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Abstract

Background Despite apparent promise and the availability of numerous examples in the
literature, machine learning models are rarely used in practice in ICU units. This mismatch
suggests that there are poorly understood barriers preventing uptake, which we aim to
identify.

Methods We begin with a qualitative study with 29 interviews of 40 Intensive Care Unit-,
hospital- and MedTech company staff members. As a follow-up to the study, we attempt to
quantify some of the technical issues raised. To perform experiments we selected two models
based on criteria such as medical relevance. Using these models we measure the loss of
performance in predictive models due to drift over time, change of available patient features,
scarceness of data, and deploying a model in a different context to the one it was built in.

Results The qualitative study confirms our assumptions on the potential of Al-driven ana-
lytics for patient care, as well as showing the prevalence and type of technical blocking
factors that are responsible for its slow uptake. The experiments confirm that each of these
issues can cause important loss of predictive model performance, depending on the model
and the issue.

Conclusions Based on the qualitative study and quantitative experiments we conclude that
more research on practical solutions to enable Al-driven innovation in Intensive Care Units is
needed. Furthermore, the general poor situation with respect to public, usable implementa-
tions of predictive models would appear to limit the possibilities for both the scientific
repeatability of the underlying research and the transfer of this research into practice.
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Plain language summary

It is helpful for clinicians to be able to
predict what will happen to a patient
Intensive Care Unit (ICU);
accurate computer-based predictive
systems could help to avoid serious
iliness. However, most ICUs currently

in an

make little or no use of them. Here,
we try to understand why, so that
barriers to their introduction can be
We
experts, who agree that prediction

overcome. interview medical
systems should be feasible. They also
identify practical technical problems
with using them. We investigate
these issues by running experiments
on example predictive systems where
we change what data is used to train
the system and what data it is asked
to make predictions on. The experi-
ments show that the identified issues
cause problems and are worthy of
further attention. This work should
help to enable the use of computer-
based predictive systems in ICUs.
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driven innovation in healthcare!=3, Several examples of

successful Al implementation in single healthcare centers,
commonly using retrospective datasets, show great promise®.
Although Al-driven healthcare is an active area of research, we
see very few of the proposed techniques driving patient care in
practice.

This paper presents a qualitative and quantitative investigation
into the issues around slow uptake of artificial intelligence (AI) in
healthcare. We are most interested in uncovering technical gaps
in current research. We focus on the use of predictive machine
learning (ML) in the intensive care unit (ICU), because there is
rich ICU data monitoring and a large number of ML models
proposed in the literature, but a dearth of use in practice. This
mismatch indicates possible hidden issues that need to be dealt
with to unlock the apparent potential. This is in contrast with the
use of ML on medical images, an area similarly rich in data where
progress appears to be smoother.

Our investigation relies on a fieldwork Voice-of-the-Customer
(VoC) study where we interview hospital and MedTech company
staff about current practises and needs in ICUs, and the role Al
plays therein. This exercise aims to unearth issues related to the
building and deployment of ML models. We then proceed to
investigate these issues with experiments that simulate how an ML
model might get built and deployed in various healthcare scenarios.
These scenarios are informed by the VoC interviews with ICU
stakeholders as well as the literature. The aim of the experiments
is to verify and put some quantitative scope on the technical
blocking factors rather than to propose any particular solution.
VoC questions were phrased according to the more generic Al,
while experiments focused on predictive ML approaches, a subset
of AL To perform experiments, we use selected two models based
on criteria such as medical relevance and reproducibility. As a side
effect, our search into models satisfying these criteria unearthed the
general poor situation with respect to public, usable implementa-
tions of predictive models.

Related work pertains to qualitative as well as in quantitative
studies. We could not find publications, which couple qualitative
research with a subsequent quantitative analysis. Little qualitative
research into Al in healthcare exists. Two studies were executed
around the same time as ours and published recently. One uses an
online survey to poll healthcare practitioners in image-driven
medical disciplines®. Another interviews 18 general practitioners
on their views on AI°. Optimism and concern emerged from
these works. None discuss overcoming blocking factors or pos-
sible innovations. To our knowledge, no qualitative study was
carried out in ICUs.

Some quantitative studies discuss blocking factors and possible
solutions to them’. Some are practical (e.g., the requirement for a
coherent digital infrastructure) and others societal (e.g., privacy
concerns). Another issue is that data across hospitals can be very
different because observational variables such as protocol and
locations are hospital-specific. This reality is confirmed by Johnson
et al8, where in-hospital mortality models trained on publicly
accessible data exhibit decreased performance when applied to
external hospital data. Transfer learning is a collection of techniques
to transfer a model from a training context to a different inference
context. Several approaches have been applied to medical data®10,
Like us, the authors of these articles hypothesized that external
models implemented in a straightforward manner fail to reflect
individual variations across hospitals.

Drift over time is similarly considered as a reason for a drop in
model performance. Drift was analyzed earlier for the same dataset
that we use!l, for predictive models that are, by their own admis-
sion, not particularly challenging in that their performance satu-
rates with very little training data. Subbaswamy et al.!? propose an

There is a wide-spread belief in the high potential of data-

approach using a single dataset to identify drift problems for
arbitrary models; such sensitivity analysis may form part of the
toolbox for dealing with drift. In this article, we analyze actual
recorded drift rather than potential drift.

Harutyunyan et al.!3 formulate the challenge of increasing the
use of ML in healthcare as a benchmarking exercise. However, the
set-up is optimized for having a level playing field between ML
algorithms rather than solving the issues that we highlight here.
In addition the medical relevance of their prediction targets could
be better.

Other work attempts to mix data from different hospitals!41°,
considering only one type of model and a limited number of the
issues we address in this paper. Further quantitative analysis of
their results is hampered by a lack of open-source models.

The results from our study can be summarized as follows.
From the VoC we conclude that Al solutions are generally con-
sidered to be useful in ICU care and that blocking factors for their
slow uptake are mostly technical. Blocking factors that emerge
are: the need for more data, the discrepancy between clean
research data and dirty real-world data, and algorithms not being
sufficiently generalizable nor reliable. We explore these blocking
factors in a number of concrete scenarios for building models
under changing ICU contexts. The scenarios we explore are:
model performance changes over time; evolving a model with
extra features that were not there when the model was originally
built; model performance dependency on the volume of data; and
model performance dependency on patient demographics, by
deploying a model in a different hospital than the one in which it
was built. For each of these scenarios we show that model per-
formance can be affected. We speculate that the negative impacts
on performance can be mitigated and are as such not ultimately
blocking for data-driven healthcare.

Methods

Voice-of-the-Customer study. A Voice-of-the-Customer (VoC)
study is a type of qualitative study that is considered a proven
research methodology to determine the needs, expectations and
pain points of a certain user group. Our approach to the VoC
process is based on living labs methods relevant for the idea stage of
innovative products or services. These methods drive participatory
co-design via the methodology of interviews!®17. The interview is
used as a vehicle for user assumption testing, i.e., checking whether
assumptions held by the interviewers about innovation needs are
actually true. Among these, leap-of-faith assumption are the most
risky assumptions: if proven false, this breaks the innovation idea
entirely and sends you back to the starting line. Personas help in
grouping contextual user insights and further drive user experience
design!®.

The interview structure follows the Double Diamond design
process model!®. Here, the divergent and convergent stages of the
design process (the diamond shapes that give the approach its
name) are the current state as is and the future state as could be
respectively. We start from why as the crucial question, leading to
questions on what, only to be translated afterwards into a
technological how. This generic structure is shaped into a fixed
set of questions, which allow us to assess where respondents fall
on the conservative-innovative spectrum. By proposing the
innovation only midway through the interview, we avoid biasing
answers to the questions on the current state and needs towards
the assumptions we want to test.

For this ICU VoC study the interview follows a double diamond
consisting of parts: introduction, current practices (team, workflow,
infrastructure, data), unmet needs and wants (what is and is
not working well, future vision, role of data analytics), innovation
pitch, attitude towards the proposed solutions, drivers and barriers
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(blocking factors for analytics and possible mitigations), and
closing. The full interview can be found in Supplementary Note 1.
Its structure was reviewed by two experts on user-centric design
who were not connected to this specific study. Innovations were
introduced by way of mock-ups shown to the interviewees. The
mock-ups presented a data-driven patient cockpit. These were
refined as interviews progressed. Here, patient data is divided into
clinical chapters (haemodynamics, cardiovascular, renal and so
on). This single-point user interface presents data in the same
way as clinical staff surveys a patient, rather than as directed by
the available equipment. Data-driven insights are visualized in the
relevant clinical chapter in the patient cockpit interface. The
interviews were conducted by a data innovator and a consultant
with a business track record in MedTech. One interview takes
about 1-2h to conduct and its subsequent analysis about 1 day.
The study was part of an innovation track at imec, a non-profit
precompetitive research center in Belgium. Written informed
consent was obtained from all participants, by agreeing to
participate in the study. Institutional Review Board approval was
not required because the study was a voluntary survey among
healthcare and MedTech professionals not related to any specific
health information and all data was handled anonymously. No
vulnerable individuals participated in the survey. Participants were
informed that the data would be collated anonymously for analysis
and dissemination.

Five user assumptions are tested. The first is that there is rich
data in ICUs. Assumptions 2 through 4 are: Data is not optimally
accessible to support clinical care personnel in their workflow;
Data analytics and Al are rarely used in actual patient care;
Analytics has the potential to be useful for patient care (in general
as well as for specific diagnoses). Finally, the fifth assumption is
that barriers for using data analytics and Al in the ICU are largely
technical. Assumptions are implicit in the interview structure
rather than polled explicitly. In the context of Assumption 4 we
poll interviewees on which care trajectories could be most
impacted by data innovation (diagnoses and the patients that
receive them). The leap-of-faith assumptions are Assumptions 4
and 5 and are the main focus of this paper.

Interview demographics. The VoC study was carried out with 17
hospitals and 7 MedTech companies in the period of May-
December 2020. The focus was on the ICU environment, including
units for neonatal (NICU) and pediatric (PICU) intensive care.

An overview of the stakeholder statistics is given in Table 1. ICUs
involved were of various sizes: 5 had under 20 beds, 5 between 20
and 30, 2 between 30 and 40, and 3 had over 60 beds. For 2 further
institutions, the interviewees were not connected to a particular ICU.
The 7 MedTech companies provided insights into the landscape for
IT support in hospitals and their ICUs. Four companies provide
software solutions in ICUs, 1 is an ICU device manufacturer, 1
works on ICU and hospital-wide interoperability, and 1 provides
remote monitoring for implantable cardiac devices.

We spoke with a total of 40 interviewees in 29 structured
interviews. With 3 stakeholders we carried out more than one
interview (resp. 8,4 and 1 additional interviews) for refinement and/
or because they were particularly interested. These complementary
interviews were not counted in the interview statistics. Table 2
summarizes the demographics of people we interviewed. Hospital
staff generally filled in senior roles in their organization (2 C-level, 4
heads of IT, 7 heads of ICU, 3 head nurses). All had some clinical
research activities, with 3 having the bulk of their workload in
academic research. MedTech staff interviewees had varied roles: 1
project manager, 3 technical profiles, 1 CEO, 3 sales managers, 1
director market & offering, and 1 senior data scientist. We did not
ask interviewees’ ages nor ethnicity to protect their privacy.
Interviewees were predominantly white.

Table 1 VoC participant breakdown.
Institutions Interviewees
n =24 (%) n =40 (%)
Type
Hospital 17 (71) 30 (75)
Company 7 (29) 10 (25)
Within hospital:
ICU 9 (38) 13 (32)
ICU and IT 4 .Q7) 5(2)
IT 2(8) 9 (22)
NICU 1(4) 2(5)
PICU 1(4) 13
Within company:
HealthIT 4 (17) 5(3)
Medical devices 14 2 (5)
Interoperability 14 2(5)
Remote monitoring 1(4) 1(3)
Location:
Belgium 13 (54) 27 (67)
US.A. 5@D 6 (15)
Multiple countries 4 .(17) 572
UK. 1(4) 13
The Netherlands 1(4) 13

Table 3 summarizes interview statistics. The VoC study was
executed during the COVID-19 pandemic. This had an impact on
the availability of respondees and hence the timings of interviews.
In Belgium, where most of the interviews took place, the peak of
the first wave was early April and of the second wave early
November. We did not contact anybody during these periods.
Of the 61 stakeholders we reached out to outside of these periods,
29 resulted in an interview, 23 were unresponsive, 6 were not
available because of other priorities and 3 had to cancel interviews
due to COVID-19 priorities. Interviews in October focused on
nursing staff, which we wanted to include directly in our study.
No interview questions targeted the COVID-19 situation directly.
We wanted to obtain an overall view on the potential of data
innovation in ICUs, and did not want our answers to be biased
with reference to the specific date of the interview. Nevertheless,
some responses from ICU staff could have been changed by these
external circumstances. We briefly come back to interviewee bias
in the analysis of responses related to Assumption 4.

From VoC to experiments. The default scenario to the building
and deployment of machine learning models is to train local and
immediately deploy local. This is a realistic scenario given sufficient
data and sufficient expertize and resources to perform the model
building. Under these circumstances, a model with reasonable
predictive performance can be constructed. The achievable perfor-
mance in this scenario is usually a ceiling for any other deployment
scenarios one could consider.

There is a mismatch between this basic scenario and complica-
tions that occur in practice. These complications, and the loss of
predictive performance that they entail, are a barrier to wider
adoption of ML models. In the quantitative part of this study we
attempt to quantify to what extent technical blocking factors impact
the performance of analytics solutions. We focus on problems that
emerged from the VoC: interoperability issues, working with real-
world dirty patient data instead of curated data, the overall lack of
(access to) data and the fact that models fail to generalize between
the contexts in which they are used. We investigate these problems
in four concrete scenarios. We simulate each of these scenarios by
building models on subsets of the patient dataset and testing on a
different subset,then comparing model performance changes across
subsets. This is detailed further in section Experiments.
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The first scenario is that of drift of the model over time within a
hospital. This occurs because clinical procedures, staff and the
patient population change over time within the same hospital. This
will eventually degrade the performance of all models built on
historical data, even if from the same institution. This can be viewed
as part of the dirty data or failure to generalize problem. The second
scenario considers acquiring extra diagnostic machines and being
able to use the output of those machines to improve predictions
(aka. change of features). This will occur whenever a hospital
expands or replaces its equipment. While new information per-
patient does not make the pre-existing model worse, not using it can
constitute an important missing out on possible improvements.
This is part of the interoperability problem (models not being
interoperable with different feature sets). The third scenario is the
scarceness of data for modeling uncommon or rare conditions. If a
condition is complex enough that it requires a large amount of data
to build a useful predictive model, and it is also a sufficiently rare
condition, it is often not possible to build a highly performant or
even a usable model from data available at one hospital, even if it is a
large one. This is part of the lack of data issue. Fourth and final
scenario is where we move a model from one hospital to a different
one with a different set of patients, i.e., a change of population. This
is a desired approach for any hospital lacking data, resources or
expertize to develop sufficiently performant models themselves (the
default scenario we see in academic literature). It is also a future
vision that emerged from the qualitative study, one where
cooperating hospitals divide the labor of building models and share
models with each other after they are built. A different hospital
implies different clinical procedures, staff and patients, and these
changes can degrade the performance of a model, even if it was
recently built. This is part of the failure to generalize problem.

A further note on the relevancy of these technical blocking
factors: it may seem that the use of a fully developed commercial
ML solution would insulate hospitals from the technical issues
that we have outlined. However, this solution merely transfers the
responsibility for dealing with those issues to the company that is
providing the predictive model. This is confirmed by our VoC study;
one MedTech company commented that its core business is affected
by the lack of generalizability. They mention the long development
times needed to adapt their predictive analytics to a specific ICU
unit to arrive at actionable performance. Several hospitals reported
non-technical difficulties with importing Analytics-as-a-Service
solutions, e.g., stating that at least 4 or 5 such service agreements
are in the pipeline, but blocked by data protection issues. Hence
understanding these issues is of interest to whoever ends up
providing or using a model, be that a research group, a hospital or a
commercial model provider.

Selecting models. To simulate model building scenarios in a rea-
listic way, the first step is to identify a predictive model to use and

Table 2 VoC interviewee demographics. Table 3 VoC interview details.
Interviewees n=40 (%) Interviews n %
Sex Reachout of n= 61 reached out:
Male 29 (72) Interviews 29 47
Female 1 (28) No response 23 38
Primary role N/A 6 10
Physician 17 (42) Canceled 3 5
MedTech expert 10 (25) Month of interview (in 2020) of n=29 interviews:
IT expert 9 (23) May 1 3
Nurse 4 (10) June 8 28
Seniority July 1 3
Management 20 (52) August 2 7
Other 19 (48) September 12 42
October 3 10
December 2 7

adapt to each scenario. Based on the qualitative study we arrive at a
number of criteria for selecting models for our experiments from
the scientific literature. In this section we describe these criteria, the
systematic search for predictive models satisfying those criteria,
and the final choice of models. The narrative underlines the
practical difficulties surrounding the identification of suitable
externally developed models for hospitals that do not have the
resources to develop their own from scratch.

Clinical relevance. When choosing the models to work with in the
quantification exercise, we considered the clinical relevance of
models. First, is the model sufficiently clinically actionable and
medical-outcome orientated? Second, is the condition that the
model is predicting sufficiently challenging? Here we considered
both the degree to which the models are used for important and
uncommon/rare conditions, and a substantial complexity of
models so that the technical issues identified in the VoC will have
an impact.

The VoC analysis, in particular Assumption 4, allows us to make
a first separation of ICU conditions into those that are clinically
relevant and those that are not. In this way, we ruled out mortality
prediction, length of ICU stay, and phenotype prediction!>. Indeed
these conditions are less relevant to medical aspects of care, as they
lack actionability and/or are not sufficiently challenging (e.g., they
can be trained with little data due to relatively shallow insight or the
condition being common). As such these models are less likely to
suffer from the issues we are trying to quantify. This reasoning is
partly described by Nestor et al.!! for length-of-stay and mortality
prediction, and partly based on the results of the VoC.

Reproducibility. One learning scenario that emerged clearly from
the VoC is that of reusing a model locally that was learned in
another context. To do experiments for this scenario, it is essential
to have a model that is available, can be retrained on different
datasets and that is of sufficient initial quality. This leads to a
number of criteria that models need to satisfy on top of clinical
relevance, which we refer to as reproducibility. The need for
retraining means in practice that the source code to build the model
and relevant input data need to be available and usable. Concretely,
we say that a ML model satisfies reproducibility if the model’s
source code is publicly available, if it operates on a high-quality
dataset that is publicly available and if it is backed by a peer-
reviewed publication, to give some guarantee of correctness of
approach. Furthermore, the source code has to come with a com-
patible and explicitly declared license in the repository to ensure
that use and/or modification of the code is legally acceptable, and
we have to be able to run it after only investing a reasonable
amount of effort. A lack of license was considered not legally
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acceptable. Unfortunately many public repositories have no license,
which means that they cannot be reused, e.g., for reproducibility of
results, due to the legal ambiguity around what a lack of license
means for users and/or publishers of code. Dealing with different
national jurisdictions also complicates this analysis.

Model search and selection. We conducted the search for repro-
ducible and clinically relevant model repositories by using search
engines, both directly on GitHub, the largest store of publicly
available repositories that we could find, and in a general internet
search using Google. Our search focused on the two main publicly
available ICU datasets that existed at the time of our experiments
(circa 2020 and 2021): the single-center ~38 K patient MIMIC-
1112921, and the multicentre ~200 K patient elCU%2-23 critical care
database. We used PhysioNet, an online catalog of physiological
and clinical data and related open-source software, as an additional
search term. More specifically, we searched for 7 search phrases.
On Github: mimic-iii physionet; physionet; e-ICU;
eicu. On Google: mimic3 githubeicu prediction;
physionet.

In all cases, we processed the first 10 pages of results (or all of
them if there were fewer), which equates to up to 100 items
per search phrase. This approach was inspired by the ideas behind
systematic review.

We give here a brief overview of the search effort. Given that one
of the main effects that we are trying to understand is the failure of
models to generalize from one context to another, models that
work on multi-hospital datasets are a natural avenue of investiga-
tion. Hence we focused first on eICU. However, we did not find any
eICU models that matched both clinical relevance and reprodu-
cibility. We then looked for models on the single-center MIMIC-III
dataset, on the grounds that it is also large, high quality, easily
available and well known, while being slightly older, thus more
analysis work would have been published on it. Here, we could find
models that matched our criteria. Note that this search was not
directed towards a list of specific conditions, but for any condition
that we thought would have some clinical relevance.

In total, we found 27 repositories that were of sufficient quality to
be interesting, but had no associated scientific article; 18 repositories
with an article that were either making a model that we considered
not clinically relevant, a model that was not predictive of a clinical
condition (e.g., inferring the presence of a clinical condition post
facto given all the data of a stay); and 8 more interesting repositories
that are discussed in more detail in Supplementary Note 2. From
these 8, only one was clinically relevant and reproducible. This is the
model we chose; its topic is readmission prediction and it is further
described by Pakbin et al.>4 and in section Readmission prediction.
As we did not find another model satisfying all criteria, we decided
to develop one in-house. We chose AKI as a condition to model
because of its clinical relevance and the willingness to share
clinical domain knowledge on this condition from one of the
stakeholders we interviewed. To keep the experimental work
consistent, we used MIMIC-III for our AKI model, and made our
model publicly available.

One other source of models that we did consider using was the
2019 PhysioNet challenge: early detection of sepsis in the ICU.
While there are numerous public repositories available related to
this dataset accompanied by publications, the data appears to be
no longer publicly available. In addition, the dataset is not that
different from MIMIC-III in that the data available to the
challenge participants came from only two different hospitals,
and thus the number of different contexts was limited and not a
big gain over taking the data from a single institution.

In general, we found few scientific publications come with any
public repository and dataset at all. Conversely, various public
repositiories lack an associated peer reviewed article, making it

very hard to assess their scientific worth without a huge
investment of time and effort. Of the repositories that are public
and backed with an article and public dataset, a fair amount are
for models that are of little interest to ICU practitioners based on
our VoC results. In the limited number of cases of interesting
models, almost all of them suffer from licensing problems,
making them legally problematic, and some would seem to suffer
poor implementation quality, meaning that they would require a
potentially large investment to get to run. While some of these
problems should be easy to fix (e.g., licensing), others, such as the
general lack of available models and the problems around clinical
relevancy are likely to require more discussion and action within
the community of people working in this area.

Model details

Acute kidney injury prediction. AKI is a complex medical phe-
nomenon that is uncommon, but which has an important impact
on both short and long-term mortality when it does happen?°.
Kidney injury emerged in our VoC study as one of the more
interesting target diagnoses for Al-driven innovation, and was
suggested as a candidate model to adopt in our patient cockpit
mock-ups by one stakeholder. Hence AKI prediction is clinically
relevant, challenging to model, and rare enough that total volume
of training data can be an issue. Given that we wanted to run
experiments on more than one model and there were no other
options available among public models, it seemed a reasonable
choice. For this model we drop the reproducibility requirement of
peer-review as is less important in the context of these experi-
ments; the aim is not to get an actionable clinical AKI model, but
rather to understand how models behave when put into different
scenarios. We have made the model publicly available. Various
publications on AKI predictors have been made that either have
no public repository, or where the repository does not match our
criteria26-29,

The AKI (acute kidney injury) model we define predicts the
probability of developing AKI or not within 7 days of admission to
an ICU. AKI is a rapid decline in renal function associated with
long hospital stay, elevated healthcare charges and high mortality
risk especially in ICUs?>. AKI affects 5% to 7% of all hospitaliza-
tions and causes 10 billion dollars of additional healthcare-related
expenditures per year through per-hospitalization excess costs of
$79333%, No interventions to improve outcomes of established AKI
have yet been developed, so prevention and early diagnosis are
key!. Ability to predict the onset of AKI could also be of help as a
first step in the discovery and assessment of new therapies.

We construct a deep-learning model that predicts AKI in the
following way. First, we use the Kidney Disease/Improving Global
Outcomes (KDIGO) criteria? to define whether patients have
developed one of the AKI three stages of increasing severity (Stage 1,
Stage 2, Stage 3). Next, we developed a detection model for AKI
stage on the basis of 83 input features referring to routinely collected
clinical parameters. Features include demographics data, vital signs
measured at the bedside (heart rate, arterial blood pressure,
respiration rate, etc.), laboratory test results (blood urea nitrogen,
hemoglobin, white blood count, etc.), average of urine output (when
available), the minimum value of estimated glomerular filtration
rate and creatinine. We also included comorbidities such as
congestive heart failure, hypertension, diabetes, etc. We constructed
a set of multilayer perceptrons and used hyperparameter tuning to
find the best architecture (a 15-layer deep-learning network) for
predicting AKI stage from these parameters. We followed a 80%
training-20% testing partition of data with five-fold cross validation.

Readmission prediction. Similarly to AKI, ICU readmission is
uncommon, and is associated with worse medical outcomes
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compared to patients that are not readmitted. Although read-
mission has a similar level of occurrence to AKI, it is a much more
general phenomenon (there can be many reasons for readmission),
and may therefore be difficult to model as accurately.

The VoC underlines the relevance of (re)admission prediction
for planning purposes and, more importantly, for timely move-
ment from another hospital ward to the ICU to improve clinical
outcomes. Discharge from an ICU means that a patient will be
leaving an environment with close monitoring. This entails a
higher risk that deterioration in their condition may go
unnoticed. Readmission to an ICU is associated with increased
risk of adverse events, longer hospital stays and worse mortality
outcomes3. Worldwide, ~6 to 7% of patients are readmitted to
an ICU within 72h. Accurate prediction of readmission gives
doctors an actionable tool at a critical decision point (whether or
not to admit a patient to / discharge a patient from the ICU),
which can help them better plan the use of ICU resources as a
whole and avoid unnecessary risks for the patient; if a patient is
predicted to be readmitted, then they are clearly a candidate for
keeping in the ICU for further monitoring.

The readmission model that we use was forked from an open
GitHub repository (see section on Code Availability). The code
required some modifications to be adapted to our local systems,
but was relatively easy to get working. The model is actually a
collection of models to predict readmission within different time
windows (we refer to the original paper for the explanation of
these). Throughout the rest of the paper we refer to this collection
as one model, but we present the results for all of the constituent
models.

Cohorts. Cohort selection for AKI proceeded by extraction from
MIMIC-III, excluding patients with AKI upon admission in the
ICU or chronic kidney diseases and patients under 18. During the
prepossessing step, we omit entries with missing values necessary
for computing AKI stage via the KDIGO guidelines using crea-
tinine and urine output. This resulted in a dataset of 42,152 ICU
stays, with 16,837 labeled as non-AKI patients, 7558 as Stage-1
AKI, 13,535 as Stage-2 AKI, and 4321 as Stage-3 AKI.

Cohort selection from the dataset for the readmission model is
described in their publication and repository. Similarly, train and
test split and preparation etc. is described. The total data size after
their preparation steps is 53,329 distinct ICU stays. To under-
stand the impact of splits, we establish baselines for both models.
These are the models trained using the full cohort and a random
split for train and test (80%-20%).

Experiments. In order to quantify the problems for the four
different learning scenarios identified earlier, we performed ML
experiments using the selected AKI and readmission models.
These experiments consisted of training the model on one subset
of MIMIC-III and testing on another subset, to understand how
the prediction performance of models is affected. To capture drift
we subset by EHR system, which is a proxy for date. Change of
features is simulated by in- or excluding urine output information
in the patient record. Scarceness of data is represented by random
subsampling of available training data. Finally, a change of
population is arrived at by sub-setting by ethnicity. This is a
proxy for possible changes in patient populations across different
hospitals. The performance metric is area under receiver operator
curve (AUROCQC).

Scenario 1: Drift. To understand how drift affects models, we
compare the baseline model against a model that is trained on
time-span A and tested on time-span B, where A and B are non-
overlapping. Simulating drift on the basis of a time partition in

Table 4 Data partitions and percentages.

Data partition Ethnicity Drift
White Other Before cut- After cut-
off off

Whole dataset 71.6 28.4 50.0 38.6
Ethnicity: White 49.5 394
Ethnicity: Other 513 36.7

Drift: Before cut-off ~ 70.8 29.1

Drift: After cut-off 73.0 27.0

Data partitions in MIMIC-IIl and the associated percentages of other categories in these data
partitions. The two partitions of interest of the whole dataset are shown in bold (split by
ethnicity or split by date cut-off for drift). The other numbers show how the percentages for
those main partitions change when applying another partitioning first (given in the left-most
column).

MIMIC-III is not possible due to de-identification methods (i.e.,
dates were shifted into the future by a random offset). Hence we
looked for a proxy for time. Sometime circa 2008, the institution
collecting the MIMIC-III data moved from the CareVue to the
Metavision EMR systems. The EMR system used is visible in the
data, and can be used to delineate time spans. The split of data is
about 50% pre-2008 and 40% post-2008, with about 10% of
patients with entries in both the CareVue and Metavision sys-
tems during a cross-over phase (cfr. Table 4). Note that the
percentages for drift do not add up to 100% because there is
11.4% of patients who appear in both the CareVue and Meta-
Vision systems and who are not used for training nor testing to
keep the time cut-off as clean as possible. We ignore cross-over
patients in our analysis below.

To assess how drift affects selected models, we train the model
on a subset of the data pre-2008 and test it on the subset post-
2008 and ignore patients that appear in both systems. The sizes of
the extracted subset are 24347 for the pre-2008 (CareVue) and
17806 for the post-2008 (Metavision). The same data split on the
readmission data led to 26682 pre-2008 and 20627 post-2008
distinct ICU stays. Again, we compare the baseline model against
the performance of a model that is trained on pre-2008 data only,
and then tested on post-2008 data only.

Scenario 2: Change of features. For the AKI model we simulate
this scenario by simulating a hospital that evolves its infra-
structure by adding a device for urine measurements to its ICU
setup. This feature is an addition to the medical parameters
previously collected. The hospital wants to use this new feature to
enhance its previously developed AKI predictor. The straight-
forward way to deal with this is to train the new model from
scratch. In this case, the old model is deprecated and a new cohort
is initiated where the urine feature is added. While this is easy to
set up in principle, in practise it may require a long time until
enough data is collected to build a new predictor with better
predictive performance than the original predictor, given that the
average number of patients per year admitted to ICUs ranges
between 100s (small hospitals) up 1000s (large hospitals). To
quantify this, we use subsets of the data to train the model using
the extra features and compare this to the final performance on
all the available data of the model without the extra features.
To further explore this issue, we also quantify the benefit of using
basic transfer learning on the old model to adjust to the availability
of new features (the urine measurements), and compare the
resulting model’s performance to that of the model described above
using urine features retrained from scratch. This gives an idea of
how much headroom there is for improvement using more
advanced forms of transfer learning. Our simple transfer learning
is implemented by freezing part of the neural network that
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implements the AKI model predictor, while allowing other layers to
adapt to the novel data including urine features.

An experiment for scenario 2 was not performed for readmission
prediction. As it is a general rather than disease-specific model,
there is no obvious candidate for adding a device that would
specifically record a feature known to be linked to the probability
of readmission. This would make the addition of a feature rather
arbitrary.

Scenario 3: Scarceness of data. For this scenario, we train the
model on a randomly selected sub-sample of the original input
cohort of a given size and report the model performance on the
remainder of the data. We plot how the ML performance evolves
across various dataset sizes. This shows how much gain in per-
formance is made with each step of additional data.

Scenario 4: Change of population. In this scenario, we simulate the
change of patient demographics that could exist between different
hospitals by splitting MIMIC-III data by ethnicity. The aim is to
simulate the drop in performance for the scenario where one
hospital imports an ML model developed elsewhere. We use a
model trained on one subset of the data (White) to predict out-
comes on other subsets (Black and Latinx). The baseline model
shown for comparison includes all three ethnicity labels in both
training and test sets, with White making up the majority in the
dataset.

The sizes of the extracted subsets for the AKI model are 30,618
for White, 3155 for Black and 1440 for Latinx cohorts. The same
data split on the readmission data led to 38,184 White (inc. all
subgroups), 5070 Black (inc. all subgroups), and 1803 Latinx (inc.
all subgroups) distinct ICU stays.

Confounding of data splits. When testing performance changes
that come with context changes in the data, there is potential for
confounding. That is, the categories used for the splits could be
correlated, and thus it is incorrect to say that a context-induced
change in prediction performance is specifically due to one split
or another. However, the aim of the experiments is not to make
any strong claims about the impact of any one particular type of
split, but rather to show that context changes cause performance
loss. Despite this, it gives extra insight if we quantify the potential
for confounding. This applies to Scenarios 1 (drift) and 4 (change
of population); for scenario 3 we sub-sample the parent dataset at
random, and so there is little scope for systematic confounding
with other splits. In scenario 2, there is no demographic split: the
same population is used, with or without urine features.

We quantify the splits used for training the models compared
to the remainder of the data (some or all of which would be used
for testing) in Table 4. The table shows that the data splits that we
use, namely ethnicity and drift, are only very weakly correlated.
As such, any difference in the models is highly unlikely to be due
to any change in characteristics resulting from the other category.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Results
Voice-of-the-Customer study. This section analyzes the responses
to test Assumptions 1-5 for the VoC study on data innovation in
ICUs. The interview allows multiple answers to a single question.
As such the numbers below do not always add up to the number of
stakeholders interviewed.

All 17 ICU units interviewed have similar care workflows, with
shifts, handover protocols and touring as common elements. This

includes the distribution of typical tasks to personas (senior vs
assistant doctors/ nurses). Patient monitoring equipment is also
comparable across institutions, even if specific vendors differ. All
patients have a bedside monitor showing physiological para-
meters, alongside a variety of pumps (medication and nutrition).
We see that Assumption 1 holds: all hospitals consulted offer rich
patient data. However, the way in which this data is stored after
patient discharge varies widely. Eight institutions store bulk
patient monitoring data (time series frequencies may vary). Five
of them do not store data at all, but instead work with discharge
forms. For 4 hospitals, the data storage procedure is unknown.
Automatic storage is the norm, but 1 of the institutions manually
copies data into a complementary Excel file.

Assumption 2, the suboptimal accessibility of data, is widely
supported by the VoC study. Two complementary IT systems
exist, historically offered by different vendors: The hospital-wide
Electronic Medical Record (EMR) system, and the ICU-specific
patient data monitoring system (PDMS). Only 1 hospital has an
integrated EMR-PDMS, 8 hospitals has separate systems, 5
hospitals has an EMR and no PDMS, and 3 unknown. Data is
typically transferred from PDMS to EMR by PDF export/import.
That assumption 2 is a real issue is reflected in the future needs
cited, with 1 interviewee reporting coupling of EMR-PDMS, 6
interviewees integration of data and 2 dealing with information
overload. Alarm fatigue and the need for smarter alerting is
mentioned twice; every new piece of technology adds a new
alarm3%. Overall, the way in which data is presented to clinical
staff is driven by vendor islands, and not by the clinical view on
the patient.

Looking into current practices we see confirmation of Assump-
tion 3: Al-driven solutions to support patient care in ICUs are rare.
In fact, none of the ICU units we consulted integrates an Al
component into systems or workflow. Two stakeholders mention a
(haemodynamics and EEG) device with embedded analytics, one of
which is lying around gathering dust, because nobody knows how
to use it [sic]. Five clinical stakeholders developed research
prototypes, used sporadically in actual care. One unit developed a
dashboard to integrate infection treatment data. This dashboard,
while known, is not used in nearby hospitals. We do see a wide-
spread use of rule-based systems (12 stakeholders), from fairly
standard Sequential Organ Failure Assessment (SOFA) scores up to
multi-feature smart alerting (for sepsis and Acute Respiratory
Distress Syndrome (ARDS) at 2 stakeholders, and as a product
from 1 MedTech stakeholder). One MedTech vendor offers a
discharge-readmission software product. We do not include
benchmarking tools, which evaluate patient data retrospectively
to support hospital and government policy and do not affect
patient care directly.

This brings us to the fourth assumption: that AI-driven patient
care has potential. Of the 40 interviewees, only 1 did not believe
this to be the case, trusting on rule-based systems instead. All
other interviewees are convinced that analytics will lead to
innovation in patient care to some extent. When polled about
their future vision (before proposing our own ideas on data-
driven innovations), 10 mentioned AI (3 of which predictive
analytics), 1 decision support, 3 support for personalized care,
and 3 integration.

We checked which ICU-specific use cases interviewees consider
promising targets for Al A basic widespread need for a 24/7 patient
cockpit emerged, an interface which integrates and presents patient
data by clinical chapter, just as doctors read out a patient. This idea
matured into a mock-up visualization as the VoC study progressed.
In the interviews with mock-up, 10 interviewees suggest a patient
interface before we showed the mock-up, and 10 confirm its
usefulness after we showed it. Specific diagnoses mentioned are:
smart trend analysis (5), sepsis (10), kidney failure (4, with 2 adding
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this not being very useful), deterioration (3), extubation/ARDS (3),
intracranial pressure (2), delirium (2), and outlier detection (2).
One person counter-suggested mortality prediction due to its
limited usefulness in the ICU.

Mortality prediction, length of stay and discharge-readmission
predictive analytics are common topics in the academic literature
on health analytics. They are useful for capacity planning purposes
and retrospective benchmarking, but less relevant for daily care.
This is confirmed by one MedTech company, which markets a
discharge-readmission solution. However, two senior intensivists
states that (re)admission prediction is relevant for cross-ward
patient care trajectories. Timely (re-)admission to ICU environ-
ments is crucial for fast-deteriorating pathologies such as sepsis.
The differing opinions on predictions of kidney failure stem from
the fact that it cannot yet be treated. That said, early detection has
an impact on patient comfort and planning of care.

Finally, let us check Assumption 5: are barriers for uptake of Al
in the ICU largely technical? Technical blocking factors given
by interviewees are: the need for more data (9), interoperability
issues (1), privacy and data protection (7), and the reality of dirty
real patient data as opposed to curated datasets used for research
(7). Non-technical factors mentioned were lack of funding for
digitalization (5) and a culture of doctor-knows-best (7). One
respondent states that both data and [analytics] algorithms got a
lot of babysitting in research publications. In terms of the
algorithms we see the following responses: they are not actionable
(7), not generalizable (from the setting were they were developed
to the care context were you want to use them, (9), not reliable
(i.e., model performance is too low, 5) or not explainable (1). One
respondent mentions the lack of a killer app, i.e., an app, which is
so necessary or desirable for clinical care that it is a core driver to
innovation and its uptake inevitable.

There are indications of bias in our interview sample. When
setting up interviews, we simply stated the topic to be data
innovation in the ICU. There is some risk that those interviewed
are self-selected as a sample with positive bias towards this topic.
On the other hand, the VoC occurred in COVID-19 times
causing extremely busy ICUs. It is unlikely that unresponsiveness
was always due to disbelief or disinterest in health data
innovation. Two hospitals were involved before the COVID-19
crisis hit in Europe. We asked them in May, respectively
September 2020, how the situation impacted their views. The
first responded that, aside from an acute and severe lack of
resources, the potential of and issues with data analytics in ICUs
remain much the same. The second gave insights in the novel
patient monitoring needs of the typical COVID-19 patient, and
the interplay with sepsis and delirium.

In conclusion, all five user assumptions hold within the VoC’s
sample set. This includes the leap-of-faith assumptions: Al
solutions can be useful in patient care and blocking factors are
mostly technical. If AI-driven models are actionable, accurate and
compatible with the existing clinical workflow, interviewees go
from willing to enthusiastic about their use. There is legitimate
concern about the decrease of model performance from a
controlled research setting to analytics in the wild 8. As put by
one senior physician: You need to make [... people] see that it
works at a practical level.

Experiments. The baseline AKI model demonstrates an overall
high AUROC of 0.86. The baseline readmission sub-models
obtain an AUROC that varies from 0.71 to 0.84.

Scenario 1: Drift. The results of Table 5 show the impact in terms
of AUROC performance for the AKI model. Drift causes a drop
in performance of 0.16 AUROC, which is a big effect.

Table 5 AKI model: impact of drift and ethnicity.

Experiment AUROC performance
Baseline 0.86
Drift 0.70
White-Black 0.78
White-Latinx 0.79

The results for Readmission in Table 6 show that drift always
has a negative impact on the performance of the model, which
varies from moderate (0.03) to small (0.01).

Scenario 2: Change of features. In Fig. 1, we quantify how much
data has to be collected to achieve better predictive performance
in the new model that uses the additional urine features. This
gives an idea of the length of time when there is missed benefit
due to inferior model performance. The final performance (using
all training data) of the old model where urine output informa-
tion is not considered is an AUROC of 0.75. The new model with
the urine features reaches the same AUROC (0.75) using roughly
21% of the dataset to train on, which equates to multiple years
worth of data collection. Hence, the missed benefit is years of
having to use the old model until enough data has been gathered
for the performance of the new model to surpass that of the old
model. We also note that adding the new features in the learning
process considerably improves the ultimately achievable predic-
tion performance compared to the old model without urine fea-
tures: AUROC 0.86 vs. 0.75. Techniques such as transfer learning
that can make the training of the new model go faster (e.g., by
leveraging the old model) to avoid the missed benefit will clearly
help shorten the time to close the gap with the old model.
Figure 2 shows that simple transfer learning enables reaching the
same model accuracy with smaller data volumes (i.e., faster, if data
is acquired with a new device). The transfer learning model reaches
AUROC 0.75 with <18% of the training data as opposed to 21%,
which is an improvement, but suggests that there is further benefit
to be had from more sophisticated transfer learning approaches.

Scenario 3: Scarceness of data. For the AKI model we refer back to
the model with urine features in Fig. 1. The results agree with
common intuition about relative model performance increasing
with the size of datasets, but provide empirical assessment of the
magnitude of this effect. For the model with urine features the
AUROC varies from 0.66 to 0.86, showing the large impact of
available data size. We note that the model does not seem to
saturate in terms of possible performance when using the max-
imum size of data, which suggests that the AKI model is likely to
suffer from a lack of data even when trained on huge single
datasets like MIMIC-III.

One way of overcoming this lack of data is to develop techniques
that can train on datasets from different hospitals, while taking into
account the logistical and privacy issues that arise from that. For
completeness we also show the performance of the model without
urine features as the training dataset size varies. The model
accuracy improves less rapidly as the model has less information
available and thus cannot generalize as well.

The results for the readmission model are shown in Fig. 3.
There are two noticeable differences with the AKI case. Firstly, the
increase in performance as data size grows is more rapid when only
small proportions of the data are available. Secondly, all of the
models more or less saturate at about 40% of the training data, or
~24,000 ICU stays.

This suggests that, despite having a prevalence roughly similar to
AKI, readmission can be predicted with a reasonable level of
performance by hospitals working independently using this model.
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Table 6 Readmission models: impact of drift and ethnicity.
Model
Experiment 24h 48h 72h 24-72h 7 days 30 days Bounce-back
Baseline 0.71 0.74 0.76 0.76 0.77 0.75 0.84
Drift 0.68 0.71 0.74 0.73 0.75 0.74 0.81
White-Black 0.71 0.74 0.74 0.73 0.74 0.73 0.83
White-Latinx 0.69 0.72 0.75 0.74 0.75 0.70 0.82
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Fig. 1 AKI model performance as available data size varies, with and
without extra features. Area under receiver operator curve (AUROC) of
acute kidney injury (AKI) model performance against dataset size, with
(blue line) and without (orange line) urine features. The model with urine
features needs to be trained with about 20% of the dataset to achieve the
same performance as the model without the urine features trained on
100% of the data, showing that there is a substantial restart cost when
adding new features to a model in the absence of transfer learning. Source
data is in Supplementary Data 1.

Though, with about 1000 patients per year in large hospitals, even
then retrospective data storage is a must. However, we do not rule
out that a more high capacity model could be able to get better
performance at the cost of needing more training data, which
would make readmission more similar to the AKI use-case with
respect to the need for data.

Scenario 4: Change of population. The results in Table 5 show the
impact in terms of AUROC performance for the AKI model.
Although the drop in performance from the demographic split is
less dramatic than the effect of drift, the loss of 0.08 and 0.07
AUROC is quite large.

The results for demographic split based on ethnicity for the
readmission model are shown in Table 6. The differences between
the two alternative models and the baseline is often 0.02 or less,
with only 2, resp. 1 entry differing by >0.03. Thus, readmission
predictability seems to be less affected by this split than the AKI
model, and suffers less loss than the split for drift.

Discussion

In this paper, we explore why Al-driven healthcare is not
reaching its full potential in the ICU. Our first step was to speak
to stakeholders in the ICU ecosystem (24) to understand the
current status and needs, the role of data-driven innovations

Fig. 2 AKI model performance as available data size varies, with and
without TL. Area under receiver operator curve (AUROC) of acute kidney
injury (AKI) against dataset size, without transfer learning (TL), i.e., the
baseline model (blue line), and with simple TL (green line). The transferred
model needs less data to achieve the same performance as the model
retrained from scratch, showing that there is an advantage in using transfer
learning in cases where little data is present. Source data is in
Supplementary Data 2.

therein, and why the uptake of these innovations is not larger.
Our main conclusions from these interviews are that some AI
solutions can be useful in patient care and that blocking factors
are mostly technical. Some of these technical blocking factors are
more about engineering effort than innovation (e.g., interoper-
ability of data sources within the hospital). Others require
innovation at the level of the ML algorithms. These will have to
deal with the reality of cross-institutional data silos to mitigate the
lack of sufficient data for training, and the discrepancy between
clean research data and dirty real-world data. Also ML solutions
have to include support for mitigating the impact of different
hospital contexts on model reliability. This includes providing
tools for generalizing ML solutions to other contexts than those in
which they were trained, and drift of datasets over time.

We follow up on several technical points from the interviews
by performing ML experiments. We confirm that all four of the
issues that we investigated do indeed pose problems for the use of
ML in the ICU, and quantify those effects to some extent. Sce-
nario 1, drift, appears to have a large negative impact on model
performance. In Scenario 2, adding features can have a large
positive impact. The time required to gather enough data to start
to benefit from this impact can be large, and there is a clear need
for tools to reduce this waiting period. Scenario 3, scarceness of
data, shows that a lack of data can be problematic depending on
the condition and/or the model. For conditions that are hard but
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Fig. 3 Readmission prediction model performance as available data size
varies. Area under receiver operator curve (AUROC) of model
performance against dataset size for the readmission prediction models.
The models show are readmission after 24 h (blue line), 48 h (orange line),
72 h (green line), from 24 to 72 h (red line), after 7 days (purple line),
30 days (brown line) and bounceback (pink line). Source data is in
Supplementary Data 3.

possible to model, a high capacity model (e.g., a deep-neural
network) will give the best accuracy but can require a lot of data
to train. We conjecture that some models are going to need access
to multiple large institutions worth of data to reach their full
performance potential, given that >10 years worth of records at a
very large hospital (i.e., the MIMIC-III dataset) appears not to be
enough to reach saturation for prediction performance on a
model for AKI, a medical condition that is only uncommon
rather than rare (although admittedly fairly complex). This is also
indicated by the VoC results, with insufficient data being a
common reason given for the lack of usable ML models. Given
the many rules and restrictions around handling of patient data, it
is unlikely that it will be possible to pool datasets from different
healthcare providers to assemble the large amounts of data nee-
ded. Techniques for privacy-preserving learning over multiple
parties such as federated learning can be a solution in this case3’.
For other situations with more simple conditions or simpler
models, we see it is possible to reach training saturation with data
from a single (albeit large) institution. For Scenario 4, we see that
a change of population can have a large impact, but also that this
appears to have somewhat less impact on simpler models.

We select models to be able to run ML experiments, and to
do that we set up criteria for selecting models published in the
scientific literature to work with (clinical relevance and repro-
ducibility). We survey available predictive models according
to these criteria and find that the current offering is weak.
Clearly scientific reproducibility in this area is very limited,. The
community could do better in making its research results more
accessible. When looking for open-source ML models from the
literature, our approach was inspired by Systematic Review.
We strongly encourage interested members of this community
to develop proper protocols for finding public code repositories
and to publish systematic reviews of available open-source
models, and believe this would be of great benefit to the com-
munity. We note with interest the low numbers of suitable
open-source models as it gives a strong indication that the

scope for a hospital to bring in a third-party model from the
literature (as opposed to, e.g., a fully commercially developed
one) that meets some degree of scientific quality control is
pretty limited.

There are various technical solutions to the issues quantified in
the experimental section. Techniques such as online learning,
concept drift, transfer learning and data augmentation are well
developed in the general ML literature. The results of our inter-
views suggest that there is plenty of scope to use these techniques
in the ICU, but for some reason they are not used in practice.
Perhaps a larger number of practical experiments can be done in
the future to demonstrate how these techniques apply to complex
clinical data.

Techniques for learning models across multiple privacy
constrained databases are substantially newer, and it would
appear that there is plenty more research to be done to further
develop these techniques and show how well they apply to
ICU data3¢. We look forward with interest to the fruit of that
research.

This work presented has some limitations. The VoC study
targets a set of 24 stakeholders, which are either ICUs or active in
the ICU ecosystem. While on the large side for such a study, 24 is
still a small number when it comes to statistics. Moreover, since
13 of these stakeholders are active in Belgium only, there is a
possibility of a geographical bias. Expanding the VoC to a more
worldwide, or at least European, sample set could inform on the
size of this bias. Age was not included in the demographics in the
study, although age might be a strong denominator for technical
skills and for the general belief of added value. This may bias the
responses received.

Some of our experiments are limited by the fact that the dataset
was collected from one hospital. In particular, investigating the
transfer from one hospital to another by using demographic sub-
setting of the dataset is a less than ideal proxy for a genuine
transfer experiment. Future versions of the this experiment would
be better done using the eICU dataset?%23, We note however, that
there are currently even fewer public models available for this
dataset than for MIMIC-III, none of which we considered to be
clinically relevant and reproducible at the time of doing the
experiments. This limits the scope to work with sufficiently
interesting third-party models when evaluating the issues that
we raise.

Owing to time limitations, we were only able to work with two
models for the experiments. It would be nice to expand this to
models for other important ICU conditions such as ARDS37 or
delirium38.

We concentrate on models with completely public code where
the scientific claims can be checked by running it on publicly
available data. We have not quantified the extent to which non-
public code associated with peer-reviewed publications in this area
is actually transferred between hospitals, nor how the receiving
hospital would rigorously check the validity in the model in the
absence of access to the program and data used to build it. How-
ever, the general lack of use of ML models in practice in the ICU
would suggest that re-use of non-public models is not a frequent
occurrence. Certainly the VoC sample did not give any indications
on this being a standard approach.

In this work, we do not directly address the problem of
explainability of ML models. Putting objective numerical values
on explainability is hard, but clearly this does not prevent
explainability from being an important consideration; Kaji et al.>®
show that, especially for challenging and clinically relevant
models, explainability can help to highlight problems with the
undertaking of building ML models, such as the models resorting
to shortcuts that result in them essentially parroting the inputs
that they receive from clinical experts. Despite their results, we
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take heart from the optimism of the authors that ML models will
eventually help in the ICU.

Data availability

The questionnaire used for the VoC is repeated in Supplementary Note 1, and publicly
available on github®’. The summarized questionnaire results are available in this article.
Individual questionnaire results are not available because of confidentiality. Data used in
experiments were drawn from the Medical Information Mart for Intensive Care III
(MIMIC-IIT)20.21 Tt is a single-center database containing 53,423 distinct ICU stays for
patients aged 16 and over between 2001 and 2012 at Beth Israel Deaconess Medical
Center, in Boston, Massachusetts. It is available without cost to researchers who complete
the appropriate training for data handling. Figures 1, 2 and 3 have associated source data,
which can be found in Supplementary Data 1, 2, and 3. All other data are available from
the corresponding author (or other sources, as applicable) on reasonable request.

Code availability

The code for the AKI model and related experiments is published under the AGPL
licence in a public github repository*!. The complete list of features used can also be
retrieved there. The code we used for the experiments on the Readmission model is
available from Github*? under an MIT license (which is the same type of license as the
repository that it was forked from). The original repository was downloaded from https://
github.com/apakbin94/ICU72hReadmissionMIMICIIL.
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