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Abstract: Ultra-wideband (UWB) indoor positioning systems have the potential to achieve sub-
decimeter-level accuracy. However, the ranging performance degrades significantly under non-line-
of-sight (NLoS) conditions. The detection and mitigation of NLoS conditions is a complex problem
and has been the subject of many works over the past decades. When localizing pedestrians, human
body shadowing (HBS) is a particular and specific cause of NLoS. In this paper, we present an HBS
mitigation strategy based on the orientation of the body and tag relative to the UWB anchors. Our HBS
mitigation strategy involves a robust range error model that interacts with a tracking algorithm.
The model consists of a bank of Gaussian Mixture Models (GMMs), from which an appropriate GMM
is selected based on the relative body–tag–anchor orientation. The relative orientation is estimated by
means of an inertial measurement unit (IMU) attached to the tag and a candidate position provided
by the tracking algorithm. The selected GMM is used as a likelihood function for the tracking
algorithm to improve localization accuracy. Our proposed approach was realized for two tracking
algorithms. We validated the implemented algorithms on dynamic UWB ranging measurements,
which were performed in an industrial lab environment. The proposed algorithms outperform other
state-of-the-art algorithms, achieving a 37% reduction of the p75 error.

Keywords: indoor localization; UWB; IMU; human body shadowing; particle filter; Gaussian
mixture model

1. Introduction

Indoor Positioning Systems (IPSs) track people or objects in GNSS-denied environ-
ments, i.e., inside buildings, ships, multi-level parking lots, etc. Indoor localization knows
many applications, e.g., automatic inventarization with drones [1] and transportation with
AGVs [2], protecting factory workers from collisions [3], tracking staff, patients and equip-
ment in hospitals [4], etc. The ubiquity of smartphones in our daily lives, as well as the
presence of Wi-Fi access points (APs) in most public and office buildings, has created the
opportunity for IPSs to use available infrastructure. As such, IPSs are being developed,
with which people can use their own smartphones to navigate through public buildings,
e.g., museums [5]. The presence or absence of traffic between smartphones and Wi-Fi APs
or Bluetooth Low Energy (BLE) beacons, along with other sensor data such as indoor CO2
levels and illuminance, can be used for room occupancy detection [6]. Positional data can
be used directly, e.g., by emergency responders to find people in distress [7], but also for
purposes other than navigation or guiding, allowing for endless amounts of applications.
Room occupancy detection can be used for the automatic control of smart plugs [8] or
actuation of heating, ventilation, and air conditioning [9] to reduce energy consumption.
Another example is the automatic activity recognition and performance analysis of athletes
using UWB positioning, with which a coach could provide personalized feedback for the
whole team [10].

In most cases, a mobile node (tag) is localized relative to a set of fixed nodes (anchors)
using wireless technologies, e.g., Wi-Fi [11], BLE [12], Ultra-Wideband (UWB) [13], Visible
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Light Positioning (VLP) [14], etc. Unlike GNSS in outdoor scenarios, there is no standard-
ized solution that can be used for all applications. Instead, the technology is chosen based
on the required accuracy, hardware, installation, and maintenance cost, as well as the
complexity of the localization problem. As mentioned, using BLE beacons and Wi-Fi APs
as proximity-based sensors allow for the design of cheap and easily deployable IPSs with
room-level accuracy [8,9]. Depending on the node density, BLE and Wi-Fi fingerprinting
can offer an accuracy of 2–3 m but require extensive measurement campaigns or knowledge
of the building materials for empirical [15] or model-based [16] fingerprinting, respectively.
In time-of-flight (ToF) ranging, the travel time of a signal is measured to estimate the
distance between a tag and anchor [13]. The arrival time of a UWB signal can be accurately
measured due to its narrow pulses, allowing for centimeter-level ranging accuracy. These
narrow pulses also make UWB ranging immune to multipath fading, unlike Wi-Fi and BLE
ranging. Although the arrival of Commercial Off-the Shelf (COTS) UWB transceivers [17]
has made UWB IPSs more affordable, they do require a dedicated tag and node infrastruc-
ture, which increases the cost and deployment effort. Furthermore, VLP is an emerging
localization technology that offers similar accuracy to UWB at a lower cost [18]; however,
receiver tilt as well as blockage of the receiver can degrade its performance, which makes
pedestrian tracking a complex problem for VLP-based IPS. Because this work is aimed at
the accurate tracking of pedestrians in the industrial and sports contexts, we choose to use
UWB ranging with the tag attached to the torso, i.e., on-body UWB pedestrian localization.

While UWB can achieve high ranging accuracy in line-of-sight (LoS) conditions, there
is still ongoing research in mitigating the effects of non-line-of-sight (NLoS) conditions.
Under these conditions, the direct path between the tag and an anchor is (partly) obstructed
by a wall, object, or the human body. Depending on the obstruction, it is possible that the
received power along the direct path is too low, and through reflection or diffraction, an
indirect path component of the signal is detected instead [19]. Because the indirect path
travels a larger distance than the direct unobstructed path, the signal is detected with a
delay, causing a positive bias on the range estimation [13].

Human Body Shadowing (HBS) is a specific but important case of NLoS in pedestrian
tracking, in which a pedestrian carries the UWB tag and obstructs the LoS path with their
body. Preliminary works have investigated the impact of HBS in UWB ranging and have
concluded that the UWB range error distribution changes with the orientation of the body
and tag relative to the anchor [19,20]. Aside from the orientation, the error distribution
is shown to depend on the position of tag on the body [21] and the distance of the tag
from the body [22]. Based on the tag position on the body, several orientation-specific error
distributions were proposed [23].

Given these findings, it is clear that knowledge of the relative orientation between
the human body and the UWB tag–anchor provides an opportunity to detect HBS-induced
range errors for on-body UWB positioning. However, there is only limited research that
uses this orientation to reduce the impact of HBS effects on on-body UWB-based pedestrian
tracking. In fact, while many methods have been proposed to (detect and) mitigate NLoS
conditions, the differentiation between different types of NLoS is not often performed. More
specifically, recent research is primarily focused on using deep-learning techniques, e.g.,
Convolutional Neural Networks (CNNs) [24], to identify general NLoS conditions in the
Channel Impulse Response (CIR). There is also a growing interest to fuse measurements
of an Inertial Measurement Unit (IMU), which can provide absolute orientation, with UWB
measurements in order to improve UWB pedestrian tracking [25,26]. However, these methods
employ the IMU to predict positions using Pedestrian Dead Reckoning (PDR) [26] or the
integration of the inertial data [25], independent of any type of UWB NLoS condition. The few
works that do perform orientation-aware UWB HBS mitigation have clear limitations [27,28],
which are discussed in Section 2. Therefore, our work addresses this general lack of research
on this topic and improves on the limitations of the few existing related works.

In this work, the heading provided by an IMU’s Attitude and Heading Reference
System (AHRS) and the estimated position of a UWB tracking algorithm are combined in
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order to estimate the relative human body orientation. After estimating this orientation,
the impact of HBS-induced range errors on the localization system is mitigated by a newly
proposed robust Gaussian Mixture Model (GMM)-based, orientation-aware range error
model. This two-part HBS mitigation strategy is then integrated into a Particle Filter (PF)
and Gaussian Sum Filter (GSF) algorithm. The performance of the resulting UWB IPSs are
evaluated with dynamic measurements in an industrial lab environment using a Decawave
transceiver and an Adafruit BNO055 IMU. The performance is benchmarked against state-
of-the-art systems, and the impact of each of the two parts of our mitigation strategy is
investigated by comparing it with alternative solutions. Furthermore, the runtime of each
algorithm is analyzed, as well as the impact of anchor selection and smoothing, in addition
to the proposed mitigation strategy.

In summary, the following contributions have been realized:

1. Synergism of on-body IMU and UWB Two-Way Ranging (TWR) measurements for
the accurate estimation of body–tag–anchor orientation and mitigation of human
body shadowing effects.

2. A robust GMM-based, orientation-aware range error model for the mitigation of
human body shadowing effects in on-body UWB-TWR pedestrian tracking.

3. Integration of the GMM-based range error model with a Gaussian Mixture Filter,
which provides higher localization accuracy than the state-of-the-art methods while
reducing the computation cost by an order of magnitude.

4. Our proposed algorithms have been evaluated and benchmarked against a state-of-
the-art algorithm [27] based on measurements with mm-level motion capture (mocap)
ground truth. An accurate ground truth was not available in [27].

The remaining part of the paper starts with a discussion of related works (Section 2),
followed by a description of the experiment setup and proposed HBS mitigation method
(Section 3). The performance of the implemented algorithms is discussed in Section 4, after
which a conclusion is formulated in Section 5.

2. Related Work

An overview of the works investigating the effect of the human body on UWB ranging
is provided in Section 2.1. Section 2.2 summarizes general NLoS detection and mitigation
approaches in the UWB ranging context; it also discusses the limited amount of works that
are specifically focused on HBS detection and mitigation, as well as the motivation for our
proposed work. Furthermore, it is necessary to define the mentioned body–tag–anchor
orientation itself.

As in our previous work [29], the relative body orientation is defined in Figure 1 as the
angle φ ∈ [0◦, 180◦] between vector

#  »

PT and vector
#   »

TA.
#  »

PT and
#   »

TA are 2D vectors in the
horizontal plane, of which the points P, T, and A represent the 2D locations of the person’s
midpoint, tag antenna, and anchor antenna, respectively. It is assumed that the tag is placed in
such way that both the radiation pattern of the tag antenna and the influence of the body are
symmetrical with respect to

#  »

PT. Other elements of Figure 1 are discussed in Section 3.

2.1. Effects of Human Body Shadowing on UWB Ranging

No significant shadowing effects on UWB ranging have been observed for φ < 67.5◦

with a chest-mounted tag [22] and φ < 90◦ with the tag being held at chest height a few
cm in front of the body [30]. The average range error increases from 10 cm to 20 cm for
67.5◦ < φ < 112◦ in [22], while [30] reports a similar increase for 90◦ < φ < 155◦. While
the average range error increases, the standard deviation of the range error is unchanged
for these intervals, and the error Probability Density Function (PDF) still resembles a
Gaussian function [30]. For φ → 180◦, the average error increases to 60 cm for φ > 112◦

in [22], with [30] again having similar results for φ > 150◦. Range errors of up to 3 m were
measured with a chest-mounted tag for true distances below 3 m in [21].
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Figure 1. Visualization of angles and vectors related to estimation of the relative body orientation.

This behavior is explained by the findings of studies on the effects of HBS on the
received power of UWB signals [19,22]. As with ranging, no significant effects on the
received power are observed when the body does not fully obstruct the LoS path [22].
When the latter occurs, the signal reaches the receiver by diffracting around the body (i.e.,
a creeping wave) or by reflecting off another surface [19]. As the creeping waves are more
attenuated for higher φ angles, reflections become more likely to be recognized as the first
path by the receiver. In fact, the attenuation of creeping waves for φ → 180◦ can be so
severe that even weak reflections from the anechoic chamber’s absorber blocks are more
powerful [19].

It is clear that for indoor on-body UWB ranging in general, the range errors remain
generally unaffected for low φ values, while high outliers occur for φ→ 180◦, and some-
where in between, a φ interval exists where a bias is introduced. However, the φ values for
which the range error statistics change, and the extent of these changes depends on several
factors. One factor is the distance of the tag antenna to the body. If the antenna is further
away from the body, the direct path begins to be obstructed at higher φ values; thus the
influence of creeping waves and, consequently, reflections occur at higher φ values [22].

A second factor is tag placement, wherein the influence on range errors and packet
loss has been investigated in [21,31], respectively. Both works identified the head as the
best place for the tag, experiencing almost no negative effects, and the chest/stomach as
the worst place. To characterize the range error, [21] proposes a switch from a Gaussian
function to another PDF, depending on the tag position, when a φ-like variable crosses
a threshold.

Thirdly, the environment affects the range error statistics, as shown in our prior
research [29], which consisted of static on-body UWB measurements in a lab and office
environment. Although a similar orientation-dependent error pattern is observed in both
environments, the distribution becomes skewed above 100◦ in the office, while this only
occurs above 140◦ in the lab environment. This is attributed to a combination of increased
tag–anchor distances lowering the signal-to-noise ratio and an increased amount of reflected
paths, causing the UWB tag to often detect the reflected component instead of the diffracted
component. On the other hand, the lack of reflective surfaces in the outdoor experiment
in [22] allows for creeping waves to be dominant for all φ > 90◦. Fourthly, range estimation
algorithms perform differently under HBS conditions as reported in [32], which compared
the leading-edge detection algorithm with the SAGE algorithm. Lastly, given the fact that
the creeping waves are heavily attenuated for high φ values, it is suspected that the transmit
power also affects the range error distribution.

2.2. Detection and Mitigation of Human Body Shadowing Effects

UWB positioning in general NLoS conditions is usually performed in two steps.
The first step is to identify the NLoS links in order to know which ranging measurements
are likely to have large errors. This information is then used in the second step to mitigate
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position errors, of which the most common methods are weighing [26] or omitting [33] the
range or estimating the range error and subtracting it from the measured range [34] before
estimating the position.

Range-based NLoS detection and mitigation methods, e.g., [35], use subsets of avail-
able range measurements to estimate candidate positions, after which hypothesis testing on
the range residuals of these positions is used to find NLoS tag–anchor links. These methods
have the advantage of not requiring knowledge of the range error noise or CIR statistics;
however, they require range estimates from several anchors simultaneously to estimate a
position. This makes them less accurate for dynamic UWB-TWR localization, which uses a
sequential range estimation scheme.

CIR-based NLoS detection relies on the fact that under LoS conditions, most of the
signal’s energy is found in the first path component [36,37]. Some works derive features
(e.g., kurtosis, excess delay spread, etc.) from the CIR and use statistical methods and
machine learning algorithms, e.g., Pearson correlation [38], generalized Gaussian distri-
bution [39], or support vector machines [40], to classify a measurement as LoS or NLoS.
Other works employ deep learning techniques directly on the raw CIR data, of which
the CNN is most popular method [34,36]. These CNNs are used as either a classifier to
detect NLoS conditions [36] or as regressors to estimate the range error directly [34]. The
biggest advantage of these machine learning and deep learning techniques is that they
are parameterless, but they do require a substantial amount of training data. Also, a large
part of experimental UWB-related research has been conducted with low-cost COTS UWB
hardware, primarily using the Decawave DW1000 transceiver [32]. A disadvantage of the
DW1000 is that reading the CIR from the device’s serial port is time consuming, which
makes NLoS mitigation challenging in a dynamic setting. The authors of [37] proposed
thresholding the difference between the total estimated power of the received signal and
its first path component as a feature for NLoS detection. This feature is calculated from the
DW1000’s metadata, which can be read much faster than the CIR. On top of that, NLoS
conditions can be reliably detected by a single threshold [31,37]. However, it is shown for
on-body localization scenarios that the orientation is a better feature for detecting HBS
conditions, especially in a realistic environment [29].

While many works on general UWB NLoS detection and mitigation exist, few differ-
entiate between different types of NLoS links and/or focus on HBS. The authors of [41] ob-
served widely varying range error distributions depending on the obstructions, while [23]
proposed orientation-aware range error distributions for on-body pedestrian tracking.
In addition to the orientation-dependent error caused by HBS, the detection of the obstruc-
tion type can be used to mitigate NLoS more accurately. A fuzzy classifier was developed
in [38], which labels a measurement as a combination of several NLoS types, including
HBS. While a 50% reduction in the root-mean-squared localization error was achieved, [38]
regarded HBS as merely humans obstructing the direct path and did not incorporate the
relative orientation for on-body localization. Also, the localization algorithm in [38] needs
range measurements from multiple anchors to estimate a position, which is not desirable
for dynamic localization as previously mentioned. Solutions for dynamic (pedestrian)
localization incorporate NLoS detection/mitigation strategies into tracking algorithms
(i.e., filters), which estimate a new position for each new range measurement while tak-
ing previous measurements into account. State-of-the-art solutions have added IMUs to
their pedestrian tracking algorithms [25,26,28]. By integrating the inertial data [25] or by
employing a PDR algorithm [26,28], these systems combine inertial localization systems
unaffected by NLoS conditions but prone to drift errors with absolute UWB positioning.
On top of that, active NLoS detection was added based on the estimated walking direction
and distance derived from IMU data in [25,26], but the orientation itself was not used for
HBS mitigation. The authors of [28] do differentiate between spatial obstructions and HBS
by respectively mapping the obstructions and by using an IMU to estimate the relative
user orientation. By incorporating different mitigation strategies for each NLoS type into
an adaptive Extended Kalman Filter (EKF), [28] improved the latter approach by 40%.
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Although good HBS mitigation results are achieved, [28] assumes a handheld tag that
is 25 cm in front of the body. Consequently, the body-induced range error is Gaussian
distributed with a constant standard deviation for all orientations, which does not grasp
the full complexity of the problem. Also, in our opinion, an on-body tag allows for a wider
range of real-world applications in, e.g., sports and industry, in which the athlete or worker
already uses both hands.

Despite the abundance of research on UWB NLoS/HBS detection and mitigation,
there is limited research on exploiting the knowledge of body orientation to mitigate HBS
effects for on-body UWB localization. The relative orientation was used in [27], in which
the orientation was estimated using a sequence of previously estimated positions. This was
incorporated into a PF with an orientation-aware range error model as proposed in [23]
to mitigate HBS effects. This orientation estimation strategy is flawed, as the orientation
cannot be correctly estimated when the pedestrian is not walking in a straight line. In
fact, ref. [27] reported an 82% reduction in the localization error with a chest-mounted
tag when the ground truth orientation was used but only a 36% reduction when the
estimated orientation was used. Furthermore, the orientation-aware range error model
used in [27] considers all range measurements as LoS for orientations below a threshold,
using a Gaussian range error model for its PF algorithm. Above the threshold, the channel is
considered NLoS and the Gaussian (LoS) distribution is replaced by a Gamma distribution,
where it is fitted on training data for which the true orientation is also above the threshold.
However, the transition from a Gaussian-like (LoS) PDF to a heavy-tailed (NLoS) PDF can
occur gradually and begin at varying angles [29], as this transition is affected by several
factors, as discussed in Section 2.1. For these reasons, it is cumbersome to identify an
optimal threshold for which the channel condition becomes NLoS, and the model does not
fit well for range measurements with an orientation that is close to the threshold. Also,
when the true orientation is close to the threshold, even small errors in the orientation
estimation can cause the selection of the wrong distribution.

Therefore, we propose the use of mixture models as a better choice (as, e.g., in [17]), as
they model distributions that are the sum of several unobserved variables. More specifically,
we propose GMMs as they allow for the use of Kalman Filter (KF)-based algorithms, which
are faster than their PF counterpart. Furthermore, we also use an IMU to estimate the
tag heading more accurately as proposed in our previous work [29], and we make the
tag–body orientation independent from the walking direction, unlike in [27]. The IMU can
also be used to fuse our proposed algorithm with existing PDR methods as in [28], but this
is beyond the scope of this work.

3. Materials and Methods
3.1. Experiment Setup

The experiment setup is divided into five parts. The first part explains the data collection.
The next three parts cover the hardware itself, which consists of the UWB system, the IMU, and
the ground truth system. The fifth part describes the measurement environment and trajectories.
A summary of the hardware settings and experiment details is provided in Table 1.

3.1.1. Data Collection

A Raspberry Pi (RPi) read both the UWB tag and IMU output using its serial ports.
The mocap output as well as the data read by the RPi were published to a local MQTT
broker. All sensor data were received in order and timestamped by subscribing to their
MQTT topics.

3.1.2. UWB

The UWB measurements were performed using “Wi-Pos” [42]. This hardware platform
is based on the Decawave DW1000 UWB transceiver, which was controlled by a Zolertia
RE-Mote. The latter orchestrated the ranging scheme using its CC1200 sub-GHz radio and
was connected to the transceiver via a custom PCB. Each device could be configured either
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as tag or anchor, and all devices were equipped with an elliptical UWB patch antenna in
this work. Symmetrical double-sided UWB-TWR was performed between the tag and one
anchor at a time according to a time division multiple access protocol, after which the range
was read from the tag’s serial port over USB.

Table 1. UWB hardware and measurement settings.

General

Environment type Open space industrial lab
Measurement area 6.4 m × 7.2 m

# Trajectories 2 (performed 5 times each)
Total experiment length 9 min, 812 m

Sensors UWB, IMU, mocap (ground truth)

UWB

Hardware Wi-Pos [42]
# Anchors 8 available, 4 used

Anchor geometry Rectangular
Tag position Abdomen

Sample rate (Hz) 23 (8 anchors), 11.5 (4 anchors)
# Measurements 12,482 (8 anchors), 6241 (4 anchors)
UWB Channel 5

Pulse repetition frequency (MHz) 64
Bitrate (kb/s) 850

Preamble length (bytes) 1024

IMU

Hardware 9-DoF Adafruit BNO055
Sample rate (Hz) 100

Mocap (Ground Truth)

Hardware 6-DoF Qualisys system (7 cameras)
Sample rate (Hz) 90
Tracking rate (%) 90%

# = amount of.

3.1.3. IMU

The IMU used in this work was the 9-Degrees of Freedom (DoF) Adafruit BNO055.
It is composed of a 3-axis accelerometer, gyroscope, and magnetometer, which measure
acceleration, angular rate, and magnetic field flux density, respectively, along three orthog-
onal axes. The BNO055 device also comes with a built-in AHRS, which fuses the data of
these sensors in order to obtain absolute orientation. At the start of the experiment, the
device is held still along each of its axes and must be rotated along two axes for calibration
of the gyroscope and magnetometer. The sensor data (and calibration flags) were read over
the BNO055’s UART interface at 100 Hz.

3.1.4. Motion Capture (Ground Truth)

A Qualisys mocap system delivered mm-level accurate ground truth at 90 Hz, and
it used its infrared (IR) cameras to track the IR markers that were attached to the carried
setup. However, the human body makes it more difficult to consistently track markers
on the UWB tag, especially near the edges of the capture area. Therefore, all hardware
was taped onto a piece of cardboard and three markers were put on the sides, as shown
in Figure 2a. This solution allows the mocap system to achieve a steady tracking rate of
90%. A rigid body was defined from the constellation of the IR markers using the mocap
system’s user interface. Rigid bodies in the Qualisys mocap system have a local reference
frame within, of which its origin is placed at the UWB antenna. The Z-axis points up, the
Y-axis is perpendicular to the antenna surface and points away from the user (i.e.,

#  »

PT), and
the X-axis points to the user’s right, as shown in Figure 2a. In the remainder of the paper,
the ’L’ and ’G’ subscripts denote local and global coordinate axes, respectively. Furthermore,
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in addition to 3D positions, the mocap system provides absolute orientation of the body in
the form of a rotation matrix.

ZL 

YL 

XL 

IMU 
RPi 

Tag 

IR 
IR 

IR IR 

power 

bank 

(a)

mocap IR camera 

UWB Anchor 

(b)
Figure 2. Part of the measurement area of the IIoT lab (a) and the on-body setup carried by the user (b).

3.1.5. Environment and Trajectories

Dynamic measurements were performed in the Industrial Internet of Things (IIoT)
lab at IDLab, Ghent University. This lab has an 11 m × 9 m experiment area, equipped
with eight Wi-Pos UWB anchors and seven Qualisys IR mocap cameras. One side of this
environment is shown in Figure 2b, which is provided with close-ups of a UWB anchor
and a mocap camera. Only four anchors, which were placed in a rectangular geometry at
a height of 0.4 m, were used in our experiments for a more realistic anchor density given
the relatively small area. The UWB anchors were attached to the walls with a distance of
15 cm between the walls and antennas. Two trajectories were designed, each performed
five times, with each repetition taking on average 50 s to complete. The tag was held in
front of the body at the abdomen while walking casually and while the arms were kept to
the side, as shown in Figure 2a. Slight variations to the trajectories were conducted during
each repetition.

The ground truth of one repetition of each trajectory is shown by the blue scatterplots
in Figure 3a,b. The trajectories are outlined by red dashed lines, which mark the area in
which mocap was able to track the body consistently. This area lies within the anchor
geometry, shown by the blue dots in the corners of Figure 3a,b, and does not lie near the
anchors. The geometric dilution of precision is therefore assumed to be fairly constant in
the measurement area; thus, the UWB position error is only affected by the range error
and not by the actual position. Also, the range error is not significantly affected by the
true tag–anchor distance for the possible distances in this scenario [42]. Furthermore, no
obstacles other than the person carrying the tag are present inside the anchor geometry.
Therefore, the range error is only dependent on HBS effects.

Lastly, because our proposed work was based on range error PDFs, a training dataset
was additionally created by randomly walking through the measurement area with the
same hardware setup. This training dataset contains 4228 range measurements, for which
all orientations are represented in almost equal quantity and with true tag–anchor distances
in the (3, 10) m range.

3.2. System Overview

Our proposed HBS mitigation approach is integrated into two filter algorithms, the
KF and PF. This section provides a comprehensive, high-level system overview, which
applies to both filters, as they are two realizations of the same concept.
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Figure 3. Ground truth trajectories, surrounded by a red dashed rectangle marking the effective
measurement area. One trajectory (a) consists almost entirely of smooth turns, while the other (b)
consists of straight parts and sharp turns. The dots in the corners represent the UWB anchors. Black
lines represent concrete walls to which the anchors are attached.

3.2.1. Range-Based Filtering

The filter algorithm tracks the state PDF of the tag worn by the pedestrian. The tracked
state includes at least the tag’s position, as this is the desired output of the algorithm. Each
time a new range measurement is available, the filter executes a prediction-update cycle.
This is indicated by the loop in the green blocks in Figure 4, which shows a flowchart of
the system. A new state is first predicted by propagating the state from the moment of the
last measurement up to the moment of the new measurement. State prediction involves
a process model fx, which is a model of the dynamics of the tracked object and is also
represented by a PDF. Assuming that the pedestrian walks casually along a flat trajectory,
a simple Newtonian 2D Constant Velocity (CV) model is appropriate here. For this model,
both the tag position and velocity are included in the estimated state and hence in the 4D
vector (1) representing the state mean x, where x is the state PDF.

x = E[x] =
[
Tx Ty vx vy

]T (1)

T and v in (1) are the 2D tag position and velocity of the state mean, respectively.
The predicted state PDF xt+∆t at time t + ∆t is acquired by the convolution of the

previous state PDF xk with the process model fx, as described in (2) [43].

xt+∆t = xt ∗ fx (2)

The overline in (2) makes clear that this is the prior state PDF at time t + ∆t. During
the update step, the posterior state PDF xt+∆t is estimated by applying the Bayes theorem
to incorporate the measurement. In the most general form, this involves multiplying the
prior (i.e., xt) by the likelihood L (i.e., the range error PDF) and normalizing the result [43],
as in (3).

xt+∆t = ||L · xt+∆t|| (3)

The difference between each filter type lies in how the state PDF, (2), and (3) are
implemented, which is discussed in Section 3.4. Despite the implementation difference, one
common operation of range-based tracking algorithms, usually regarded as the first step
of the measurement update, is calculating one or more range residuals. A range residual
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y is the difference between the measured range z and the distance between a candidate
position and relevant anchor, as described in (4).

y = z− h(x)

= z−
√
(Ax − Tx)2 + (Ay − Ty)2 + (Az − Z)2 (4)

h(x) is typically denoted as a non-linear function transforming the state mean to the
measurement space [43–45]. (Ax, Ay, Az) is the 3D position of the anchor, whereas (Tx, Ty)
is the 2D position of a candidate position for the tag. Z denotes the tag height, and its
dissimilar symbol is deliberately chosen to emphasize that this is not part of the tracked
state. Instead, Z is the average height measured by mocap over the entire trajectory.

Figure 4. Flowchart of the human body shadowing mitigation approach. The blue blocks represent
the hardware measurements and known UWB anchor locations. The green blocks represent the
processes of a typical tracking algorithm. The red (encircled with dashes) and yellow blocks represent
the offline and online part of the proposed mitigation method, respectively. The arrows show how
the output of each block serves as input to one or more other blocks.

Before the first cycle starts, the filter is initialized (Figure 4). In our work, a common
part of each filter was initializing the state mean. Assuming no prior knowledge of the
position, the Linearized Least Squares (LLS) multilateration algorithm [46] as implemented
for 2D positioning in [29] estimates the initial tag position (mean) after receiving the first
four range measurements. The mean velocity was set to 0 m

s , as it is assumed that the user
is stationary at the start of the experiment. Lastly, to keep equations concise, the t and
t + ∆t subscripts were dropped. In the remainder of the paper, x and P, x and P, and x′

and P′ denote the state mean and covariance at the start of the cycle, after the prediction
step, and after the update step, respectively.

3.2.2. Proposed HBS Detection and Mitigation Technique

Filter algorithms can accurately estimate the state while mitigating measurement
errors by fusing information on past measurements and the dynamics of the tracked object.
However, an important requirement is that the likelihood function matches the PDF of
the actual (range) measurement errors. As discussed in Section 2.1, the range error PDF
under HBS conditions is dependent on φ. This is where the yellow and red colored blocks
in Figure 4 come into play.

We propose complementing the system with an IMU, of which the data are fused
with the filter algorithm in order to estimate φ. As depicted in the yellow blocks of the
flowchart, the estimated φ angle φ̂ is used directly to select the GMM-based range error
model that is fitted for the current orientation. φ̂ itself is estimated by combining the
filter’s predicted position with the (bias-corrected) IMU data along with the known anchor
positions. Training the models requires an offline phase, in which mocap data are used to



Sensors 2023, 23, 8289 11 of 25

calculate the UWB range errors and their corresponding ground truth φ value (φgt). This
offline phase is depicted by the red blocks in Figure 4, encircled by a dashed line.

3.3. Characterization of Human Body Shadowing Effect on UWB Range Errors

This section describes the estimation of the φ angle and the proposed error model in
more detail.

3.3.1. Estimation of Tag–Body–Anchor Orientation φ̂

HBS effects are related to the body–tag orientation relative to the anchor. Given the
vector definitions in Figure 1, φ ∈ [0◦, 180◦] is calculated by rewriting the scalar product of
#  »

PT and
#   »

TA for φ (5).

φ = arccos (
#  »

PT · #   »

TA
|| #  »

PT|| || #   »

TA||
) (5)

#   »

TA is estimated by a candidate 2D position of the tag and the known position of the anchor
being ranged with. These positions are defined in the global coordinate frame (XG, YG),
which is aligned with the coordinate frame of the mocap system. To estimate

#  »

PT, we rely
on the assumption from Section 3.1 that the local Y-axis YL always points away from the
body and is therefore equivalent to

#  »

PT. In that case, we can introduce the tag yaw θtag as
the angular deviation of

#  »

PT/YL from XG, as illustrated in Figure 1. Given θtag, calculating
#  »

PT is straightforward (6).
#  »

PT = [cos (θtag), sin (θtag)] (6)

To estimate θtag, we employ the yaw θimu provided by the IMU’s built-in AHRS.
However, θimu represents the angular deviation of the local X-axis XL from the north vector.
Therefore, the global bias bG, the deviation of the global X-axis XG from the north vector,
has to be subtracted from θimu. Furthermore, the local bias bL, the deviation of the local
X-axis XL from vector

#  »

PT, has to be subtracted from θimu too due to IMU placement. Thus,
the relationship between θtag and θimu is described by (7).

θtag = θimu − bG − bL (7)

In this work, YG aligns with north and XG with east (i.e., east, north, up reference
frame), as illustrated in Figure 1, thus bG = −90◦. As shown in Figures 1 and 2a, XL points
to the user’s right, thus bL = −90◦ for this setup. In practice, these biases can be measured
simultaneously by pointing

#  »

PT to XG. Because θtag should be 0◦, the AHRS output is the
total bias to be subtracted. This simple calibration comes in addition to the standard IMU
calibration process, which is semi-automated in the Adafruit BNO055 system and of which
the theoretical background can be found in the literature [47].

Note that this method is independent of the tag position on the body. In fact, if bL is
constant, i.e., if the top of the IMU in Figure 2a is pointed away from the body, placing the
equipment on another part of the body has no effect on how φ is estimated.

Lastly, the mocap system provides the tag position and a rotation matrix R ∈ R3X3.
The columns of R represent the axes of the local coordinate frame; thus, when taking
Figures 1 and 2a into account, the ground truth vector

#  »

PTgt = R1:2,2. Similarly,
#   »

TAgt is
based on both the ground truth tag and anchor positions. The ground truth φgt is then
calculated with (5) but using

#  »

PTgt and
#   »

TAgt instead. In the remainder of the paper, φ̂ and
φgt represent the estimated and ground truth values of φ.

3.3.2. Robust Orientation-Aware Gaussian Mixture Error Model

When incorporating a measurement, i.e., the measurement update in Figure 4, the
filter’s likelihood function should resemble the PDF of the measurement error. In order to
model this phenomenon more accurately than state-of-the-art models, we propose a robust
range error model based on a bank of GMMs. For each integer value i ∈ [0, 180], a GMM
is trained on a subset of range errors from the training dataset, which is sampled around



Sensors 2023, 23, 8289 12 of 25

φgt = i. Whenever a φ̂ value is estimated during the online phase, the GMM corresponding
to φgt = φ̂ is selected for the measurement update. This means a Gaussian-like distribution
is selected for small φ̂ values (LoS), which transitions to a heavy-tailed PDF being selected
when φ̂→ 180◦, i.e., in NLoS conditions.

When fitting the GMMs, our intention is to obtain a PDF that describes the range
error PDF well for any φ but is general enough to work with φ̂ errors of several degrees.
To sample a subset of range errors for a given φ, the errors are weighted based on their
corresponding φgt value by a Gaussian window centered on φ. The weight wφgt of a range
error with corresponding φgt in the dataset Serr for a given φ is calculated with (8), in which

φ
(k)
gt is the φgt value corresponding to range error k.

wφgt(φ) =
exp (

(φ−φgt)
2

−2σ2 )

∑
k∈Serr

exp (
(φ−φ

(k)
gt )2

−2σ2 )

(8)

A random subset of range errors is then selected by multinomial resampling, in which
range errors with a higher weight have a higher chance of being selected. Thus, most
selected errors correspond with a φgt that is close to φ, with some corresponding to a φgt
that is further from φ depending on the selected σ.

The Expectation-Maximization (EM) algorithm as implemented in [48] is used in this
work to fit the GMMs. As the GMM is a weighted sum of Gaussians, the EM algorithm’s
main hyperparameter is the amount of Gaussian components to fit. To find the ideal
amount, a sequence of GMMs are fitted for each subset, of which the first GMM has one
Gaussian component, the second has two components, etc. The GMM with the lowest
Bayesian Information Criterion (BIC) value is then selected for each subset, resulting in a
bank of 181 GMMs, each having Kφ components. Thus, given the orientation φ and range
residual y for a candidate position, the measurement likelihood function L is described
by (9).

L(φ, y) =
Kφ

∑
k=1

π
(k)
φ · N (y : µ

(k)
φ , σ

2(k)
φ ) (9)

The 3Kφ parameters in (9) are calculated by the EM algorithm [48], where π
(k)
φ is the

weight of the k-th out of Kφ Gaussian components of the GMM with index φ with the
lowest BIC value. This offline phase is denoted by the red blocks in Figure 4.

3.4. Mitigation of Human Body Shadowing Effects

HBS effects on UWB localization are being mitigated by combining the IMU-based
HBS characterization approach from Section 3.3 with a tracking algorithm, which causes the
latter to adapt its measurement noise model to the input data. So far, the roles of the relative
orientation φ and GMM-based error model in the localization system have been discussed
in Section 3.2, and how they are acquired has been discussed in Section 3.3. However,
the evaluation of HBS effects relies on the IMU as well as the estimated position (5). The
effectiveness of the proposed HBS mitigation strategy is therefore highly dependent on the
positioning algorithm itself. In this section, the implementation of our work for two known
filter variants, the PF and Unscented Gaussian Sum Filter (UGSF) algorithms, is discussed
in more detail.

Furthermore, filters are designed for real-time tracking as they incorporate past mea-
surements up to the latest one to estimate a new position. However, for applications
where a certain delay is permitted, smoothers can improve accuracy by also including
future measurements. Therefore, the effect of our proposed HBS mitigation technique on
smoothers is also explored.
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3.4.1. Unscented Gaussian Sum Filter

The GSF or Gaussian Mixture Filter (GMF) is similar to the KF and its variants. While
the state, process model, and measurement error model are represented by Gaussian PDFs
in the KF, they are represented by GMMs in the GSF [44]. For each Gaussian component,
the GSF employs the EKF [44] or Unscented Kalman Filter (UKF) [49] equations. This
enables the GSF to handle non-Gaussian processes and/or measurement noise while still
being able to exploit the efficiency of the KF’s closed-form solution.

Our filter is initialized with a one-component GMM, i.e., a single Gaussian PDF, which
is fully described by its mean vector (10) and covariance matrix (11).

x =
[

TLLS
x,0 TLLS

y,0 0 0
]T

(10)

P =


σ2

T,0 0 0 0
0 σ2

T,0 0 0
0 0 σ2

v,0 0
0 0 0 σ2

v,0

 (11)

As discussed in Section 3.2, the initial position is estimated using the LLS algorithm,
and the user is assumed to be stationary. σ2

T,0 and σ2
v,0 are the initial noise variances of

the position and velocity, which are each set as equal for both axes. The process model is
linear with Gaussian noise; thus, the prediction step is performed using the standard KF
Equation (12) in this work.

x = N (x, P) = N (Fx, FPFT + Q) (12)

The state transition matrix F of the CV process model and process noise Q are provided
in (13) and (14), respectively.

F =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

 (13)

Q =


∆t4

4 0 ∆t3

2 0
0 ∆t4

4 0 ∆t3

2
∆t3

2 0 ∆t2 0
0 ∆t3

2 0 ∆t2

 · σ2
w (14)

Q is derived from the piecewise white noise model with acceleration being the highest
order term [43], where σ2

w is the process noise variance. Thus, after prediction, the mean of
the Gaussian state PDF has shifted in the direction of the velocity vector, and the covariance
has increased due to the process noise. Given the predicted state mean x and the concurrent
calibrated AHRS measurement, φ̂ is calculated using (5) and (6), in which x is substituted
as tag position T. As discussed in Section 3.3, the measurement error model for a given φ̂ is
a GMM with Kφ̂ components (9). Therefore, after the measurement update, the state PDF

x′ is a GMM with Kφ̂ components (15), where w′(k)
φ̂

, x′(k), and P′(k) are the weight, mean,
and covariance of k-th component of the updated state, respectively.

x′ =
Kφ̂

∑
k=1

w′(k)
φ̂
· N (x′(k), P′(k)) (15)

Each Gaussian component N (x′(k), P′(k)) of the posterior (15) is estimated by a sep-
arate Kalman-type filter [44]. Each k-th filter in this work is initialized with the same
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prior (12) and performs the measurement update using the k-th Gaussian component of
the selected GMM as the likelihood function. In this work, the UKF is chosen for the filter
bank, hence the name UGSF, as first proposed in [49]. The UKF itself is a variant of the
KF that is designed to handle non-linearities, e.g., the transform function h() in (4), by
applying the Unscented Transform (UT) instead of an erroneous linearization step as in
the EKF. Technical details on the UKF can be found in [50]. The weight w′(k)

φ̂
of each

component is calculated with (16) [44], where y is the pre-fit residual and Pz represents
the state covariance in the measurement space. y is calculated by substituting x in (4). Pz
is a scalar, and is calculated by applying h() to the sigma points of one of the UKFs and
calculating the weighted covariance, i.e., by applying the UT [50].

w′(k)
φ̂

=
π
(k)
φ̂
· N (y : µ

(k)
φ̂

, Pz + σ
(k)
φ̂

)

Kφ̂

∑
j=1

π
(j)
φ̂
· N (y : µ

(j)
φ̂

, Pz + σ
(j)
φ̂
)

(16)

Lastly, the state could be used as is for the next cycle. Each component would then be
propagated as in (12) and then updated by a bank of UKFs as in (15). The latter would make
the amount of Gaussian components in the state rise exponentially. Several approaches are
mentioned in [44,49] to solve this problem. However, we chose to collapse the state back
into a single Gaussian at the end of each cycle, using (17) and (18) [45].

x′ =
Kφ̂

∑
k=1

w(k)
φ̂

x′(k) (17)

P′ =
Kφ̂

∑
k=1

w(k)
φ̂

(P′(k) + (x′(k) − x′)(x′(k) − x′)T) (18)

Simultaneously, (17) is used as the position output after each cycle.

3.4.2. Particle Filter

In the PF, the state is represented by a set of particles.
At initialization, a set of N particles is sampled from a prior PDF, which can be of any

type. Without prior knowledge of the state, the uniform distribution would be appropriate.
However, to stay in line with the the GSF, the initial particle set is sampled from the same
PDFs, (10) and (11), as is used for the initial state of the UGSF. Furthermore, each particle
p’s state includes a weight wp.

During prediction, a random Gaussian value is added to each particle’s velocity (19),
after which the particles are propagated (20).

vp = vp + w ∈ N (
#»

0 , σ2
v · I2) (19)

Tp = Tp + ∆t · vp (20)

Next, the range residual yp is calculated and the orientation φ̂p,t+∆t is estimated for
each particle p at time t + ∆t by substituting the particle position Tp as the candidate
position in (4) and (5). Each particle is then reweighted according to (21), in which L is the
likelihood function (9), i.e., the measurement noise model.

w′p = wp · L(φ̂p, yp) (21)

The estimated position T at time t + ∆t is estimated as the weighted average of the
particle positions. Sampling importance resampling is applied to solve the known particle
degeneracy problem, in which a new set of N particles is sampled from the updated particle
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set. In this work, this resample step is applied each cycle using stratified resampling. Finally,
the resampled particle set becomes the prior PDF for the next cycle.

3.4.3. Computational Efficiency Improvements

The PF’s major drawback is its computational complexity in both time and space.
For example, a PF is several orders of magnitude slower than an EKF or UKF, depending
on the amount of particles used. In this work, two improvements have been made to reduce
the computation time of the proposed PF algorithm.

First, computing the likelihood (9) for each particle is time consuming, while the
input is often very similar. Therefore, a lookup table (LUT) is constructed for each of the
181 GMMs. For each LUT, the stored keys are range error values in the range [−3, 7] m with
a resolution of 1 cm. The LUT values are the corresponding likelihoods that are calculated
with (9). In the PF online phase, range residuals are rounded to 1 cm before the likelihood
is retrieved from the LUT.

Second, because the process model is linear with Gaussian noise, the closed-form KF
solution (12) can be used. Particles are then sampled from the Gaussian state PDF after the
prediction step. After weighting the particles with the (LUT-based) likelihood function, the
state is transformed back into a Gaussian PDF with (22) and (23).

x′ =
N

∑
p=1

w′p · x′p (22)

P′ =
N

∑
p=1

w′p · (x′p − x′)(x′p − x′)T (23)

3.4.4. Smoothing

Applications that do not rely on real-time tracking can use all measurements (i.e., batch
smoothing) to estimate each position. Alternatively, using the measurements up to current
time T can be used to estimate the position at time T− L (i.e., fixed-lag smoothing), where
L is the lag. A Rauch-Tung-Striebel (RTS) smoother [51] is implemented on top of the UGSF,
which is denoted as RTS-UGSF. The PF is additionally implemented as a Backtracking
Particle Filter (BPF) [52], in which the particle state is expanded with a reference to the
particle from which it descends.

Both smoothers are implemented as fixed-lag smoothers in order to investigate the
effect of the introduced lag on the localization accuracy. Therefore, as depicted in Figure 4,
the L most recent estimated states are stored in memory. The BPF searches through
the L latest generations of surviving particles by recursively looking up each particle’s
predecessor L times. This results in a subset of the original particles at time T − L, which
has surviving descendants at time T. The weights of this particle subset are normalized,
and the smoothed state is then estimated as the weighted average of the subset.

The implementation of the RTS smoother depends on the filter type. Because the state
is collapsed to a single Gaussian after each cycle, the RTS equations for the standard KF can
be used as described [43]. Similar to the BPF, the RTS smoother begins at the latest state
and works its way back to the state at time T − L.

4. Results

To evaluate the range errors, the first ground truth positions before and after each
range measurement were interpolated. Range errors were then calculated by substituting
the interpolated 3D ground truth tag position as (TX , TY, Z) in the residual Equation (4).

For each estimated position (i.e., for each UWB range measurement), the localization
error was defined as the 2D Euclidean distance between this position and the interpolated
ground truth position. Furthermore, each PF configuration was run ten times due to the
randomness of the resampling step, i.e., each PF algorithm was run 100 times in total. The lo-
calization results of each algorithm discussed in this section were calculated on the union of
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localization errors of all runs. Because the mocap tracking rate is 90%, the range and position
errors were only calculated if the time between the two mocap positions to be interpolated
was less than 0.1 s.

4.1. Human Body Shadowing Effect on UWB Ranging Accuracy

Figure 5 shows four percentile errors as a function of φgt. These percentile errors were
calculated using the same subsets as for fitting the GMMs in Section 3.3. All percentiles are
quite constant for φgt < 80◦ and only slightly increase when φgt approaches 90◦. The p99
error of 32 cm and median error of 4 cm are in line with results from off-body measurements
with the same hardware in the same environment [42]. This confirms the findings of other
works discussed in Section 2.1 that UWB ranging is not significantly affected by the human
body when the tag antenna is in visible LoS of the anchor antenna. The range error clearly
increases with φgt when φgt > 90◦. The median error increases to 32 cm for φ > 160◦,
which equals the p99 error for φgt < 90◦. The p99 error for φ > 160◦ is 1.53 m, with outliers
reaching up to 4.05 m. Thus, with the growing (amount of) outliers for increasing φgt, the
range error distribution becomes more skewed.

0◦

15◦

30◦

45◦

60◦
75◦90◦105◦

120◦

135◦

150◦

165◦

180◦
0 0.3 0.6 0.9 1.2 1.5

Figure 5. Range error statistics as a function of the body–tag–anchor orientation φ ∈ [0◦, 180◦].

This is reflected in Figure 6, which shows the range error histograms in blue for
four φgt values, with the fitted GMMs in red. Figure 6 clearly shows how the optimal
amount of Gaussian components needed to fit a GMM to the range error subset increases
monotonically with φgt due to the increasing skewness. This monotonic increase also
occurs with the range error that corresponds with the maximum of the GMM. The GMM
in Figure 6a (φgt = 60◦) has two Gaussian components. Having similar means but strongly
divergent variances, these components form an almost symmetrical Gaussian-like PDF,
which simultaneously has a narrow peak at 2 cm and elongated tails. Figure 6b (φgt = 100◦)
shows that the distribution has shifted, with its maximum being at 4 cm. The left tail
has shrunk, while a heavier right tail has appeared, indicating that one component now
has a larger mean as well as a larger variance. At φgt = 150◦, the range bias caused by
creeping waves has shifted the peak of the distribution to 12 cm. Range errors caused
by reflections also start to occur, which causes the PDF to become heavily skewed. Due
to an increased amount of range errors caused by reflections, a large part of the errors in
Figure 6d (φgt = 150◦) lie outside of the main peak (30 cm), almost forming a second mode
around 70 cm.
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Figure 6. Histograms (blue) of UWB range error subsets with fitted GMMs (red). Each subset is sampled
around φ with a Gaussian window from the IIoT lab static experiment dataset discussed in [29]. (a–d)
show how the amount of Gaussian components K needed to train the model, is proportional to φ.

4.2. Human Body Shadowing Mitigation for UWB Localization
4.2.1. Algorithm Configurations

Abbreviations are used in this section for a concise discussion of the various localiza-
tion algorithms. Our proposed HBS mitigation approach was implemented on top of a PF
and UGSF as described in Section 3, which is denoted here as PF-Prop and UGSF-Prop. We
also implemented a state-of-the-art PF algorithm (PF-Ref) [27] referenced in Section 2. We
used its Gaussian gamma range error model and heading estimation algorithm to analyze
the impact of our proposed IMU-based orientation estimation (PF-Mixed-IMU) and GMM-
based error model (PF-Mixed-GMM) separately. Furthermore, we also implemented a UKF
with orientation-aware anchor selection (UKF-AS), in which the update step is skipped
when φ̂ > φc, where φc is a fixed threshold. This is performed to verify whether using
all measurements with the proposed orientation-aware range error model is better than
simply omitting measurements under high HBS influence. For the dataset used in this
work, the optimal threshold is φc = 125◦, which is used for all following results of UKF-AS.
The evaluated filter algorithms and their smoother variants are summarized in Table 2.

Table 2. Implemented configurations of the proposed, state-of-the-art, and well-known filter algo-
rithms evaluated in Section 4.2.

Algorithm Originality Description

PF-Prop New PF with proposed robust GMM-based range error model and
IMU-based orientation

kPF-Prop New PF-Prop with Kalman prediction step

UGSF-Prop New UGSF with proposed robust GMM-based range error model and
IMU-based orientation

PF-Ref State-of-the-art Referenced PF fitting the range error model to our training data [27]
PF-Ref (unfit) State-of-the-art Referenced PF [27] using range error model parameters from the paper

PF-Mixed-IMU Mixed PF with IMU-based orientation and referenced [27]

PF-Mixed-GMMr Mixed PF with proposed range error model and position-based heading estimation
of [53] as used in [27]

LLS Known Stateless Linearized Least Squares (LLS) multilateration
EKF/UKF Known Default extended/unscented Kalman filter with CV process model
UKF-AS New UKF with orientation-aware anchor selection by thresholding φ

BPF-* Known PF-* algorithm, but with a Backtracking PF, thus acting as a smoother
RTS-* Known Rauch-Tung-Striebel (RTS) smoother implemented on top of * algorithm

*: wildcard for foregoing algorithm abbreviations

4.2.2. Benchmark of Proposed Algorithms

Our proposed algorithms are compared with some well-known localization algorithms
(LLS, EKF, UKF), as well as a state-of-the art HBS mitigation algorithm (PF-Ref) from [27].
The EKF has a median and p99 error of 23 cm and 73 cm, respectively, and is used as
the main benchmark algorithm. Thus, improvements in this section are expressed in
percentages relative to the standard EKF unless specified otherwise. Figure 7 shows the



Sensors 2023, 23, 8289 18 of 25

Cumulative Distribution Function (CDF) of localization errors for the discussed algorithms.
BPF-Prop performs the best, reducing the median and p75 error to 12 cm (−43%) and
18 cm (−45%), respectively. While achieving very high accuracy, this algorithm does not
provide real-time results. In fact, the lag selected for the smoother algorithms is 0.6 s.
Therefore, the best performing real-time algorithms are (k)PF-Prop and UGSF-Prop, which
outperform all other algorithms. kPF-Prop and UGSF-Prop achieve a median error of 13 cm
(−38%) and 15 cm (−29%) and a p99 error of 46 cm (−37%) and 48 cm (−34%), respectively.
kPF-Prop is a faster variant of the PF-Prop and has the same performance as PF-Prop.
PF-Ref is outperformed by our proposed algorithms, achieving a median and p99 error
of 19 cm (−10%) and 58 cm (−21%), respectively. When not fitting the PDFs of PF-Ref
to our training dataset but using the PDF parameters fitted for the experiments in [27]
instead, the resulting PF-Ref (unfit) diverges. Furthermore, Figure 7 shows our proposed
algorithms perform better than simply omitting the measurements under HBS influence,
as performed in UKF-AS. More specifically, the p90 error of UGSF-Prop is 24% lower than
that of UKF-AS.

UWB localization experiments in LoS conditions, in which the tag was placed on
top of a moving cart, have been performed in the same environment with identical UWB
and mocap infrastructure in [18], although eight UWB anchors were used. The EKF in
the LoS experiments achieved a p50 and p90 error of 5 cm and 10 cm, respectively. We
tested the EKF and our proposed KF on the same eight anchors for a fair comparison. The
EKF achieves a p50 and p90 error of 16 cm (+320%) and 31 cm (+210%), respectively,
while the PF-Prop achieves 9 cm (+180%) and 20 cm (+100%), respectively. Thus, our
proposed PF algorithm does not completely remove the HBS effects on localization errors
but does mitigate these effects significantly. Figure 8 shows red scatter plots of the two
trajectories as estimated by the EKF (Figure 8a,e; Figure 8b,f; Figure 8c,g; and Figure 8d,h).
The ground truth is represented by the blue scatter plots. The improved performance of
the referenced PF compared with the EKF and proposed PF compared with the referenced
PF and EKF is clearly visible. BPF-Prop, with a lag of 0.6 s, overlaps nicely with the ground
truth trajectory.

Figure 7. CDFs of localization errors of proposed and referenced algorithms.
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Figure 8. Plots of the estimated (red) over ground truth (blue) 2D trajectories for the EKF (a,e) al-
gorithm, the reference [27] (b,f), the proposed filter algorithms (c,g), and the proposed smoother
algorithm (d,h) with a delay of four UWB measurements.

4.2.3. Selecting Algorithm Parameters

In previous sections, several parameters are mentioned that affect the performance
of the discussed positioning algorithms. The values of some important parameters are
motivated in this section.

An important parameter is the amount of particles that is used by (variations of) the
PF algorithm. While more particles generally means better performance, large amounts of
particles can increase the computational burden to a point where, depending on the hard-
ware, real-time positioning is no longer possible. Figure 9a shows the average localization
error of the PF variations as a function of the amount of particles (N) used. The average
localization error of all PFs decreases sharply for each added particle for N < 150 and
keeps decreasing steadily until N = 400. For N > 400, many more particles are needed for
limited performance gain.

Figure 9. Average position errors of proposed and referenced algorithms as a function of the amount
of particles N (a) and of the fixed lag L in seconds (b).
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Figure 9b shows the average localization error of the smoother variants of the proposed
and referenced PF algorithms as a function of the fixed lag L. A lag of 0 s represents
the real-time performance. The average error of each algorithm decreases sharply with
increasing lag for L ≤ 0.6 s.The highest performance is achieved by BPF-Prop, which has
an average error of 11 cm at L = 0.6 s. This is a 30% reduction in the average localization
error compared with its real-time counterpart (PF-Prop). kPF-Prop cannot keep track
of its particles’ predecessors because it collapses the state into a Gaussian after every
measurement update. Therefore, it is combined with the RTS-smoother (RTS-kPF-Prop),
achieving an average error of 12 cm (−20%). Thus, while PF-Prop is not as computationally
efficient as kPF-Prop, its smoother variant performs significantly better.

4.2.4. Contribution of the IMU- and GMM-Based Error Model

This section analyzes the contribution of the IMU-based HBS detection method and
GMM-based error model separately. To do this, we implemented two PF variants (PF-
Mixed-IMU and PF-Mixed-GMMr), which are a mix of our proposed PF and the reference
PF [27]. PF-Mixed-IMU uses the range error model of PF-Ref but uses the heading provided
by the IMU to switch between the Gaussian and Gamma PDFs. PF-Mixed-GMMr uses our
proposed GMM-based model but uses the heading algorithm of PF-Ref. The results of these
two variants are compared with PF-Ref and PF-Prop, of which the CDFs are shown together
in Figure 10a. It is clear from Figure 10a that the PF-Mixed-GMMr does not improve the
performance compared with the reference PF. This is explained by Figure 10b, which
shows the discussed algorithms’ CDFs of absolute φ̂ errors. The referenced position-based
heading algorithm [27,53] performs worse than the IMU-based heading algorithm, which
causes a worse estimation of φ̂. Because of high φ̂ errors, a badly matching PDF is often
selected. The IMU-based heading of the PF-Mixed-IMU, which uses the referenced range
error model, improves the performance because the (more) correct PDF is selected more
often. While the IMU-based φ̂ estimation is not free of errors (p95 = 17◦), its improved
performance in combination with our proposed range error model (PF-Prop) delivers the
highest accuracy.

Figure 10. CDFs of the position errors (a) and φ̂ errors (b) of the proposed, referenced, and mixed
PF algorithms.

4.2.5. Runtime Analysis

This section investigates the potential of our proposed algorithms for use on battery-
powered, resource-constrained Internet of Things (IoT) devices. For this reason, a runtime
analysis is performed on an RPi 4 model B running Python 3.11. The presented runtimes
are the averages of running each algorithm ten times on one recorded trajectory with a
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duration of 53 s or 624 UWB measurements. Figure 11 shows the runtimes of the proposed
filter algorithms compared with the UKF. The provided runtimes are relative to the slowest
algorithm, i.e., PF-Prop, and are shown on a logarithmic scale. As commonly known,
the UKF is very efficient with a runtime of only 0.9 s the RPi 4, which is less than 1% of
PF-Prop. The vertical dashed line across Figure 11 shows the duration of the recorded
trajectory used for the runtime analysis. PF-Prop takes, on average, 98.1 s on the RPi 4 to
compute a trajectory using 400 particles. This makes the initial version of our proposed
PF unusable for real-time IoT applications. However, when using LUTs for calculating the
likelihood (9) (PF-Prop-LUT), computation time is more than halved (47.2 s), making it
suitable for real-time applications. PF-Prop, like the generic PF algorithm, iterates over
all particles during the prediction and update step. On top of using LUTs, kPF-Prop-LUT
uses the closed-form KF equations for the prediction step, only iterating over the particles
during the update step. This further improves the proposed algorithm’s efficiency, resulting
in a computation time (23.1 s) that is roughly half the duration of the original PF-Prop. Still,
kPF-Prop’s computation time is roughly four times higher than that of UGSF-Prop (5.4 s)
while only performing marginally better.

Figure 11. Relative runtime of proposed and benchmark algorithms on a logarithmic scale. One hundred
percent equals 98.1 s on a Raspberry Pi (RPi) 4 model B running Python 3.11 for an experiment duration
of 53 s.

5. Discussion
5.1. Results

NLoS conditions still pose a difficult problem for accurate UWB positioning systems.
In the UWB localization of pedestrians, human body shadowing is an important type of
NLoS in which the body obstructs the direct path between an anchor and the on-body
tag. It has been established in earlier works that the distribution of UWB range errors is
highly dependent on the relative orientation of the body and tag with respect to the anchor.
However, there is limited research on exploiting this knowledge to mitigate the effects of
HBS-induced range errors on localization. After a thorough literature study (Section 2),
this work proposed an IMU-based HBS mitigation approach for UWB localization. Our
proposed method is implemented on top of two known tracking algorithms (Section 3),
i.e., a PF and UGSF. The algorithms are evaluated on measurements recorded in the open
area of an industrial lab environment with mm-level ground truth accuracy as provided
by a mocap system (Section 4). The results are compared with those of a state-of-the-art
algorithm and with several other commonly used tracking algorithms. Both the proposed
PF and UGSF methods outperform all other algorithms, with the PF variant achieving the
highest accuracy. However, the UGSF variant is more than ten times faster than the PF,
which makes the former more suitable for constrained, low-power devices for, e.g., Internet
of Things applications. Furthermore, we analyzed how our proposed method performs
when combined with smoother algorithms. It is shown that for a delayed output of only
two seconds, the PF implemented as a backtracking PF can further improve the accuracy
significantly. Meanwhile, the UGSF implemented as an RTS smoother (with fixed delay),
achieves a modest improvement compared with its real-time counterpart.
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5.2. Limitations and Shortcomings

The experiments were performed in an open area with no obstacle other than the user
being localized. Furthermore, the user walked at a relatively constant speed and did not
make any sudden or diverse movements, e.g., quick turns, jumps, crouching, etc.

In a realistic environment, magnetic materials locally distort the Earth’s magnetic field,
which affects the accuracy of the yaw angle that is estimated by the IMU [54]. As shown in
Section 4.2.4, our proposed orientation-aware range error model performs better than the
state of the art, but only when the yaw angle is accurately estimated. As such, it might be
necessary to employ an algorithm that can detect these anomalies as proposed in [55].

In a realistic environment, other types of NLoS conditions may occur that are not
taken into account in this work, e.g., concrete walls, metal racks, etc. This means that the
range error distribution will not only depend on the orientation, but also on the position
of the pedestrian. A map-based range error model could be combined with our current
model, which takes into account static obstacles in the environment, similar to the two-step
error correction algorithm proposed in [28].

In a scenario with multiple pedestrians, each pedestrian can obstruct the direct path
between an anchor and any other pedestrian. Therefore, the tracking algorithm for each
pedestrian would need access to the estimated states of the other pedestrians, which can
then be used similarly to a map-based model.

Because the IMU yaw is independent of the walking direction, the correct distribution
of the range error model can still be selected when the pedestrian makes sharp turns or
walks sideways or backwards, although this has not been explicitly tested in this work.
However, the localization performance might degrade when the pedestrian makes sudden
turns or accelerations because of the constant velocity model that is used in the filter
algorithms. Using a constant acceleration model would allow the localization system
to respond faster to these events but would also make it more susceptible to outliers in
the ranging measurements. Furthermore, more complex movements, such as jumping
or crouching, have also been shown to affect the range error distribution as well as the
rate of failed range measurements [31]. Lastly, the effect of different tag positions has
been modeled before [23]. However, alternative tag positions can also be modeled by our
proposed GMM-based model as the algorithm used for training our model does not make
assumptions on the specific tag position.

5.3. Future Work

In light of the addressed limitations in Section 5.2, our future work will involve an
evaluation of our proposed algorithms with more realistic movements and tag positions.
Furthermore, we plan to extend our orientation-aware range error model to incorporate
static obstructions as well as other pedestrians being localized. Lastly, similar to [56], we
plan to expand our algorithm to the self-learning of the error model.
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Abbreviations

The following abbreviations are used in this manuscript:
AHRS Attitude and Heading Reference System
BIC Bayesian Information Criterion
BPF Backtracking Particle Filter
CDF Cumulative Distribution Function
CIR Channel Impulse Response
COTS Commercial Off-the-Shelf
CV Constant Velocity
DoF Degrees of Freedom
EKF Extended Kalman Filter
EM Expectation–Maximization
GMF Gaussian Mixture Filter
GMM Gaussian Mixture Model
GSF Gaussian Sum Filter
HBS Human Body Shadowing
IIoT Industrial Internet of Things
IMU Inertial Measurement Unit
IPS Indoor Positioning System
IR Infrared
IoT Internet of Things
KF Kalman Filter
LLS Linearized Least Squares
LUT Lookup table
LoS Line-of-sight
NLoS Non-line-of-sight
PDF Probability Density Function
PDR Pedestrian Dead Reckoning
PF Particle Filter
RPi Raspberry Pi
RTS Rauch–Tung–Striebel
TWR Two-Way Ranging
ToF Time-of-flight
UGSF Unscented Gaussian Sum Filter
UKF Unscented Kalman Filter
UT Unscented Transform
UWB Ultra-Wideband
VLP Visible Light Positioning
mocap Motion capture
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