8.36

10 1.51 0.76 0.26 0.20 3.69 0.55 0.48 0.16 3.59 0.56 0.46 0.15
30 1.52 0.77 0.33 0.27 2.98 0.65 0.46 0.21 2.93 0.61 0.33 0.10
50 1.34 0.87 0.61 0.56 2.57 0.67 0.41 0.23 2.75 0.63 0.33 0.16
70 1.10 0.89 0.57 0.57 2.61 0.71 0.52 0.33 2.67 0.69 0.49 0.29
100 1.00 0.98 0.90 0.90 1.02 0.98 0.95 0.94 1.00 1.00 1.00 1.00

Continued on next page...
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... Table 5 continued.
ANY % 20 % 40 %

Action Graphs hgc hgc

Domain |G| O% |C| Q R M |C| Q R M |C| Q R M

Ferry 7.57

10 6.54 0.26 1.00 0.19 1.57 0.73 0.29 0.16 1.29 0.76 0.25 0.21
30 1.93 0.87 1.00 0.70 1.39 0.87 0.75 0.65 1.14 0.83 0.43 0.40
50 1.25 0.97 1.00 0.88 1.04 0.97 0.93 0.91 1.11 0.92 0.75 0.71
70 1.11 0.98 1.00 0.95 1.00 0.99 0.96 0.96 1.04 0.97 0.93 0.91
100 1.07 0.99 1.00 0.96 1.00 0.99 0.96 0.96 1.00 0.99 0.96 0.96

Intrusion-Detection 16.67

10 1.00 0.88 0.07 0.07 1.31 0.85 0.02 0.01 1.93 0.83 0.13 0.09
30 2.89 0.88 1.00 0.41 1.04 0.89 0.18 0.16 1.69 0.84 0.09 0.07
50 1.51 0.97 1.00 0.78 1.20 0.90 0.36 0.31 1.44 0.86 0.13 0.09
70 1.04 1.00 1.00 0.98 1.18 0.92 0.44 0.41 1.80 0.85 0.24 0.11
100 1.00 1.00 1.00 1.00 1.04 0.97 0.76 0.73 1.42 0.86 0.16 0.14

Kitchen 3.00

10 2.00 0.67 1.00 0.63 2.13 0.49 0.80 0.41 2.00 0.44 0.67 0.30
30 1.40 0.87 1.00 0.80 1.40 0.64 0.67 0.52 1.40 0.51 0.47 0.34
50 1.33 0.89 1.00 0.83 1.60 0.58 0.67 0.47 1.53 0.51 0.53 0.33
70 1.33 0.89 1.00 0.83 1.60 0.49 0.53 0.37 1.73 0.36 0.40 0.17
100 1.13 0.96 1.00 0.93 1.47 0.80 0.93 0.74 1.73 0.53 0.67 0.38

Logistics 10.40

10 4.41 0.68 1.00 0.31 1.72 0.79 0.26 0.13 1.74 0.78 0.20 0.08
30 2.69 0.83 1.00 0.51 1.67 0.80 0.30 0.19 1.36 0.83 0.30 0.20
50 1.80 0.92 1.00 0.66 1.54 0.86 0.52 0.37 1.48 0.82 0.33 0.23
70 1.67 0.93 1.00 0.71 1.41 0.89 0.66 0.47 1.33 0.88 0.56 0.42
100 1.00 1.00 1.00 1.00 1.03 0.96 0.79 0.78 1.26 0.93 0.75 0.69

Miconic 6.00

10 3.00 0.61 0.82 0.31 1.21 0.74 0.32 0.29 1.21 0.68 0.14 0.10
30 1.61 0.85 0.86 0.62 1.21 0.85 0.64 0.57 1.39 0.74 0.43 0.30
50 1.18 0.97 1.00 0.92 1.04 0.91 0.75 0.75 1.11 0.82 0.50 0.46
70 1.07 0.99 1.00 0.96 1.11 0.96 0.93 0.88 1.18 0.82 0.54 0.46
100 1.00 1.00 1.00 1.00 1.11 0.98 1.00 0.95 1.61 0.90 1.00 0.82

Rovers 6.00

10 3.64 0.54 0.93 0.32 1.46 0.66 0.21 0.14 2.89 0.54 0.57 0.21
30 1.61 0.88 0.93 0.70 1.75 0.68 0.43 0.31 3.07 0.55 0.68 0.31
50 1.11 0.96 0.93 0.88 1.36 0.85 0.71 0.64 2.89 0.59 0.71 0.37
70 1.07 0.99 1.00 0.96 2.07 0.74 0.75 0.50 2.82 0.59 0.68 0.36
100 1.00 1.00 1.00 1.00 1.82 0.73 0.61 0.51 2.96 0.58 0.71 0.38

Satellite 6.43

10 4.00 0.51 1.00 0.39 1.57 0.69 0.32 0.23 1.25 0.77 0.43 0.39
30 3.43 0.60 1.00 0.49 1.29 0.74 0.32 0.27 1.36 0.72 0.32 0.27
50 1.43 0.90 0.89 0.71 1.07 0.85 0.57 0.55 1.18 0.83 0.57 0.52
70 1.11 0.93 0.86 0.80 1.11 0.91 0.79 0.77 1.32 0.89 0.82 0.70
100 1.04 0.99 1.00 0.98 1.11 0.97 0.96 0.92 1.46 0.91 0.96 0.80

Sokoban 7.14

10 1.57 0.68 0.18 0.12 2.36 0.63 0.43 0.17 2.39 0.60 0.32 0.09
30 1.14 0.77 0.32 0.30 1.89 0.66 0.32 0.20 1.71 0.67 0.25 0.20
50 1.11 0.81 0.39 0.38 1.21 0.87 0.64 0.57 1.14 0.81 0.39 0.34
70 1.04 0.81 0.39 0.39 1.14 0.91 0.75 0.70 1.29 0.87 0.64 0.55
100 1.04 0.84 0.50 0.50 1.00 1.00 1.00 1.00 1.04 0.96 0.89 0.88

Zeno-Travel 6.86

10 4.14 0.49 0.79 0.32 1.46 0.72 0.32 0.20 1.14 0.73 0.18 0.18
30 2.96 0.66 0.71 0.43 1.68 0.70 0.32 0.21 1.46 0.77 0.43 0.31
50 1.82 0.84 0.82 0.61 1.36 0.88 0.75 0.68 1.29 0.88 0.71 0.66
70 1.14 0.96 0.93 0.86 1.18 0.95 0.93 0.89 1.14 0.91 0.75 0.71
100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.04 0.98 0.96 0.95

ALL 8.26

10 3.69 0.60 0.70 0.29 1.83 0.70 0.34 0.21 2.03 0.67 0.33 0.19
30 2.23 0.79 0.74 0.49 1.68 0.76 0.43 0.33 1.88 0.71 0.37 0.26
50 1.46 0.89 0.78 0.65 1.54 0.81 0.57 0.48 1.91 0.76 0.48 0.36
70 1.20 0.92 0.81 0.74 1.52 0.85 0.68 0.59 1.87 0.75 0.57 0.42
100 1.04 0.97 0.93 0.92 1.37 0.92 0.85 0.78 1.83 0.85 0.77 0.64
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Table 6: Effect increasing the amount of incorrect fluents in the initial state had
on the accuracy of hgc [39], continued from Table 5.

60 % 80 % 100 %
hgc hgc hgc

Domain |G| O% |C| Q R M |C| Q R M |C| Q R M

Blocks-World 20.28

10 5.71 0.69 0.29 0.07 5.00 0.73 0.27 0.07 3.27 0.81 0.22 0.08
30 5.14 0.72 0.29 0.07 4.80 0.74 0.26 0.08 3.85 0.78 0.21 0.07
50 6.21 0.68 0.45 0.12 4.98 0.74 0.36 0.10 3.76 0.79 0.26 0.10
70 5.95 0.70 0.43 0.14 5.79 0.69 0.33 0.12 4.03 0.78 0.35 0.14
100 6.48 0.69 0.67 0.32 5.96 0.71 0.58 0.27 5.63 0.72 0.54 0.26

Campus 2.00

10 1.00 0.53 0.53 0.53 1.00 0.40 0.40 0.40 2.00 0.50 1.00 0.50
30 1.07 0.70 0.73 0.70 1.00 0.47 0.47 0.47 2.00 0.50 1.00 0.50
50 1.07 0.50 0.53 0.50 1.00 0.53 0.53 0.53 2.00 0.50 1.00 0.50
70 1.00 0.53 0.53 0.53 1.00 0.60 0.60 0.60 2.00 0.50 1.00 0.50
100 1.27 0.80 0.93 0.80 1.07 0.57 0.60 0.57 2.00 0.50 1.00 0.50

Depots 8.86

10 2.79 0.68 0.46 0.13 2.96 0.63 0.32 0.06 3.71 0.55 0.36 0.11
30 2.68 0.66 0.32 0.11 2.96 0.63 0.29 0.07 2.32 0.68 0.18 0.07
50 2.39 0.68 0.25 0.11 2.32 0.67 0.18 0.08 3.11 0.61 0.29 0.06
70 2.00 0.73 0.29 0.11 2.54 0.66 0.21 0.06 2.39 0.67 0.25 0.11
100 2.36 0.68 0.18 0.12 2.64 0.68 0.36 0.12 2.93 0.63 0.32 0.07

Driverlog 7.14

10 1.54 0.70 0.21 0.15 1.68 0.71 0.32 0.20 1.54 0.68 0.14 0.08
30 1.36 0.70 0.14 0.07 1.54 0.70 0.25 0.19 1.79 0.68 0.25 0.15
50 1.50 0.71 0.25 0.22 1.79 0.68 0.25 0.16 1.50 0.71 0.25 0.13
70 1.46 0.83 0.61 0.51 1.68 0.73 0.39 0.28 1.93 0.62 0.14 0.07
100 1.43 0.87 0.75 0.64 1.57 0.77 0.46 0.36 1.89 0.74 0.54 0.35

DWR 7.29

10 1.14 0.76 0.21 0.16 1.39 0.73 0.21 0.15 1.11 0.72 0.04 0.04
30 1.07 0.74 0.11 0.07 1.11 0.76 0.18 0.16 1.21 0.74 0.18 0.18
50 1.04 0.79 0.29 0.27 1.18 0.76 0.25 0.25 1.32 0.73 0.18 0.12
70 1.14 0.77 0.25 0.21 1.14 0.72 0.07 0.05 1.07 0.79 0.29 0.27
100 1.11 0.85 0.50 0.48 1.18 0.82 0.46 0.40 1.29 0.78 0.32 0.27

Easy-IPC-Grid 8.36

10 3.46 0.56 0.44 0.14 3.59 0.57 0.49 0.16 3.34 0.57 0.44 0.14
30 2.62 0.64 0.33 0.13 2.49 0.68 0.39 0.21 2.46 0.64 0.25 0.11
50 2.66 0.66 0.39 0.22 2.59 0.64 0.31 0.15 2.41 0.66 0.28 0.13
70 2.51 0.69 0.44 0.24 2.66 0.67 0.43 0.26 2.56 0.67 0.38 0.22
100 1.02 1.00 1.00 0.99 1.10 0.98 0.97 0.92 1.10 0.99 1.00 0.95

Ferry 7.57

10 1.29 0.76 0.25 0.20 1.25 0.76 0.25 0.20 1.54 0.74 0.29 0.20
30 1.00 0.88 0.57 0.57 1.11 0.83 0.46 0.43 1.18 0.82 0.43 0.38
50 1.11 0.89 0.64 0.61 1.07 0.90 0.64 0.61 1.21 0.85 0.54 0.45
70 1.11 0.95 0.89 0.86 1.07 0.90 0.68 0.64 1.14 0.86 0.57 0.52
100 1.00 0.98 0.93 0.93 1.00 0.98 0.93 0.93 1.07 0.92 0.75 0.73

Intrusion-Detection 16.67

10 3.49 0.76 0.29 0.09 8.33 0.51 0.58 0.08 16.67 0.07 1.00 0.07
30 3.36 0.76 0.27 0.07 8.91 0.48 0.60 0.07 16.67 0.07 1.00 0.07
50 3.53 0.75 0.16 0.05 8.13 0.52 0.53 0.08 16.67 0.07 1.00 0.07
70 4.31 0.69 0.20 0.05 8.27 0.49 0.42 0.06 16.67 0.07 1.00 0.07
100 2.93 0.78 0.18 0.06 7.13 0.54 0.36 0.05 16.67 0.07 1.00 0.07

Kitchen 3.00

10 2.13 0.44 0.73 0.32 2.53 0.36 0.80 0.30 3.00 0.33 1.00 0.33
30 2.27 0.40 0.73 0.32 1.93 0.51 0.73 0.40 3.00 0.33 1.00 0.33
50 1.93 0.47 0.67 0.32 2.47 0.42 0.87 0.39 3.00 0.33 1.00 0.33
70 1.87 0.44 0.60 0.32 2.13 0.36 0.60 0.28 3.00 0.33 1.00 0.33
100 1.87 0.44 0.60 0.32 2.33 0.33 0.67 0.26 3.00 0.33 1.00 0.33

Logistics 10.40

10 1.75 0.76 0.15 0.06 1.79 0.76 0.18 0.07 2.11 0.75 0.25 0.15
30 1.75 0.78 0.26 0.12 1.80 0.77 0.21 0.12 1.93 0.75 0.16 0.10
50 1.75 0.77 0.20 0.13 1.52 0.80 0.25 0.17 1.89 0.77 0.28 0.14
70 1.41 0.82 0.28 0.22 1.59 0.80 0.28 0.19 1.66 0.78 0.18 0.12
100 1.11 0.93 0.70 0.69 1.28 0.90 0.59 0.53 1.43 0.89 0.64 0.54

Miconic 6.00

10 1.36 0.70 0.29 0.23 2.00 0.63 0.39 0.20 6.00 0.17 1.00 0.17
30 1.21 0.81 0.54 0.47 1.68 0.65 0.29 0.20 6.00 0.17 1.00 0.17
50 1.32 0.77 0.46 0.39 2.00 0.65 0.46 0.24 6.00 0.17 1.00 0.17
70 1.39 0.79 0.57 0.54 2.64 0.61 0.64 0.29 6.00 0.17 1.00 0.17
100 1.96 0.84 1.00 0.72 3.07 0.65 1.00 0.51 6.00 0.17 1.00 0.17

Rovers 6.00

10 5.11 0.28 0.89 0.18 5.82 0.18 0.96 0.16 6.00 0.17 1.00 0.17
30 4.96 0.28 0.82 0.18 5.86 0.19 1.00 0.17 6.00 0.17 1.00 0.17
50 5.32 0.28 1.00 0.24 5.86 0.18 0.96 0.16 6.00 0.17 1.00 0.17
70 4.82 0.33 0.89 0.22 5.82 0.18 0.96 0.16 6.00 0.17 1.00 0.17
100 4.57 0.37 0.89 0.26 5.71 0.19 0.93 0.16 6.00 0.17 1.00 0.17

Continued on next page...
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... Table 6 continued.
60 % 80 % 100 %
hgc hgc hgc

Domain |G| O% |C| Q R M |C| Q R M |C| Q R M

Satellite 6.43

10 1.57 0.71 0.39 0.29 1.82 0.74 0.61 0.42 3.43 0.53 0.79 0.31
30 1.43 0.69 0.25 0.20 1.43 0.72 0.36 0.34 3.25 0.56 0.79 0.34
50 1.36 0.81 0.57 0.51 1.86 0.68 0.46 0.34 3.64 0.52 0.86 0.34
70 1.43 0.78 0.54 0.46 2.07 0.66 0.50 0.34 3.46 0.51 0.75 0.32
100 1.96 0.83 0.96 0.75 2.07 0.82 1.00 0.67 3.29 0.63 1.00 0.43

Sokoban 7.14

10 2.25 0.60 0.25 0.12 1.75 0.68 0.29 0.14 2.00 0.64 0.29 0.16
30 1.75 0.70 0.39 0.27 1.54 0.76 0.43 0.31 1.93 0.65 0.29 0.15
50 1.11 0.87 0.61 0.55 1.46 0.79 0.46 0.36 1.07 0.80 0.36 0.30
70 1.18 0.87 0.64 0.57 1.21 0.85 0.57 0.54 1.04 0.79 0.29 0.26
100 1.18 0.95 0.89 0.83 1.07 0.95 0.86 0.84 1.25 0.84 0.54 0.48

Zeno-Travel 6.86

10 1.18 0.75 0.25 0.21 1.43 0.72 0.25 0.19 1.36 0.72 0.21 0.17
30 1.46 0.73 0.32 0.24 1.11 0.75 0.21 0.21 1.21 0.75 0.25 0.21
50 1.29 0.84 0.57 0.49 1.14 0.85 0.54 0.54 1.18 0.81 0.39 0.36
70 1.14 0.92 0.79 0.73 1.11 0.88 0.64 0.63 1.18 0.87 0.64 0.58
100 1.04 1.00 1.00 0.98 1.00 0.96 0.89 0.89 1.21 0.96 0.96 0.87

ALL 8.29

10 2.38 0.65 0.38 0.19 2.82 0.61 0.42 0.19 3.81 0.53 0.53 0.18
30 2.21 0.68 0.41 0.24 2.62 0.64 0.41 0.23 3.65 0.55 0.53 0.20
50 2.24 0.70 0.47 0.32 2.62 0.65 0.47 0.28 3.65 0.57 0.58 0.22
70 2.18 0.72 0.53 0.38 2.72 0.65 0.49 0.30 3.61 0.57 0.59 0.25
100 2.09 0.80 0.75 0.59 2.55 0.72 0.71 0.50 3.65 0.62 0.77 0.41
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59. Yordanova K, Lüdtke S, Whitehouse S, Krüger F, Paiement A, Mirmehdi M, Craddock I,
Kirste T (2019) Analysing cooking behaviour in home settings: Towards health monitoring.
Sensors 19(3), DOI 10.3390/s19030646, special Issue on Context-Awareness in the Internet
of Things
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