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Computer-Aided Diagnosis of Skeletal Metastases in Multi-Parametric Whole-Body MRI

Jakub Ceranka, Joris Wuts, Ophélye Chiabai, Frédéric Lecouvet, Jef Vandemeulebroucke

* An automated CAD system is proposed, detecting skeletal metastases in whole-body MRI.
* An ablation study on the impact of whole-body MR image preprocessing was performed.
* Deep learning approach outperformed the state-of-the-art methodologies.

* Obtained detection F,-score of 0.50 and segmentation lesion Dice coefficient of 0.53.

* CAD system could assist radiologists in the quantification of the bone tumour volume.
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The confident detection of metastatic bone disease is essential to improve patients’ comfort and
increase life expectancy. Multi-parametric magnetic resonance imaging (MRI) has been successfully
used for monitoring of metastatic bone disease, allowing for comprehensive and holistic evaluation
of the total tumour volume and treatment response assessment. The major challenges of radiological
reading of whole-body MRI come from the amount of data to be reviewed and the scattered distri-
bution of metastases, often of complex shapes. This makes bone lesion detection and quantification
demanding for a radiologist and prone to error. Additionally, whole-body MRI are often corrupted
with multiple spatial and intensity distortions, which further degrade the performance of image
reading and image processing algorithms. In this work we propose a fully automated computer-aided
diagnosis system for the detection and segmentation of metastatic bone disease using whole-body
multi-parametric MRI. The system consists of an extensive image preprocessing pipeline aiming at
enhancing the image quality, followed by a deep learning framework for detection and segmentation
of metastatic bone disease. The system outperformed state-of-the-art methodologies, achieving a
detection sensitivity of 63% with a mean of 6.44 false positives per image, and an average lesion
Dice coefficient of 0.53. A provided ablation study performed to investigate the relative importance
of image preprocessing shows that introduction of region of interest mask and spatial registration have
a significant impact on detection and segmentation performance in whole-body MRI. The proposed
computer-aided diagnosis system allows for automatic quantification of disease infiltration and could
provide a valuable tool during radiological examination of whole-body MRI.

Typically, WB-MRI examinations combine anatomic
sequences for detection and characterization of lesions, and
functional diffusion-weighted imaging (DWI) sequences
which improve the sensitivity of the technique and allow
the evaluation of tissue viability [8, 9]. DWI sequences add
diagnostic value to anatomic sequences thanks to a high
lesion to background contrast and extend cancer screening
to lymph nodes and extraskeletal organs. A combination of
anatomical and functional MRI is characterised by excellent
sensitivity (86.7-93.7%) and specificity (93.6-96.8%) for
the detection of metastatic bone lesions [10, 11].

Although WB-MRI has great potential for the detection
of bone lesions in oncology, there have been however limi-
tations to its widespread implementation in clinical routine.
Firstly, WB-MRI suffers the already maximal occupancy of
many MRI units and its relatively long acquisition time (25-
50 minutes) [12].

Second, MRI provides non-quantitative information, i.e.
intensities of signal cannot be compared from one acqui-
sition to another, making it difficult to derive reproducible
measurements. DWTI offer a potential quantitative approach

1. Introduction

Detection of tumoural bone involvement is important for
disease staging, therapeutic decision and evaluation of the
response to treatment in patients with solid cancers with
a preferential bone tropism in their metastatic distribution
(prostate, breast or lung cancers for example) and in patients
with primary bone malignancies (multiple myeloma) [1].
Bone is the third most common site for metastases after
the liver and lungs. A postmortem examination showed that
around 70% of patients with primary breast or prostate
cancer had evidence of bone metastases [2]. According to
another study, about 80% of patients with advanced prostate
cancer had metastases to the bone [3].

Over recent years, magnetic resonance imaging (MRI)
and its adaptation for whole-body coverage (WB-MRI) has
demonstrated high diagnostic performance for the detection
of bone involvement and is now integrated in several clinical
guidelines for skeletal lesions detection, treatment decision
and response evaluation in patients with multiple myeloma
and metastases from solid cancers [4, 5, 6, 7].

*Corresponding author
294 jceranka@etrovub.be (J. Ceranka); jwuts@etrovub.be (.J. Wuts)
1Jakub Ceranka and Joris Wauts contributed equally to this work.
2Frédéric Lecouvet and Jef Vandemeulebroucke should be both con-
sidered as the last author.

(apparent diffusion coefficient (ADC) measurements and
maps), but are generally noisy, of limited spatial resolution
and may suffer from spatial distortions [13]. Geometric
distortions are mostly visible after the reconstruction of the
whole-body image from separate stations, due to stitching
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artifacts at the station edges and misalignments between
multi-parametric whole-body MRI data. Therefore, an ap-
plication of an extensive image preprocessing pipeline could
potentially increase image readability both for radiologist
and artificial intelligence systems.

An additional challenge for integrating whole-body
MRI in clinical routine comes from the large amount of data
to be reviewed, making their quantification labor demanding
for a radiologist but also prone to error. The sheer amount of
data of whole-body, multi-parametric MRI will require ded-
icated software aids, currently unavailable, to allow efficient
integration in the clinical workflow. Computer-aided diag-
nosis (CAD) could enable simultaneous consideration of
the complementary image information provided by different
MR approaches, while maximally exploiting the beneficial
properties of all. Such an approach could automate the
detection of bone metastases, leading to improved response
assessment, facilitating the uniform processing of large
patient studies and enabling prospective and retrospective
big data studies on disease prognostic parameters.

A number of studies for various imaging modalities have
been previously published, aiming at automated metastatic
bone disease classification, detection, and volumetric quan-
tification. To date, however, only a few approaches propos-
ing automated or semi-automated CAD systems for bone
metastases segmentation in whole-body MRI have been
presented.

Multiple works on the classification of whole-body
bone scintigraphy scans using convolutional neural net-
works (CNNs) are available [14, 15, 16, 17, 18]. Using a
deep learning classification network, bone scans were clas-
sified as containing bone metastases or healthy. The authors
reported high image classification accuracies, ranging from
0.89 to 0.96. A similar approach was presented for thoracic
SPECT scans [19].

Wels et al. [20] presented a fully-automated method for
the detection of osteolytic bone lesions from CT data. The
method used a multi-stage approach subsequently applying
multiple random forests (RF) discriminative models. Each
random forest was consecutively trained on a subset of
different image features including: 3D Haar-like, objectness
measure-based, self-aligning, spacial and symmetry encod-
ing features.

A number of authors focused on the segmentation of
bone lesions in CT and MRIL.

Liu et al. [21] proposed a two-step approach that first
segments the pelvic bone structures that is later used as
a mask while segmenting metastatic lesions in the pelvis.
The model is trained using 334 prostate cancer patients, and
a lesion detection Fj-score of 0.87 is reported. The lesion
segmentation model achieves a segmentation Dice of 0.79
and 0.80 when trained on DWI and T;-weighted images,
respectively. Although only applied to the pelvic region, the
work shows U-Nets’ feasibility for segmenting metastatic
bone disease on MRI.

Chmelik et al. [22, 23] proposed a CNN-based voxel-
wise segmentation and classification framework for lytic

and sclerotic metastatic lesions using spinal CT. The method
employed a pipeline consisting of CT image preprocess-
ing, individual voxel-based classification CNN architecture
and medial axis transform post-processing algorithm for
shape simplification of segmented lesion candidates. It was
applied to whole-spine CT and provided high detection
sensitivity of 0.80/0.92 with 1.59/3.40 (lytic/sclerotic) FP
detections per vertebrae, respectively.

Moreau et al. [24] used a two-stage nnU-Net seg-
mentation approach on whole-body '8FDG PET/CT, first
segmenting the skeleton, followed by a segmentation of
lesions using a multi-channel PET/CT input and a skeleton
mask. The dataset size of 25 annotated patients allowed to
achieve a mean Dice score of 0.61 &+ 0.16, and a detection
sensitivity of 0.67.

Blackledge et al. [25] proposed a semi-automated ap-
proach for the quantification of diffuse bone disease from
whole-body high b-value DWI-MR. The method, however,
required manual selection of the DWI image b-value, seg-
mentation intensity threshold and additional fine-tuning of
the result by reviewing and excluding false positive regions
lying outside of the skeleton.

Frinzle et al. [26] proposed a concept of a detection
algorithm of multiple myeloma lesions from manually seg-
mented vertebra. The method used multi-parametric MRI
(i.e. Ty and T,-weighted) to extract voxel intensity features
and a random forest classifier.

Almeida et al. [27] proposed a semi-automated le-
sion segmentation algorithm for WB-DWI images in mul-
tiple myeloma patients. It uses an atlas-based segmentation
method to extract the skeleton from whole-body MRI,
which is later followed by intensity outlier threshold-based
segmentation technique to segment bone lesions using high-
resolution anatomical MRI.

All aforementioned methods, require either a manual
correction of a result, manual segmentation of the bone,
were developed for a different imaging modality or are
not suited for whole-body assessment. In our previous
work [28], we presented a concept for an automated CAD
system for the detection of focal bone metastases using
multi-parametric WB-MRI. The method, based on voxel-
based random forest classifier approach, achieved high de-
tection sensitivity, however, was not fully suited for volu-
metric segmentation of the lesions.

In this work, we propose a fully-automated deep learn-
ing method for bone metastases detection and segmentation
adapted to multi-parametric WB-MRI. We compared our
results to those obtained from alternative metastases seg-
mentation approaches applied to whole-body MRI found in
the literature. We additionally analyse the effect of image
enhancement and preprocessing pipeline applied prior to the
application of such algorithms.
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2. Methods

2.1. Population & MRI

The data set consisted of 30 multi-parametric WB-MRI
sets obtained from 27 advanced prostate cancer patients with
skeletal metastases. This included 26 patients for whom
only one image set is included taken prior to receiving any
treatment (newly diagnosed disease). For the one patient,
three additional image sets were included that were acquired
at three-month intervals to evaluate treatment response. The
study was approved by the Institutional Ethics committee
and all data was anonymized prior to processing. Whole-
body 3D-T; FSE [12] or more rapid 3D-T; Gradient Echo
(GRE) mDIXON [29] anatomical images were used to-
gether with diffusion-weighted images [30]. The following
parameters were used for the 3D-T1 FSE MRI sequence:
echo time (TE) = 8 ms, repetition time (TR) = 382 ms,
matrix size 480x480 with pixel spacing of 0.65 mm and
slice thickness of 1.1 mm. The following parameters were
used for the 3D-T1 GRE mDIXON sequence: TE = 1.15
ms, TR = 3.6 ms, matrix size 432x432, pixel spacing of 1.04
mm and slice thickness of 1.5 mm. Diffusion-weighted MRI
with b-values equal to 0, 50, 150 and 1000 s/ mm?* and the
following imaging parameters: TR = 8421 ms, TE = 66 ms,
matrix size 192x192, pixel spacing and thickness equal to
2.3 mm and 6.1 mm, were acquired.

Images were scanned using a sequential acquisition of
four image stations, covering the body from the vertex to
the midthighs. Besides 3D-T; FSE or GRE and DWI-MR
images, the majority of patients had Dixon T,-weighted
MRI images obtained of the whole-body to comply with
MET-RADS-P recommendations [5]. These images, or low
b-value DWI images (T, equivalent) in acquisitions with no
available T, Dixon images, were available by the time of
image reading before annotation to rule out false positive
lesions, e.g. scar tissue caused by prior treatment cycles,
inflammation, benign bony islands, osteoarthritis regions
and fractures caused by disease [31].

For each patient, all bone metastases were manually
delineated on high-resolution T1 image following metas-
tases reporting recommendations MET-RADS-P and con-
firmed by complementary information from high b-value
DWTI and/or T,. A total of 201 independent bone lesions
were segmented using ITK-SNAP software [32]. The mean
number of lesions per patient was 6.7 + 5.65, with an
average size of 1.30 ml = 4.09 ml. The manual delineations
were done by medical image processing specialist with 7
years of experience in WB-MRI and confirmed during a
consensus session with an expert radiologist, specialized in
oncology imaging and bone metastases evaluation in multi-
parametric WB-MRI. The image reading was additionally
supported by the prospective reading of the radiologist in
charge of the examination by the time of its acquisition (in
routine clinical practice).

2.2. Image Prepossessing

Prior to the application of segmentation algorithms for
bone metastases, all images underwent extensive prepro-
cessing. Figure 2 and Table | presents an overview of
image preprocessing techniques applied to each data set.
The following steps were used to generate five data sets,
each with a increasing number of consecutive preprocessing
steps:

* Step 1: Calculation of additional image modalities.

The whole-body DWI scanning protocol allowed for
the acquisition of 4 b-value images (b = 0, 50, 150
and 1000 s/mm?). Using DWI images of different
b-value weighting, we additionally computed whole-
body apparent diffusion coefficient maps, according
to

! In I (x)
(b1 —bo)  fip, (x)

fapc(x) = (D

In this equation, f is a continuous intensity map
(for which we assumed an interpolation scheme),
x is the vector spatial coordinate, f, and f;, are
the signal intensity maps obtained from diffusion-
sensitized T, imaging with at least 2 values for the
gradient factor b (s/mm?). The linear regression was
used to calculate the ADC value which essentially
is the absolute line slope of exponential decrease
of the natural logarithm of DWI signal intensity.
The b-value equal to 0 s/mm? was not included
in the computation of a mono-exponential ADC,
as it can result in a measurable contribution from
microperfusion which often represents microvascular
flow effects [33]. The ADC map is combined with
T;-weighted anatomy and DWI high b-value image
and presented in Figure 1.

Step 2: Atlas-based segmentation of the skeleton.
An automated segmentation of the skeleton based
on T; whole-body image was performed using an
atlas-based approach [34]. The segmented bones
were those most relevant for metastatic bone disease
involvement and included the clavicle, vertebra from
the first cervical up to the sacrum, pelvis and femur
bones. The segmentation was dilated using a radius
equal to 10 voxels to compensate for possible under-
segmentation in the obtained skeleton which might
result in increased detection of false negatives num-
ber.

* Step 3: Image noise, low-frequency bias field and
inter-station intensity standardization (ISIS).
Anisotropic diffusion filtering [35] was applied on
image stations to reduce the image noise while
conserving the edge information. A potential bias
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Figure 1: A coronal slice of whole-body MR modalities
used in the CAD system. Bone metastases are marked
with red arrows. Lesions represent different intensity
profiles compared to the healthy bone, dependent on
the used MR modality.

field within the station was reduced using the N4ITK
non-parametric non-uniform intensity normalization
algorithm [36] with default ITK parameters [37].
A linear intensity matching between the minimum
intensity value and a mean of the station overlap
region was sequentially applied to compensate for
the differences in intensity profiles of the same
modality image stations (legs to head) with a middle
station (pelvis) used as a reference in order to reduce
cumulative bias.

¢ Step 4: Inter-station and inter-parametric spatial
registration.

Due to patient movement during scanning and dif-
ferences in applied frequency offsets [13], separate
DWI image stations are often misaligned at the
station edge, mostly along phase-encoding direction
(anterior-posterior). Additionally, multi-parametric
MR image stations (i.e. anatomy vs functional) do
not correspond to each other spatially. In the first
step, DWI mosaicking was performed by sequential,
pairwise registration of neighbouring stations, taking
the centrally located pelvis station as a reference
image in order to minimize the cumulative regis-
tration error. Registration was performed rigidly, on
the overlapping boundary of each image station. In
a second step rigid and then deformable mapping of
whole-body DWI image to T-weighted whole-body
was performed [38].

e Step 5: Whole-body image reconstruction and
image resampling.

After geometrical and intensity intra-patient cor-
rections, a whole-body volume is reconstructed by
stitching image-stations into a whole-body image.
In the regions of overlay between adjacent stations,
linear interpolation along the cranio-caudal direction
was applied providing a smooth transition between
the stations. Due to differences in voxel spacing
and slice thickness between different MR image
modalities (i.e. T1, DIXON, DWI), all images were
resampled to the same voxel size equal to 1xIxl
mm, as this setting would be suited for applying all
segmentation approaches described in Section 2.3. A
cubic B-Spline interpolator was used for images with
a floating point voxel type, and nearest neighbour in-
terpolator for ground truth and skeleton binary masks.
The choice of used imaging modalities was based
on the expert opinion of the radiologists, taking into
account the diagnostic capabilities of each modality
and included T{/DIXON anatomical sequence, high
b-value diffusion-weighted image and an ADC map.

* Step 6: Inter-patient intensity standardization.
The linear piecewise scaling algorithm first proposed
by Nyl er al. [39] was used to standardize the
intensity profiles between different patients and MR
images. First, the z-score intensity transform was
applied independently to each whole-body image
modality. Secondly, the average intensity histogram
of the patient data distribution was acquired for each
whole-body MR modality (excluding the quantitative
ADC map). Finally, for a given MR modality, all
patient image intensity profiles were aligned to match
the standard histogram, according to six automat-
ically selected intensity points of the histogram,
corresponding to evenly spaced intensity percentiles
equal to 0, 20, 40, 60, 80 and 95, image background
excluded. No intensity corrections were performed on
ADC images since they already represent quantitative
voxel intensity values.

2.3. Segmentation Methodologies

Three segmentation strategies were compared in this
study: masked thresholding applied to high b-value DWI,
a voxel-based random forest segmentation and a deep learn-
ing U-Net segmentation method.

2.3.1. Masked thresholding

Inspired by the work of Blackledge er al. [25], we
propose a modified intensity thresholding approach us-
ing dilated skeleton mask and a high b-value DWI image
(Figure 3). The proposed implementation of the method
did not use the applied computed DWI techniques [40],
which visually maximize the contrast between diseased and
normal tissues by manually tuning the computed b-value.
This step was not included, as it would introduce a manual
step into the proposed automatic algorithm implementation.
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Figure 2: A schematic graphical representation of preprocessing steps applied to whole-body MRI prior to segmentation.

Table 1
An overview of preprocessing steps applied to each method.

Method | Masked thresholding | Random forest U-Net U-Net U-Net U-Net U-Net

Preprocessing step Data set 5 Data set 5 Data set 1 | Data set 2 | Data set 3 | Data set 4 | Data set 5

lculati f additional
.Ca culation o. Ia itiona Y v / Y v Y Y
image modalities
Filtering with the skeleton mask 4 v v 4 v v
Noi d bias field i
! oise an. |a.s ie : suppressmr'\, ' v v v Y Y
inter-station intensity standardization
Inter-stati d inter- tri
n er. sta |<?n an. inter-parametric Y v Y Y
spatial registration.
Whole-body i tructi

o.e ody |magelrecons ruction Y v v Y v Y Y
and image resampling
Inter-patient intensity standardization v 4 v

Figure 3: Example of the segmentation result obtained by
Blackledge et al. [25] (left) and our proposed masked thresh-
olding (right) using whole-body diffusion-weighted MRI of high
b-value. The dilated skeleton mask was used to filter out false
positives located outside of the skeleton region of interest.

2.3.2. Random forest

In this approach, lesion detection was treated as a voxel
classification problem [26, 28] using a random forest classi-
fier with 500 estimators, maximum depth of 100, and a Gini
impurity loss. These parameters were empirically found

to yield satisfying results during an initial testing [28]. A
total of n = 201 manually delineated lesions, represented by
441782 voxels was used to extract intensity feature vectors
for the training data set. The same number of healthy bone
features was extracted by randomly sampling the healthy
skeleton space. For each voxel, three independent intensity
values were taken, each representing a different comple-
mentary MR whole-body image. Additionally, four intensity
features per image were derived by filtering the image with
a maximum, minimum, mean and median filter, with the
kernel size equal to 10x10x10 voxels, which resulted in a
total of 15 features per voxel.

2.3.3. U-Net

The implementation of the deep learning model, patch
extraction and data augmentation was done using the Dy-
namic U-Net module available in the MONAI open-source
framework [41]. This pipeline is an open-source implemen-
tation of the nnU-Net framework developed by Isensee et
al. [42].

Patch extraction: Due to large WB-MRI dimensions (e.g.
1200x700x250 voxels), the image cannot be directly fed to
a 3D U-Net. A common practice is to train the model on
patches containing the structure of interest and its direct
neighborhood. A patch of 128x128x128 voxel size was
randomly extracted from lesion proximity or healthy bone
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at every training epoch, with an equal probability. For each
patch representing a lesion or healthy bone, a 4D tensor
composed of four modalities (i.e. T, high b-value DWI,
ADC and the skeleton mask) and a ground truth label map
was constructed.

Data augmentation: Before images are fed to the U-Net,
additional intensity normalization is applied to the whole-
body MR images, per channel. In the U-Net trained on data
set 1, the normalisation is applied considering all image
content. For data sets 2-4, normalisation only takes into
account the skeletal region.

U-Net, as most of deep learning models, has to be
trained with large amount of data samples. Since medical
data sets are often limited in size, an extensive data aug-
mentation was performed in order for the network to learn
invariance to deformations and obtain optimal performance.
We applied several types of data augmentation techniques
including: random cropping, affine transformations, random
Gaussian smoothing, scaling, flip and noise addition. All
augmentations were executed on the fly and with param-
eters randomly selected from predefined ranges to obtain
uniquely augmented images each epoch. The details of
the augmentation pipeline can be found in Table A.l. in
Appendix A.

Network architecture: The schematic architecture of the
used U-Net is presented in Figure 4. The chosen U-Net
implementation is made using the Dynamic U-Net model
available in MONAI which is an implementation of the
nnU-Net architecture proposed by Isensee ef al. [42], pre-
viously successfully applied on many medical segmentation
tasks. The downsampling layers are made of strided convo-
lutions. Additionally, a residual connection is added to each
layer in the network.

Optimization of network hyper-parameter space: The
hyper-parameters of the U-Net architecture are predefined
and adopted from the implementation of nnU-Net [42]. The
only hyper-parameter that was manually optimised on a
validation set, was the initial learning rate. A search in the
range of 0.1-0.00001 value combinations was performed to
obtain an optimal value of 0.001.

Loss function: Dice-cross entropy loss with deep supervi-
sion was used to train the model [43]. It is expressed as:

2YY X 86sE +sn

Lpice =1— - 2)
NS VERPIRU R SARD WK ST
1 Y .
Lep =—5 ) ) gilogs; 3)
i=lc=1
1
Lpice—ce = E(LDice +Lck) @

|

d
Liwal = =571 L d LDice—cE ®)
d=1 30

1 2d d=1

where s,, and s, are constants set to e~ to ensure computa-
tional stability. We denote image domain with N pixels and
C classes where g¢ is a binary indicator if class label c is the
correct classification for pixel i, and s{ is the corresponding
predicted probability. D is the total depth of the network,
which was 5 for our model [44].

Optimiser and batch size: A SGD optimiser with Nes-
terov momentum (4 = 0.99) was used. A polyniomial
learning rate decay scheduler was used which is expressed
by:

epoch o

(6)

Lrepoch = Lrinitiar * (1 - W
All models where trained for 1000 epochs with a batch size
of 6.

Segmentation reconstruction: The reconstruction of the
segmentation image is achieved by a sliding window in-
terference strategy. The whole-body MR image is divided
into batches of 3D patches of the same size as the network
input patch dimensions. The sliding window is propagated
through each image allowing for a 50% patch overlap in
each direction. In regions of overlap, multiple predictions
made by the model are averaged with a Gaussian kernel
giving more weight to voxels in the center of a patch.
After the probability map of the image is reconstructed
the image is thresholded to obtain a binary segmentation
mask. At inference, every patch gets duplicated six times
and undergoes augmentations by adding random noise and
flipping over the sagittal plane. After flipping back to the
original coordinates, a final prediction is computed as the
mean of the six predictions and the original patch.

2.4. Train-Test Split

In order to perform a fair evaluation on the segmentation
model performance, a train-test split strategy was applied.
As the only hyper-parameter that needed optimisation was
the learning rate, a small validation set was sufficient to
see trends that lead to an optimal value. This allowed us to
perform the statistical analysis on the test set with a larger
amount of patients. First, out of a data set consisting of 27
patients, five patients were selected as a validation set. The
split is performed on the patient level to ensure that images
acquired from the same patient are kept together during
training, testing and validation. Patients in the validation set
were manually selected to provide representative validation
data set, consisting of patients with varying involvement
of metastases (low, medium and multiple lesions), intensity
corruption (DWI image) and a type of anatomy sequence
used (T, DIXON). Hyper-parameter optimisation was done
solely on this small data set. Then a 5-fold stratified cross-
validation strategy was applied to the remaining 25 images
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Figure 4: Schematic example of the used U-Net architecture. Each layer is composed of a strided (2x2x2) and normal convolution
(blocks blue and red), each followed by an instance normalization (IN) and L-ReLU activation function with a negative slope of
0.01. Tensor addition is performed between the output of the layer and residual connection. The residual unit uses a convolution to
change the input dimension to match the output dimension. To propagate spatial resolution through the model, skip connections
(horizontal dashed arrows) are added between the up- and downsampling path. After the bottleneck layer, the dense representation
gets upsampled to produce a binary segmentation image. The network loss is computed as a weighted sum of the last four

upsampling layers.

at test time, ensuring splits have similar lesion distributions.
Multiple acquisitions of the same patient are highly corre-
lated, and therefore, all follow-up acquisitions of the same
patient were kept together in a fold.

2.5. Image Postprocessing

The raw segmentation binary prediction masks often
include some misclassified voxels, scattered within the
skeleton. Postprocessing was applied to remove structures
smaller than 30 voxels for all methods. Additionally, mor-
phological binary closing with a radius of 2 voxels was
applied to smooth the segmentation result.

2.6. Validation

The resulting segmentations were compared with the
ground truth manual segmentation of bone metastases using
a 5-fold stratified cross-validation. We have assessed pro-
posed methodologies based on lesion detection performance
metrics and lesion segmentation similarity metrics.

A cut-off probability threshold value was established
for each method individually. This threshold value was
determined on the independent validation data set and later
applied to the test images in the cross-validation splits. The
criteria for threshold selection for all methods involved the
calculation of a F,-score. The 45" intensity percentile of
the skeleton intensity distribution profile in DWI b=1000
s/mm? image was used as a threshold value for masked
thresholding. A cut-off probability threshold value of 0.95

and 1 — 10e—> was found to perform best for random forest
and U-Net, respectively.

2.6.1. Detection

The detection was considered successful, if the Jaccard
similarity between corresponding lesions in the segmented
structure and the ground truth was larger than 0.03. A
low value for the Jaccard index is chosen as the aim of
detection is to purely localise the lesions. The validation
criteria included for detection were: the number of true
positives (TP), false positives (FP), false negatives (FN), and
sensitivity of the detection (imagewise), represented by

. TP
Sensitivity = ———— @)
FP+FN
Additionally, an F;-score and an F;-score (emphasising
on recall) represented by:

— (1+B%)-TP
P~ (1+pB2)-TP+B*FN+FP

®)

where, f = 1 weights equally recall and precision and f§ > 1
weights recall higher than precision; and FROC curve [45]
are provided.

2.6.2. Segmentation
The segmentation accuracy was evaluated using quan-
titative metrics. The overlap measures included the global
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Dice coefficient, defined as

2|V NV
DC(Vk,Vs) = =771 ©))
NN TR
where Vg is the segmentation binary ground truth image and
Vs is the obtained segmentation result image. As the Dice
coefficient is heavily influenced by false negatives or over-
segmentations, an average lesion Dice was introduced [46],

1 2[VENVE]

Dicepesion(Vr,Vs) = ﬁL e |VE|+|VE|
E1 Fyet

(10)

where V} and VSL are segmentations of corresponding
detected lesions in the ground truth and predictions respec-
tively, and T Py, is a set of all found true positives.

The distance criteria included the Hausdorff distance
averaged over all detected lesions (in mm). It was computed
from the Euclidean distance map of the ground truth manual
segmentation and the segmentation obtained by the studied
method, according to the formula:

1
HLesion(VRavS) = ﬁ Z H(VI%vVSL) (In
LeT Pyt

where

H(Vig,V§) = max(h(Vg, V§),h(Vs', Vi), (12)
and

h(VE,VE) = max min||a — b|]. (13)

aeVIQhEVSL

2.7. Statistical Analysis

Since none of the metrics were normally distributed for
all methods (Shapiro-Wilk normality test [47], p > 0.05),
nor equality of variance was observed (F-test [48], p >
0.05), the Kruskal-Wallis [49] non-parametric test was used
to compare differences in results between all methods. That
approach was followed by a post-hoc Wilcoxon 2-tailed
signed-rank test used to check for statistical significance
(p = 0.05, with Bonferroni [50] correction) between pairs
of evaluated methods.

3. Results

All proposed segmentation strategies were quantita-
tively validated. Results were divided into three groups:
measures describing bone metastases detection perfor-
mance, results describing bone metastases segmentation
performance and the results of performed ablation study on
the influence of whole-body MR image preprocessing on
detection and segmentation accuracy of a U-Net. Results of
the validation criteria for detection and segmentation accu-
racy of bone metastases from whole-body multi-parametric
MRI, averaged over all splits of test set patients, for the dif-
ferent methodologies and preprocessing steps, respectively;
are presented in Table 2 and in Table 3.

3.1. Detection Results

The masked thresholding detection algorithm achieved
a sensitivity of 0.31 with a mean of 14.96 false positive
findings per image. The voxel-based random forest seg-
mentation method showed higher sensitivity (0.42) of the
detection of bone metastases than the masked thresholding
method. The mean false positives per images dropped to
11.16. The U-Net algorithm outperformed the sensitivity
for both the masked thresholding and proposed RF method,
scoring a detection sensitivity rate of 0.63 (p < 0.01, against
masked thresholding) with a mean number of false positives
of 6.44 (p < 0.01, against masked thresholding). The distri-
bution of detection sensitivity and mean positive findings
per method is represented in Figure 5 (a-b). The FROC
curve, representing the detection performance in terms of
sensitivity for all methods under all probability cut-off
thresholds is presented in Figure 5 (c).

3.2. Segmentation Results

The masked thresholding method achieved a Dice coef-
ficient of 0.12 with 10.07 mm Hausdorff similarity distance.
Random forest and U-Net have further improved segmen-
tation accuracies, scoring respectively, 0.24 and 0.33 for
Dice coefficient, and 10.84 mm and 7.88 mm for Hausdorff
distance. The U-Net significantly outperformed masked
thresholding segmentation technique for mean global Dice
(p < 0.001), and random forest for mean global Dice
coefficient (p < 0.01). The average lesion Dice similarity,
that reflects the segmentation quality of the detected lesions,
is higher for the U-Net (0.53) compared to the thresholding
and random forest method that have values of 0.38 and 0.41
respectively. The distribution of Dice similarity, average le-
sion Dice and Hausdorff distances per method is represented
in Figure 5 (d-f). Qualitative results for three example
patients are presented in Figure 6. It can be observed, that
the masked thresholding method tends to undersegment the
volume, random forest oversegment and U-Net provided the
best qualitative result, which is the closest the boundary of
the established ground truth.

3.3. Ablation study results

The distribution of sensitivity, mean false positives per
image and the FROC curve for the different U-Nets are
represented in Figure 7 (a-c). The U-Net trained on the non-
preprocessed data achieved a detection mean sensitivity of
0.51 with a high FP rate of 31.36. Introducing the skeletal
mask as a prepossessing step significantly reduced the false
positive findings to 11.88 (p < 0.01) with a sensitivity
of 0.47. Applying ISIS, noise and bias field correction
further improved the detection sensitivity (0.58) at the cost
of producing slightly more false positive findings (15.36).
Spatial registration between the stations and modalities
resulted in a significant reduction of false positive findings
per image to 5.8 (p < 0.01), while maintaining an equal
sensitivity of 0.58. Finally, the detection sensitivity is im-
proved marginally when performing inter-patient intensity
standardisation at the cost of producing slightly more false
positives per image.
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Table 2
Averaged bone metastases detection and segmentation results

(£ standard deviation) for three compared methods: masked

thresholding, random forest and U-Net. The presented results were all computed on whole-body MR images with all preprocessing

steps applied.

Detection criteria

Segmentation criteria

Method Sensitivity ‘ Mean FP per image ‘ F1-score ‘ F-score | Global Dice ‘ Lesion Dice ‘ Hausdorff Distance (mm)
Masked Thresholding | 0.31+0.32 14.96+11.91 0.14+0.19 | 0.1940.19 | 0.12+0.13 0.38+0.15 10.07+4.37
Random Forest 0.42+0.31 11.16+9.52 0.33+0.26 | 0.3540.23 | 0.24+0.17 0.41+0.16 10.84+6.94
U-Net 0.63+0.31 6.44+5.14 0.43+0.23 | 0.504+0.22 | 0.33+0.22 0.53+0.16 7.88+5.29
Thresholding Random forest U-Net
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Figure 5: Distribution of the validation

metrics for three different methods: masked thresholding, random forest and U-Net.

Figures represent: (a) detection sensitivity, (b) false positive detections per image, (c) FROC plot of the lesion-based detection

system, (d) segmentation global Dice similarity coefficient, (€) a

detected lesions Dice. The final reported result for each method i

The obtained segmentation results show similar trends
as the detection results. The distribution of Dice similarity,
average lesion Dice and Hausdorff distances for the dif-
ferent U-Nets are represented in Figure 7 (d-f). All seg-
mentation metrics improved incrementally with additional
preprocessing steps. The largest improvement is achieved

Table 3

verage Hausdorff distance per detected lesion, and (f) average
in a FROC is marked with a dot.

from introducing the skeletal mask to the U-Net. This step
increased the Dice similarity from 0.05 to 0.26 (p < 0.01)
together with a decrease in Hausdorff distance from 10.20
mm to 8.49 mm. For the remaining preprocessing steps, no
statistical significance is found. Introducing ISIS and noise
bias removal has the largest impact on the average lesion

Averaged bone metastases detection and segmentation results (£ standard deviation) for a U-Net with different input data sets

obtained by gradually applying preprocessing steps.

Detection criteria

Segmentation criteria

F-score | Global Dice ‘ Lesion Dice ‘ Hausdorff Distance (mm)

Method Sensitivity ‘ Mean FP per image ‘ F-score ‘
U-Net - Data Set 1 | 0.51+0.26 69.36+31.44 0.0940.07
U-Net - Data Set 2 | 0.47+0.27 11.88+6.04 0.274+0.16
U-Net - Data Set 3 | 0.58+0.32 15.36+£6.31 0.254+0.15
U-Net - Data Set 4 | 0.58+0.33 5.80+£4.22 0.4240.26
U-Net - Data Set 5 | 0.63+0.31 6.441+5.14 0.431+0.23

0.16+0.11 | 0.05+0.04 0.33+0.15 10.20+4.64
0.34+0.27 | 0.263+0.23 0.45+0.18 8.491+4.64
0.35+0.18 | 0.2840.20 0.562+0.17 6.651+2.08
0.4840.26 | 0.33+0.24 0.54+0.18 7.38+5.47
0.504+0.22 | 0.33+0.22 0.53+0.16 7.88+5.29
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Random forest Thresholding GT

U-Net 3 U-Net 2 U-Net 1

U-Net 4

U-Net 5

Figure 6: A coronal view extracted from anatomical whole-body T1-weighted MRI sequence for 3 patients (columns) in overlay
with segmentation predictions for all compared methods and their ground truth (rows). Ground truth lesion segmentations and
their predictions are represented in red. The selected patients were chosen to reflect different ranges of segmentation accuracies
(high to low, global Dice coefficient reported for the presented volume of interest). Noteworthy is the first column where the
spine of a patient is visualized with a large lesion located in the T8 thoracic vertebrae. Both the thresholding and the random
forest methods missed the entire lesion while the final U-Net was able to detect it, with a high Dice similarity. The corresponding
b1000 diffusion-weighted image of this patient is characterised by high intensity values in the skeletal region compared to the data
set mean. This high b1000 value led the thresholding and random forest method to undersegment because there was insufficient

e . . L. L. + o+ LI LS
difference-intesion-intensity compared-to-skeletal-intensity:
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Figure 7: Distribution of the validation metrics for a U-Net trained on five different data sets with increased complexity of
applied preprocessing. Figures represent: (@) detection sensitivity, (b) false positive detections per image, (c) FROC curve of the
lesion-based detection system, (d) global Dice similarity coefficient, (e) average Hausdorff distance per detection lesion, and (f)
average detected lesions Dice. The final reported result for each method in a FROC is marked with a dot.

Dice, increasing it from 0.45 to 0.52. The Dice similarity
and mean Hausdorff distances for this data set are 0.28
and 6.65 mm respectively. Registration further improved the
segmentation metrics, obtaining a mean Dice score of 0.33
and a Hausdorff distance of 7.38 mm. In the final step -
the inter-patient intensity standardisation, a small decrease
in segmentation metrics is seen. However, this decrease is
combined with an increase in detection metrics.

3.4. Implementation Details

The networks were trained using the MONAI 0.7 library
on an NVidia A100 GPU. Segmentation analysis routines
were all implemented in Python 3.6, using the Numpy, Pan-
das, MONALI, Nibabel and SimpleITK libraries. Training
a model for 1000 epochs took 8 hours and 30 minutes.
The model and its source code are publically available on
GitHub (https://github.com/jwutsetro/MBD_CAD).

4. Discussion and Conclusions

In this work, the concept of an automated CAD system
for the detection and segmentation of focal bone metas-
tases using multi-parametric MRI was proposed. The sys-
tem relies on two main contributions: the preprocessing
framework for WB-MRI and a deep learning segmentation
algorithm for bone metastases. In the first part of the study,
we compared the convolutional neural network approach
with the state-of-the-art non-deep learning methodologies.
Secondly, we propose an ablation study, where the influence
of different contributions of the preprocessing pipeline are

evaluated as a function of detection and segmentation algo-
rithm output.

4.1. Detection and segmentation

We proposed a deep learning segmentation method and
compared it to a masked thresholding and a random forest
approaches, previously proposed in literature [25, 28]. The
U-Net approach showed superior lesion detection perfor-
mance over intensity thresholding of high b-value DWI
image, showing the added value of non-linear classification
and simultaneous evaluation of multiple complementary
image modality information. Masked intensity thresholding,
as a fixed value image segmentation operation, is not appro-
priate for the high b-value DWI images, since the intensity
of bone metastases varies depending on the cellular density
of the lesion. Additionally, it does not facilitate the use of
anatomical MRI which are used by radiologists to establish
the borders of the focal lesions. The random forest provided
higher values for detection and segmentation than thresh-
olding method, however, at the cost of over-segmentation.
The U-Net outperforms both methods in detection accuracy,
showing higher sensitivity (0.63, p < 0.01) while detecting
less false positives. Additionally, the U-Net is less likely
to miss all lesions present in a patient. The final U-Net
finds at least one correct lesion in all patients while the
thresholding and random forest method miss all lesions in 3
and 9 patients respectively. The results lead us to believe that
voxel-based intensity classification, despite the inclusion of
kernel derived features that take into account the immediate
neighborhood, is suboptimal as it insufficiently captures the
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surrounding image context and cannot fully grasp higher
level features such as texture or granularity.

The U-Net outperforms the other two methods in terms
of segmentation Dice similarity and average lesion Dice
(p < 0.01 for both metrics). Especially a large difference is
observed in the average lesion Dice suggesting that the deep
learning method is more effective to recognize the complex
shapes of the bone metastases.

An analysis on the correlation between the segmented
and ground-truth volumes has been performed, where the
random forest method and the proposed U-Net segmentation
method showed a tendency for volume over-estimation
compared to the ground-truth while we have observed
that the thresholding method tends to undersegment the
bone metastases. An over-segmentation is preferred over
an under-segmentation for CAD tools that assess treatment
response to cancer therapy. This is also reflected by the
F,-score that was used as the threshold selection criteria
weighting recall over precision. With a F,-score of 0.5, the
U-Net is the favored technique for this purpose.

The segmentation accuracy was visually assessed in
different skeletal regions. In Figure 6, the final U-Net with
all preprocessing steps (U-Net 5) clearly outperformed the
other models in terms of number of false positive findings.
The qualitative results show good alignment between the
segmentation and a ground truth mask for the U-Net.

We believe that the difference in quantitative validation
metrics, in contrary to its visual inspection, is mainly caused
by two factors. First, a large volume imbalance in the
investigated segmentation problem where lesions occupy
only a very small fraction of total skeleton volume and
are represented by multiple small, irregular shapes. Dice
coefficients of large, smooth objects with high volume-to-
surface ratio (e.g. segmentation of the liver or lungs) will
tend to have higher Dice coefficients despite disagreement at
the edges. Small structures (lower volume-to-surface ratio)
with comparable segmentation imperfections at the borders
(e.g. bone metastases, blood vessels) will have lower Dice.
This is even more pronounced when objects have irregular
non-convex shapes. Secondly, the non-uniform intensity
representation of some of the lesions in anatomical MR
images, making it difficult to manually annotate the edge
of the lesions in a reproducible way without introducing
annotation variations across the ground-truth dataset. An
example of such intensity behavior is presented in Figure 8.

4.2. Ablation study

Whole-body MRI images are often corrupted with var-
ious intensity and spatial artifacts. The ablation study was
performed to assess the relative impact for all performed
image preprocessing steps. From the results, we can con-
clude that it is beneficial to include whole-body MR im-
age preprocessing before the employment of deep learning
segmentation techniques, here, a U-Net focusing on the
segmentation of focal bone metastases. Applying additional
preprocessing was steadily increasing the segmentation and
detection performance metrics. Adding the preprocessing

especially helps the model to detect more lesions while
producing fewer false positives. As a result of the enhanced
detection ability, the global Dice similarity did also improve.

The worst results in the evaluated comparison came
from the data set where no preprocessing has been in-
troduced to the multi-parametric WB-MRI images, before
feeding them to a U-Net. Obtained segmentation results not
only suffered from low sensitivity, but also from extensive
number of false positive findings spread around the whole
image (note the log scale for the Figure 7(b). Quantitative
results of the second evaluated data set (with the addition of
a skeleton mask) provided substantial improvements (p <
0.001) reducing false positive findings as seen in Figure 7.
Introducing the skeleton mask did not only allow to filter
out lesions outside of the skeleton, but also helped the
model to converge better in regions within the skeleton. This
can be observed in the first column of Figure 6, where a
U-Net trained with the skeletal mask (U-Net 2) produced
fewer false positives inside and outside of the skeleton
compared to one trained without the skeleton mask (U-Net
1). We believe that this improvement originates from a more
efficient patch selection during training. When a skeleton
mask is available, the networks are only trained on patches
that contain skeletal regions allowing for the models to focus
more on this specific region of interest.

An increase of sensitivity is observed with the addition
of inter-station intensity standardisation, noise and bias
removal. ISIS has a strong effect to compensate intensity
differences between different stations within one patient,
especially in DWI b1000 images, where the different sta-
tions of a patient often have large intensity variations. Not
compensating such differences could lead to artifacts at the
station edges, and impact other stations through erroneous
inter-patient intensity standardization.

A second large drop in false positive findings is observed
when introducing spatial registration, both on inter-station
and inter-modality level. The registration that was included
in the study is two-fold: station-to-station registration that
improves station alignment and inter-modality registration
that aligns the functional images with the anatomical im-
ages. We hypothesize that improvement is mainly caused
by correct spatial alignment of bone metastases across
different modalities (i.e. anatomical MRI, DWI and ADC)
which allowed the U-Net to learn correct intensity corre-
lations between MRI inter-modality representation of bone
metastases. Finally, the last preprocessing step, involving
performing inter-patient intensity standardisation, lowered
the variance of almost all observed metrics although did not
prove to be statistically significant.

The initial segmentation evaluation metrics (data set 1)
showed low Dice coefficient and high Hausdorff distances.
Adding the skeletal mask improved the results significantly
by focusing the CAD on a smaller region of interest. The
remaining four steps did not have a large impact individu-
ally, but after combining all of the added contributions, a
noticeable and statistically significant impact was observed.
Adding the last four preprocessing steps increased the
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(a)

(c)

Figure 8: (a): An example of metastasis representation in in-phase DIXON MRI sequence located in a lower left part of the pelvis,
(b): manual ground truth, (c): segmentation obtained by a U-Net. It can be observed that the top part of the lesion represented
by higher intensities (red arrow) compared to the lesion core has been included as a part of the manual delineation. The result of
the U-net however, does not include this region as a part of the lesion.

global Dice similarity coefficient from a mean of 0.26 to
0.33, while the Hausdorff distance dropped from 8.49 mm
to 7.88 mm. To be noted is that the average lesion Dice of
the five different data sets only improves marginally. This
suggests that the segmentation quality of the lesions that are
already found on the early stages of applied preprocessing
(e.g. data set 1) only improves slightly. This is also visually
confirmed on Figure 6 (middle column), where the accuracy
on the border of the segmented spinal lesions is already
accurate for U-Net 1. Adding the additional preprocessing
steps (U-Nets 2-5) only gradually improves the segmenta-
tion accuracy but allows to drastically increase the detection
rate of new lesions and reduce the false positives findings.

4.3. Limitations

A number of study limitations should be mentioned.
First, the current model segments regions inside the skeleton
mask. Multiple skeletal regions are however excluded in
the current implementation of skeleton segmentation CAD
algorithm, such as the ribs, the sternum and the humerus.
These regions are excluded as the current multi-atlas seg-
mentation method does not include these skeletal regions
in the atlases. Although the metastatic bone disease is less
likely to manifest itself in the peripheral skeleton, extending
the skeletal mask to include such regions should be investi-
gated in the future [51]. Additionally, as the studied patient
cohort was a group of advanced prostate cancer patients
with metastases to the bone, most studied lesions were of
sclerotic (osteoblastic) type.

Secondly, the available data set was relatively small
(30 multi-parametric images, from 27 patients covering
201 lesions). Nonetheless, the data was found sufficient to
perform the comparison of different techniques. When more
data is available, we expect the results to further improve, in
particular for the U-Net.

This research focuses on patients with focal metastatic
bone disease. Patients with diffuse disease were excluded
during the annotation sessions. This is because the bound-
aries of metastatic disease are not well-defined for patients
with diffuse disease. In the case of focal lesions, the total
tumour volume is quantitative information that can be used
as a biomarker that can be followed from one examination

to the other. By definition, diffuse disease boundaries corre-
spond to the boundaries of the (at least central) skeleton, and
a tumor volume cannot be determined. Hence, in diffuse dis-
ease, other quantitative information is necessary. Adequate
approaches are the quantification of changes in ADC values
and fat fraction in the affected skeletal areas using ADC and
fat fraction maps derived from DWI and Dixon sequences,
respectively [52, 25].

The usability of the trained models is bounded to input
images that have both an anatomical image sequence and
functional sequences. An additional experiment has been
conducted assessing the predictive power of multiple com-
binations when not all functional images are available. The
results showed a decrease in the segmentation performance,
resulting in a Dice coefficient drop of 65%, 29% and 13%
for models trained solely on T;, T{-ADC and T;-b1000
channels, respectively.

Finally, hyperparameter optimization for the U-Net
was only performed for the fully preprocessed data set.
However, according to Isensee et al. [42], different data
set preprocessing steps should not influence the U-Net
definition of hyper-parameters, which are mainly influenced
by image size, spacing, segmentation task to perform and
patch size. Those image properties remained unchanged
during data set preprocessing.

4.4. Conclusion

In conclusion, this study is, to the best of our knowl-
edge, the first to demonstrate the feasibility of automated
detection and segmentation of bone metastases in WB-MRI
examinations using a CAD system based on a U-Net archi-
tecture. We demonstrate that it is viable to automatically
detect bone metastases from multi-parametric WB-MRI.
Convolutional neural networks outperformed less complex
methods and can be considered as the most promising tool,
amongst those investigated to explore in further research.

Additionally, the presented ablation study showed the
importance of preprocessing on the performance of U-Net
deep learning segmentation algorithms. Due to the complex
nature of WB-MRYI, its large field of view and sensitivity
to spatial and intensity artifacts, significant preprocessing
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is necessary to optimize the result of the deep learning
segmentation algorithm. Especially adding a rough mask
that spatially limits the field of view, substantially increas-
ing deep learning performance when little training data is
available.

5. Acknowledgments

This work was funded by the Brussels Institute For

Research and Innovation (Innoviris) - award number PFS-
15. The resources and services used in this work were
provided by the VSC (Flemish Supercomputer Center),
funded by the Research Foundation - Flanders (FWO) and
the Flemish Government.

References

(1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]
[9]

(10]

(11]

[12]

Van Nieuwenhove, S., Van Damme, J., Padhani, A.R., Vandecaveye,
V., Tombal, B., Wuts, J., et al. Whole-body magnetic resonance
imaging for prostate cancer assessment: Current status and future
directions. Journal of Magnetic Resonance Imaging 2022;55(3):653—
680.

Coleman, R.E.. Clinical features of metastatic bone disease and risk
of skeletal morbidity. Clinical cancer research 2006;12(20):6243s—
6249s.

Tombal, B., Lecouvet, F.. Modern detection of prostate cancer’s
bone metastasis: is the bone scan era over? Advances in urology
2012;2012.

Larbi, A., Dallaudiére, B., Pasoglou, V., Padhani, A., Michoux, N.,
Vande Berg, B.C., et al. Whole body MRI (WB-MRI) assessment
of metastatic spread in prostate cancer: therapeutic perspectives
on targeted management of oligometastatic disease. The Prostate
2016;76(11):1024-1033.

Padhani, A.R., Lecouvet, EE., Tunariu, N., Koh, D.M., De Keyzer,
E, Collins, D.J., et al. METastasis reporting and data system for
prostate cancer: practical guidelines for acquisition, interpretation,
and reporting of whole-body magnetic resonance imaging-based
evaluations of multiorgan involvement in advanced prostate cancer.
European urology 2017;71(1):81-92.

Messiou, C., Hillengass, J., Delorme, S., Lecouvet, FEE.,
Moulopoulos, L.A., Collins, D.J., et al. Guidelines for acquisi-
tion, interpretation, and reporting of Whole-Body MRI in myeloma:
Myeloma response assessment and diagnosis system (MY-RADS).
Radiology 2019;291(1):5-13.

Oprea-Lager, D.E., Cysouw, M.C., Boellaard, R., Deroose, C.M.,
de Geus-Oei, L.F, Lopci, E.,etal. Bone metastases are measurable:
the role of whole-body MRI and positron emission tomography.
Frontiers in oncology 2021;11.

Lecouvet, FE.. Whole-body mr imaging: Musculoskeletal applica-
tions. Radiology 2016;279(2):345-365.

Larbi, A., Omoumi, P., Pasoglou, V., Michoux, N., Triqueneaux,
P, Tombal, B., et al. Whole-body MRI to assess bone involvement in
prostate cancer and multiple myeloma: comparison of the diagnostic
accuracies of the tl, short tau inversion recovery (STIR), and high
b-values diffusion-weighted imaging (DWI) sequences. European
radiology 2019;29(8):4503-4513.

Hamaoka, T., Madewell, J.E., Podoloff, D.A., Hortobagyi, G.N.,
Ueno, N.T.. Bone imaging in metastatic breast cancer. Journal of
Clinical Oncology 2004;22(14):2942-2953.

Yang, H.L., Liu, T., Wang, X.M., Xu, Y., Deng, S.M.. Diagnosis of
bone metastases: a meta-analysis comparing 18 FDG PET, CT, MRI
and bone scintigraphy. European radiology 2011;21(12):2604-2617.
Pasoglou, V., Michoux, N., Peeters, F., Larbi, A., Tombal, B.,
Selleslagh, T., et al. Whole-body 3D T1-weighted MR imaging in
patients with prostate cancer: feasibility and evaluation in screening
for metastatic disease. Radiology 2014;275(1):155-166.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Koh, D.M., Blackledge, M., Padhani, A.R., Takahara, T.,
Kwee, T.C., Leach, M.O., et al. Whole-body diffusion-weighted
MRI: tips, tricks, and pitfalls. American Journal of Roentgenology
2012;199(2):252-262.

Papandrianos, N., Papageorgiou, E., Anagnostis, A., Feleki, A.. A
deep-learning approach for diagnosis of metastatic breast cancer in
bones from whole-body scans. Applied Sciences 2020;10(3):997.
Papandrianos, N., Papageorgiou, E., Anagnostis, A., Papageorgiou,
K.. Bone metastasis classification using whole body images from
prostate cancer patients based on convolutional neural networks
application. PloS one 2020;15(8):0237213.

Cheng, D.C., Liu, C.C, Hsieh, T.C., Yen, K.Y., Kao, C.H..
Bone metastasis detection in the chest and pelvis from a whole-
body bone scan using deep learning and a small dataset. Electronics
2021;10(10):1201.

Hsieh, T.C., Liao, C.W., Lai, Y.C., Law, K.M., Chan, P.K., Kao,
C.H.. Detection of bone metastases on bone scans through image
classification with contrastive learning. Journal of Personalized
Medicine 2021;11(12):1248.

Han, S., Oh, I.S., Lee, J.J.. Diagnostic performance of deep
learning models for detecting bone metastasis on whole-body bone
scan in prostate cancer. European Journal of Nuclear Medicine and
Molecular Imaging 2022;:1-11.

Lin, Q.,Li, T, Cao, C., Cao, Y., Man, Z., Wang, H.. Deep learning
based automated diagnosis of bone metastases with SPECT thoracic
bone images. Scientific Reports 2021;11(1):4223.

Wels, M., Kelm, B.M., Tsymbal, A., Hammon, M., Soza, G.,
Siihling, M., et al. Multi-stage osteolytic spinal bone lesion detection
from CT data with internal sensitivity control. In: Medical Imaging
2012: Computer-Aided Diagnosis; vol. 8315. International Society
for Optics and Photonics; 2012, p. 831513.

Liu, X.,Han, C., Cui, Y., Xie, T., Zhang, X., Wang, X.. Detection
and segmentation of pelvic bones metastases in MRI images for
patients with prostate cancer based on deep learning. Frontiers in
Oncology 2021;11:773299.

Chmelik, J., Jakubicek, R., Walek, P., Jan, J., Ourednicek,
P, Lambert, L., et al. Deep convolutional neural network-based
segmentation and classification of difficult to define metastatic spinal
lesions in 3D CT data. Medical image analysis 2018;49:76-88.
Chmelik, J., Jakubicek, R., Jan, J., Ourednicek, P., Lambert, L.,
Amadori, E., et al. Fully automatic CAD system for segmentation
and classification of spinal metastatic lesions in CT data. In: World
Congress on Medical Physics and Biomedical Engineering 2018:
June 3-8, 2018, Prague, Czech Republic (Vol. 1). Springer; 2019, p.
155-158.

Moreau, N., Rousseau, C., Fourcade, C., Santini, G., Ferrer,
L., Lacombe, M., et al. Deep learning approaches for bone and
bone lesion segmentation on 18FDG PET/CT imaging in the context
of metastatic breast cancer. In: 2020 42nd Annual International
Conference of the IEEE Engineering in Medicine & Biology Society
(EMBCQ). IEEE; 2020, p. 1532-1535.

Blackledge, M.D., Collins, D.J., Tunariu, N., Orton, M.R., Padhani,
AR., Leach, M.O., et al. Assessment of treatment response by
total tumor volume and global apparent diffusion coefficient using
diffusion-weighted MRI in patients with metastatic bone disease: A
feasibility study. PLoS ONE 2014;9(4):e91779. doi:10.1371/journal.
pone.0091779.

Frinzle, A., Hillengass, J., Bendl, R.. Spinal focal lesion detection
in multiple myeloma using multimodal image features. In: Medical
Imaging 2015: Computer-Aided Diagnosis; vol. 9414. International
Society for Optics and Photonics; 2015, p. 94143B.

Almeida, S.D., Santinha, J., Oliveira, FP, Ip, J., Lisitskaya, M.,
Lourenco, J., et al. Quantification of tumor burden in multiple
myeloma by atlas-based semi-automatic segmentation of WB-DWI.
Cancer Imaging 2020;20(1):1-10.

J. Ceranka and J. Wuts: Preprint submitted to Elsevier

Page 14 of 15


http://dx.doi.org/10.1371/journal.pone.0091779
http://dx.doi.org/10.1371/journal.pone.0091779

[28]

(29]

[30]

(32]

(33]

[34]

(35]

[36]

(37]

(38]

(39]

[40]

(41]

[42]

[43]

[44]

[45]

Computer-Aided Diagnosis of Skeletal Metastases

Ceranka, J., Lecouvet, F., De Mey, J., Vandemeulebroucke, J..
Computer-aided detection of focal bone metastases from whole-
body multi-modal MRI. In: Medical Imaging 2020: Computer-
Aided Diagnosis; vol. 11314. International Society for Optics and
Photonics; 2020, p. 113140S.

Lecouvet, FE., Pasoglou, V., Van Nieuwenhove, S., Van Haver, T.,
de Broqueville, Q., Denolin, V., et al. Shortening the acquisition
time of whole-body MRI: 3D T1 gradient echo dixon vs fast spin
echo for metastatic screening in prostate cancer. European radiology
2020;30:3083-3093.

Takahara, T., Imai, Y., Yamashita, T., Yasuda, S., Nasu, S.,
Van Cauteren, M.. Diffusion weighted whole body imaging with
background body signal suppression (DWIBS): technical improve-
ment using free breathing, STIR and high resolution 3D display.
Matrix 2004;160(160):160.

Chiabai, O., Van Nieuwenhove, S., Vekemans, M.C., Tombal,
B., Peeters, F., Wuts, J., et al. Whole-body MRI in oncology:
can a single anatomic t2 dixon sequence replace the combination of
T1 and STIR sequences to detect skeletal metastasis and myeloma?
European Radiology 2023;33(1):244-257.

Yushkevich, P.A., Piven, J., Cody Hazlett, H., Gimpel Smith, R.,
Ho, S., Gee, J.C., et al. User-guided 3D active contour segmenta-
tion of anatomical structures: Significantly improved efficiency and
reliability. Neuroimage 2006;31(3):1116-1128.

Padhani, A.R., Liu, G., Koh, D.M., Chenevert, T.L., Thoeny, H.C.,
Takahara, T., et al. Diffusion-weighted magnetic resonance imaging
as a cancer biomarker: consensus and recommendations. Neoplasia
2009;11(2):102-125.

Ceranka, J., Verga, S., Kvasnytsia, M., Lecouvet, F., Michoux,
N., de Mey, J., et al. Multi-atlas segmentation of the skeleton from
whole-body MRI - impact of iterative background masking. Magnetic
resonance in medicine 2020;83(5):1851-1862.

Perona, P., Shiota, T., Malik, J.. Anisotropic diffusion. In:
Geometry-driven diffusion in computer vision. Springer; 1994, p. 73—
92.

Tustison, N.J., Avants, B.B., Cook, P.A., Zheng, Y., Egan, A.,
Yushkevich, P.A., et al. N4ITK: improved N3 bias correction. IEEE
transactions on medical imaging 2010;29(6):1310-1320.

Yoo, T.S., Ackerman, M.J., Lorensen, W.E., Schroeder, W.,
Chalana, V., Aylward, S., et al. Engineering and algorithm design
for an image processing API: a technical report on ITK-the insight
toolkit. Studies in health technology and informatics 2002;:586-592.
Ceranka, J., Polfliet, M., Lecouvet, F., Michoux, N., de Mey,
J., Vandemeulebroucke, J.. Registration strategies for multi-modal
whole-body MRI mosaicing. Magnetic resonance in medicine
2018;79(3):1684-1695.

Nydl, L.G., Udupa, J.K., Zhang, X.. New variants of a method of
MRI scale standardization. Medical Imaging, IEEE Transactions on
2000;19(2):143-150.

Blackledge, M.D., Leach, M.O., Collins, D.J., Koh, D.M.. Com-
puted diffusion-weighted MR imaging may improve tumor detection.
Radiology 2011;261(2):573-581.

MONAI, . The MONAI consortium - project MONAIL  2020.
URL: https://doi.org/10.5281/zenodo.4323059. doi:10.5281/zenodo.
4323059.

Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein,
K.H.. nnu-net: a self-configuring method for deep learning-based
biomedical image segmentation. Nature methods 2021;18(2):203—
211.

Ma, J.. Segmentation loss odyssey. arXiv preprint arXiv:200513449
2020;.

Wang, L., Lee, C.Y.,, Tu, Z., Lazebnik, S..
convolutional networks with deep supervision.
arXiv:150502496 2015;.

Miller, H.. The FROC curve: A representation of the observer’s
performance for the method of free response. The Journal of the
Acoustical Society of America 1969;46(6B):1473-1476.

Training deeper
arXiv preprint

[46]

[47]
[48]
[49]
[50]

[51]

[52]

Shirokikh, B., Shevtsov, A., Kurmukov, A., Dalechina, A., Krivov,
E., Kostjuchenko, V., et al. Universal loss reweighting to balance
lesion size inequality in 3D medical image segmentation. In: Inter-
national Conference on Medical Image Computing and Computer-
Assisted Intervention. Springer; 2020, p. 523-532.

Shapiro, S.S., Wilk, M.B.. An analysis of variance test for normality
(complete samples). Biometrika 1965;52(3/4):591-611.

Snedecor, G.W.C., William, G.. Statistical methods. 1989.
Kruskal, W.H., Wallis, W.A.. Use of ranks in one-criterion
variance analysis. Journal of the American statistical Association
1952;47(260):583-621.

Armstrong, R.A.. When to use the bonferroni correction. Ophthalmic
Physiol Opt 2014;34(5):502-508.

Larbi, A., Omoumi, P., Pasoglou, V., Michoux, N., Triqueneaux,
P, Tombal, B., et al. Comparison of bone lesion distribution
between prostate cancer and multiple myeloma with whole-body
MRI. Diagnostic and interventional imaging 2019;100(5):295-302.
Perez-Lopez, R., Rodrigues, D.N., Figueiredo, I., Mateo, 1J.,
Collins, D.J., Koh, D.M., et al. Multiparametric magnetic resonance
imaging of prostate cancer bone disease: correlation with bone
biopsy histological and molecular features. Investigative radiology
2018;53(2):96.

J. Ceranka and J. Wuts: Preprint submitted to Elsevier

Page 15 of 15


https://doi.org/10.5281/zenodo.4323059
http://dx.doi.org/10.5281/zenodo.4323059
http://dx.doi.org/10.5281/zenodo.4323059

