
1

An Automated Router with Optical Resource
Adaptation

Ferre Vanden Kerchove, Xiangfeng Chen, Student Member, IEEE, Didier Colle, Wouter Tavernier,
Wim Bogaerts, Fellow, IEEE, Senior Member, Optica, and Mario Pickavet, Senior Member, IEEE

Abstract—Photonic Integrated Circuits are rapidly becoming
more reconfigurable using tunable waveguide elements, coming
closer to realizing ‘general purpose’ programmable waveguide
meshes. To utilize the full potential of such circuits, special
software routines need to be developed to determine the optical
paths inside the mesh. Right now, current methods either scale ex-
ponentially in problem size or are severely lacking performance-
wise, largely unable to find solutions, especially in recirculating
waveguide meshes with square or hexagonal unit cells. We
present an algorithm that computes an efficient configuration
that correctly routes all given signals. Whereas similar papers
look at meshes containing 7 to 20 hexagonal cells, in this paper,
meshes of up to hundreds of hexagonal cells are considered.
We compare the results of our algorithm to an earlier proposed
algorithm and to an optimal solution. Several parameters are
introduced in the algorithm. These are studied and an optimizer
is implemented to determine effective values for them.

Index Terms—Graph theory, optical routing, photonic inte-
grated circuits, programmable photonics.

I. INTRODUCTION

OVER THE last decade, numerous advancements have
cleared a path for programmable photonics to advance

from a mere concept to a practical platform for new advance-
ments and applications, especially in neuromorphic computing
and machine learning [16]. The flow of light is controlled
through electronics and software to project a set of optical
ports at the input to a set of ports at the output. While
this demonstrates large-scale integration and programmability,
most of these circuits are still very much application-specific
photonic integrated circuits (ASPIC). Like most other photonic
integrated circuits (PIC), these have to be custom designed and
fabricated. In turn, this leads to long design times and high de-
velopment costs, slowing down the exploration of novel optical
applications [1]. As a result, general-purpose programmable
photonic chips are now touted as the next logical step in
the development of PICs, providing a chip where the flow
of light can be arbitrarily programmed to perform a variety of
functions, which can accelerate prototyping and developments.
The programmable flow of light enables dynamic manipulation
over the course of light and thus a programmable control

Part of this work was funded by the Flemish Research Foundation (FWO-
Vlaanderen) through grant G020421 (GRAPHSPAY) and grant 11O0923N,
and by the European Research Council (ERC) through grant 725555 (Pho-
tonicSWARM).

F. Vanden Kerchove, M. Pickavet, W. Tavernier, and D. Colle are with
IDLab, the Department of Information Technology, Ghent University - imec,
9052 Ghent, Belgium (e-mail: ferre.vandenkerchove@ugent.be).

X. Chen and W. Bogaerts are with Photonics Research Group, Department
of Information Technology, Ghent University - imec, 9052 Ghent, Belgium.

Fig. 1. Programmable photonic circuits: (a) the circuit connects inputs,
outputs, and functional blocks (modulators, detectors). (b) internally it has
couplers that can be put in different states. The topology can be feed-forward
(c) or use feedback rings, these can be organized and tiled in different shapes,
e.g., squares (d) or hexagons (a).

of the functionality of the circuit. The most commonly used
architecture is a mesh where light flows in one direction
[7] as seen in Fig. 1(c). A forward-only mesh is easy to
understand but does not completely utilize the full potential of
programmable photonics. Alternative architecture tiles the chip
with waveguides organized in triangular, square, or hexagonal
loops, the latter two can be seen in Fig. 1(a, d). Here, light
can be folded onto itself, creating resonances. This enables
the implementation of a broad range of different wavelength
filters. These meshes can also contain specialized function
blocks inside the mesh, with dedicated input and output ports.

Right now, a popular and potent mesh topology uses
hexagonal tiling, offering significant advantages over other
regular tiling [10], as an example, only a hexagonal mesh can
implement Sagnac loops. In this paper, we consider only this
architecture. However, the proposed algorithm does not depend
on the exact architecture, and can easily be used with other
architectures.

The functionality of a waveguide mesh that offers re-
circulation is twofold. Firstly, it provides the connections
between all possible pairs of ports, including the different
high-performance photonic blocks, essentially acting as an
all-to-all switch. Secondly, it enables the synthesis of the
aforementioned optical filters inside the mesh, such as inter-

This article has been accepted for publication in IEEE/OSA Journal of Lightwave Technology. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JLT.2023.3275385

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

2

ferometers and ring resonators. This paper only focuses on the
first functionality, but the proposed algorithm is left as much
room as possible to allow for an extension to the placement
and synthesis of filters.

Given a set of signals with their source ports and cor-
responding destination ports, the main problem is deciding
the exact path for every signal. These paths cannot share
waveguides, severely limiting what is physically possible. On
smaller meshes, a path for every signal can still be manually
constructed. On larger meshes, this becomes a challenging task
to perform for humans. A logical step is to use specialized
routing algorithms. However, for photonic purposes, these
algorithms are still largely in their infancy. They either assume
one-directional flow in forward-only meshes [7], or focus on
small-scale recirculating meshes [4], [9]. Correctly modeling
all constraints imposed by the physics of light proves to be a
real hurdle, which leads to algorithms that do not manage to
properly explore all possible configurations.

We base our work on [3], [4], [9], focusing on meshes
that contain an order of magnitude more unit cells. While
the aforementioned papers look at meshes that consist of
7 to 20 hexagonal cells, in this paper, meshes of hundreds
of hexagonal cells are considered. This paper is a in-depth
extension of [8].

In Section II, we define the problem and give the relevant
physical constraints. We then translate this problem into a
problem on graphs. Section III gives a general overview of
our algorithm. Section IV gives a complexity analysis and
Section V describes the integer program that is used to obtain
an optimal solution. In Section VI, we briefly talk about
the test data that is used. Afterward, in Section VII, we
gauge the quality of the results. The results are compared
to solutions produced by an algorithm similar to [9] and an
optimal solution, the latter being only obtainable on smaller
meshes. We justify design and parameter choices by showing
performance data in Section VIII. At last, in Section IX, we
summarize our work and give areas where future work is
possible.

II. PROBLEM STATEMENT

Firstly, a broad description of the problem is given with
the relevant physical constraints and optimization goal. Then,
the problem is reformulated to a problem on graphs, and
an equivalent way to realize the constraints is given. This
second formulation is the basis of the Automated Router with
Optical Resource Adaptation (Aurora) and ensures that it is
fully compliant with the constraints.

A commodity in a mesh is a source-target connection pair,
where light needs to flow from source to target. The main
problem of this paper is the following: given a mesh consisting
of waveguides and couplers, and a set of commodities, find
a way to connect each source with its target through a path
for the light in the mesh. A path can only change from one
waveguide to another by utilizing a coupler. Here, it acts as a
switch as seen in Fig. 1(b). Either it lets the light continue in
the waveguides, or it switches the light from one waveguide
to the other, and vice versa. This is called bar and cross mode

Fig. 2. (a) A hexagonal mesh consisting of waveguides (WG), couplers (CP),
and phase shifters (PS). (b) a set of interconnected couplers. (c) a coupler as
a graph.

respectively. There is a third mode, coupling mode, but this is
only relevant if there are multiple targets per source, or for the
realization of other optical functions like wavelength filtering.
Neither is considered in this paper. The specific design of
couplers leads to the following physical constraints. A path
using a coupler cannot make a U-turn in this coupler, nor can
a coupler be used in both bar and cross mode at the same
time. The following set of constraints is an equivalent way to
capture the physical restrictions.

1) U-turns are not allowed in couplers.
2) No waveguide can be used by two different paths.
3) A single path cannot use a waveguide twice

Now, graphs are a natural framework to tackle this problem.
Recently, new developments [4] have shown an interesting
graph representation of couplers, enabling an abstraction of
physical constraints that aids algorithm design. Graphs have
been extensively studied and a rich field of algorithms can
now be leveraged. Fig. 2 (c) shows this graph representation.

Logically, a coupler could be modeled by 4 vertices where
light enters and exists. Doing so proves cumbersome because
this creates paths in the graph that are not physically possible
(such as back-coupling light from one input to the other input).
This simple model does not represent the underlying problem
well. As a consequence, the routing algorithm would need to
take care of this, adding additional complexity.

Instead, a directed graph is used. This type of graph has
directed edges, called arcs. Besides this, every vertex is
separated into an incoming vertex and an outgoing vertex, this
immediately disallows U-turns. See [4] for a more in-depth
treatment. This translation comes with drawbacks, as every
waveguide and coupler arm is now modeled by two arcs, each

This article has been accepted for publication in IEEE/OSA Journal of Lightwave Technology. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JLT.2023.3275385

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

3

in one direction. For every arc, there is a reverse arc that
represents the same waveguide or coupler arm, but going in
the opposite direction. Of the three earlier listed constraints,
the second constraint, which states that no waveguide can be
used by two different paths is thus not translated to “no arc
can be used by two different paths”. Instead, this becomes “no
arc or its reverse arc can be used by two different paths”. The
third constraint is adapted similarly. Notice that each node has
either at most one incoming arc or one outgoing arc.

Because of production imperfections, couplers differ in
physical properties such as insertion loss and power con-
sumption. Waveguides have similar imperfections. To account
for this, couplers and waveguides are given a base weight
connected to their inherent physical properties. Since couplers
and waveguides are represented by arcs in a graph, every arc is
given a base weight corresponding to the characteristics of the
physical structure it represents. Weights are further explained
in Section III-C.

The problem is now stated more rigorously as follows.
Given a weighted, directed graph G = (V,A) of vertices and
arcs, and a set of pairs of vertices, (s1, t1), . . . , (sn, tn) called
commodities, find a set of paths P1, . . . , Pn, such that Pi is a
directed path from si to ti and that no arc is congested.

An arc a is congested in the following situations.

1) Two different paths use a
2) A path uses both a and its reverse arc
3) A path uses a and another path uses its reverse arc

If a path contains a congested arc, this path is said to
have a conflict or to be congested. This definition is slightly
broader than what one would normally consider congested in
similar algorithms, but a necessary adaptation nonetheless. If
the congestion definition was not extended with reverse arcs,
there would be no problem with one path using an arc and
another path using the reverse arc since these are distinct arcs.
However, remember that an arc and its reverse arc model the
same physical waveguide, thus violating the constraint that no
waveguide can be used by two different paths. A set of paths is
a legal routing or a solution to the problem instance if every
source is connected to its target by a conflict-free path. A
problem instance is feasible if there exists a solution.

Given a legal routing to a problem instance, we say that
the total weight of that solution S is equal to the sum of the
weights ba of the arcs a in the paths Pi ∈ S in the solution.

Total weight of solution S =
∑
Pi∈S

∑
a∈P

ba.

Now, the problem is finding a solution where the total weight
of the solution is minimal, i.e., no other solution exists with
a lower total weight. Given two solutions, we call a solution
better if it has a lower total weight than the other solution. An
example of a problem instance and a legal routing is shown
in Fig. 3. Here, on the left of the figure, you can see 10
colored nodes and arrows, with each color having one node
with an outgoing arrow and one with an incoming arrow. These
represent the source and target nodes respectively. The right
figure displays a legal routing that is optimal, in regard to the
fact that every arc has a weight of 1.

in1

out1

in3 in2

in5

in4
out2

out3

out4

out5

`

Fig. 3. An example problem instance on the left and an optimal solution
regarding the total length of all paths on the right. There are ten colored
nodes, and of each color, there is a node with an outgoing and incoming
colored arc. These are the source and destination, respectively. The solution
displays a path for every commodity such that all physical constraints are
respected.

III. THE ALGORITHM

We propose a negotiation-based algorithm, partially based
on Pathfinder [11] and additional improvements [2], [12], [14].
This is a logical choice, given the fact that modern routing
algorithms in electronic FPGA design tools are also based on
these principles [13]. Several modifications are incorporated,
some to take the physical constraints into account, and others
to improve performance. One example of such a modification
is the expanded definition of congestion, as mentioned in the
previous section.

A. Sequential routing

A popular and straightforward way to tackle this problem
is with sequential routing [9]. This follows the principle that
one commodity is routed first along its shortest path. Then
the following commodity is routed but this path cannot use
the routing resources that are already used in the previous
commodity’s path. The path for the next commodity cannot
use the resources of the two paths that were routed before.
This continues until all commodities are routed, or until there
does not exist a path anymore between a source-target pair.
When there is a large number of commodities, the latter is
quite likely. This type of routing fails to account for the fact
that certain commodities could easily use an alternative path
that does not need crucial resources, whereas others cannot. As
an example, in Fig. 4, commodity A has as source As and as
target At, and commodity B has Bs and Bt. For this problem,
the path between the commodities can share nodes, but cannot
share edges. Neither commodity can have its shortest path,
since that would completely cut off the target of the other
commodity, and both commodities need to compromise.

If there are n commodities, then there are n! possible
permutations to route the commodities sequentially. Firstly,
it is infeasible to fully explore this search space even for n
as small as 15. Secondly, as was just shown, there might not
even be a solution that is obtainable in this way.

This motivates us to use an iterative routing algorithm that
does not route sequentially, but simultaneously. The main idea
of iterative simultaneous routing is that, in every iteration, all
commodities are routed independently of each other. Instead

This article has been accepted for publication in IEEE/OSA Journal of Lightwave Technology. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JLT.2023.3275385

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

4

As

X

Bs

Y

Bt At

Fig. 4. The shortest path for commodity A is As −X − Y −At, indicated
by the arrows. However, this uses both edges (As, X) and (X,Y). There is
now no longer a path for commodity B possible. The situation is analogous
when B is routed by its shortest path. Instead, both need to take a longer
path.

of being disallowed to use certain routing resources that others
use, it is possible to temporarily share them. To decide which
routing resources they use, the algorithm is guided by continu-
ously changing weights that represent the artificial cost to use
these resources. These weights cause shared routing resources
to become increasingly more expensive. This discourages the
usage of heavily sought-after routing resources by making
them prohibitively expensive, causing commodities to use a
cheaper detour. Commodities that do not have another option
will still use these expensive routing resources.

If sequential routing finds a solution, that solution is often
fairly good. This stems from the fact that everything is routed
through the shortest path that is still possible, which generally
leads to short solutions. As will be explained in Section III-E,
our algorithm sometimes switches between sequential and
simultaneous routing, but the majority of the time it uses
simultaneous routing.

B. Aurora: an Automated Router with Optical Resource Adap-
tion

We now give an overview of our algorithm, accompanied
by the pseudo-code in Fig. 5. Basic variables are initialized
on line 1 to 3 such as the number of solutions sol it has
found so far and the current best solution best. Besides this,
the variable paths stores the current path for each commodity,
starting with having no path for each commodity. At first, a
round of preprocessing is conducted which slightly modifies
all weights. This is further explained in Section III-D.

Given a graph G and a set coms of commodities containing
the source and target nodes of the commodities, the first round
of routing is conducted (line 8) with Dijkstra’s algorithm [5].
This routing is based on the weights of the arcs. After the
initial round of routing, every commodity has now a least-
weighted path, independent of the other commodities.

The main loop starts. Firstly, if there are congested arcs,
the congestion weight of these arcs is updated (line 10). This
is further specified in Section III-C and in general, depends
on how many paths use this arc and how many iterations this
arc has been congested so far. Now, if there are any congested
paths, the algorithm rips up these paths and reroutes them
(line 12 - 14), with the routing now based on the updated

Require: commodities coms and graph G
1: sol← 0
2: best← ∅
3: paths← ∅
4: for arc in G do
5: weights[arc]← base weight(arc)
6: weights ← PREPROCESSING(G, coms)
7: for co in coms do
8: paths[co] ← DIJKSTRA(G, co,weights)
9: for iter← 1 . . .max iters do

10: UPDATE WEIGHTS(G, paths, weights)
11: if CONFLICTS(paths) then
12: for co in coms do
13: if paths[co] has conflict then
14: paths[co] ← DIJKSTRA(G, co, weights)
15: if REPETITION AVOIDANCE(paths, iter) then
16: SEQUENTIAL ROUTING(G, coms, weights)
17: else
18: best ← CHOOSE BEST(paths, best)
19: sol← sol + 1
20: if sol = max solutions then
21: break
22: RESET CONGESTION(G, weights)
23: LENGTH BASED RIP UP(G, paths)
24: return best

Fig. 5. Pseudo-code for the Automated Router with Optical Resource
Adaptation (Aurora)

weights. On line 15, our algorithm avoids repeating the same
configurations too many times, as explained in Section III-E.
Thus, if deemed necessary, a round of sequential routing
is then conducted with all commodities that have conflicts.
This sequential routing is based on the weights that the arcs
have at that time, but after every commodity, the weights are
immediately updated, instead of only being updated after all
the conflicted commodities are rerouted.

If a solution is found, it is recorded (line 18). This event
is called a convergence. Note that if another solution has
already been found, the choice of which solution is kept is
made based on the lowest total base weight. Now there are
two possibilities, either the algorithm immediately returns the
solution and terminates, or it continues to search for better
solutions, i.e., solutions with a lower base weight. For the
latter, the algorithm is said to be multi-convergent. If this is
the case, the congestion term of the congestion weight of the
arcs is reset to 0 (line 22), and a cost-based rip-up is initiated
(line 23). For this, only the base weights are considered. For
every commodity, the base cost of their path in the solution is
compared to the cheapest (in terms of base weights) possible
path for this commodity. All paths that are a certain percentage
more expensive than their cheapest possible path are artificially
marked as congested so that they are rerouted when the next
iteration starts. See Section VIII-C for an exact description.
The congestion reset insures that these more expensive paths
will try to take better routes than the route they had in the last
solution while a complete restart is avoided in order to keep

This article has been accepted for publication in IEEE/OSA Journal of Lightwave Technology. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JLT.2023.3275385

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

5

the good parts of the previous solution. This continues until
a certain number of iterations has passed or a fixed number
max solutions of solutions are found (line 20). When this
happens, the algorithm either returns the best solution it found
or reports that it has failed to find a solution. This failure is an
indication that there might not be a solution at all, but not a
guarantee. In Section VIII-E, we study a good choice for this
maximum number of iterations.

C. Weights

A major difference from Pathfinder is the fact that we give
weights to the arcs, instead of the vertices. This enables us
to model more directly the intrinsic differences of waveguides
and couplers, such as insertion loss (IL), power consumption
(PC), and basic unit length (BUL). Every arc a has a base
weight ba which is a linear combination of these three proper-
ties, ba = c1 · ILa + c2 ·BULa + c3 ·PCa, where c1, c2, c3 are
scaling coefficients which can be chosen according to need.
For simplicity’s sake and without loss of generality, in this
paper, we only focus on the basic unit length and assume that
all arcs have a BUL of exactly 1. Thus we put c2 = 1 and
c1 = c3 = 0, hence the base weight of every arc is 1. Since
the base weight of every arc is the same as its length, we
minimize the total length of the solution. The total length of
a solution is the sum of the lengths of the arcs in the paths of
that solution. From here, when we describe a solution as being
longer than other solutions, we mean that it has a higher total
base weight compared to these other solutions. Given solution
a with a total length of 204 and solution b with a total length
of 200, solution a is said to be 2% longer than solution b. In
general, if la is the total length of a and lb the total length of
b, then la−lb

lb
calculates how much longer solution a is than

solution b. Negative numbers imply that a is shorter instead.
The congestion weight wa of an arc a is now the following:

wa = (ba + εa + ha ·HI) · (pa + 1).

Here ba is the base weight. εa is either 0 or a small value ε,
depending on preprocessing, see Section III-D. ha keeps track
of the number of iterations that this arc was congested before,
whereas HI is a constant called history increase. Different
values for the history increase lead to varying performance
which we study in Section VIII-B. ha starts at 0 and increases
by one for each iteration this arc or its reverse arc is congested.
This makes the arc progressively more expensive and paths
will avoid arcs that are often congested. Instead, they will
choose detours.

For every path, pa is the number of other paths that used
this arc or its reverse arc in the previous iteration. The exact
definition of pa is motivated by the following observation.
Firstly, when an arc is heavily congested and used by many
paths, it immediately becomes more expensive, causing com-
modities to change their path the next round. Besides this,
it discourages other commodities to use this arc in the next
round. We specifically add “+1” in pa +1 because otherwise,
all unused arcs would cost 0. All congested paths would
always want to use unused arcs, causing many commodities to
completely change their path, irrelevant of how much worse

this new path is. Now pa is taken as the number of other
paths using this arc or reverse arc, noticeably not counting the
current path for which we are calculating the weights. This
follows similar reasoning. If we took all paths into account,
then a commodity would make its own path more expensive as
well. If there is any congestion on that path, it will completely
reroute and avoid the arcs that it uses in the previous iteration,
even though many of these might not be used by any other
path.

D. Preprocessing

Right now, the mesh architectures under investigation often
have many equal-cost least-weighted paths between two ver-
tices. The algorithm makes use of this property by calculating
all the least-weighted paths between a sink and its correspond-
ing target of a commodity. If two least-weighted paths between
two different source-target pairs use the same arc or reverse
arc, the cost of that arc is slightly increased by a value ε.
If a commodity has many least-weighted paths, it will prefer
the path that has no arcs shared with a least-weighted path of
another commodity.

E. Configuration repetition avoidance

The algorithm sometimes gets stuck, where one iteration
it suggests routing R1, the next iteration R2 and it keeps
alternating between these two. On one problem instance, a
cycle of 4 configurations involving 3 different paths was found.
Seemingly this does not appear often, but enough to warrant a
modification that helps the algorithm avoid useless iterations
consisting of exploring the same sequence of configurations
over and over again. It is even vital to combat this issue,
otherwise, on certain problem instances, no solution is found
at all. Various schemes to resolve this issue have been tested,
but the performance data favors a basic rule in the end. After
a fixed number of iterations, one round of sequential routing
is conducted in random order. Schemes that try to detect when
configuration repetition is happening were outperformed both
in time and solution quality by this rule.

F. Cost-based rip-up

Once a solution is found, the algorithm does not terminate.
Instead, it resets the congestion history term ha and looks at
the base weight of the paths. Paths that are R% more expensive
than their cheapest possible path are artificially marked as
conflicted. Now the algorithm restarts by immediately ripping
up these paths and the history increase is scaled as well by a
factor v. This continues until a maximum number of solutions,
max solutions, is reached. We investigate the exact values for
these parameters in Section VIII-C.

IV. COMPLEXITY

In this section, the complexity of the algorithm is studied.
This analysis comes with the caveat that a large part of the total
time complexity is hidden by constants and that the “difficulty”
of the problem instance has a large influence on the total time
needed. This is expected because this algorithm is a heuristic

This article has been accepted for publication in IEEE/OSA Journal of Lightwave Technology. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JLT.2023.3275385

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

6

In terms of E, V and C, r and C.
Dijkstra O(|E|+ |V | log |V |) O(r2 log r)
Single loop O(|C|(|E|+ |V | log |V |)) O(|C|r2 log r)
Total O(|C|2(|E|+ |V | log |V |)) O(|C|2r2 log r)

TABLE I
COMPLEXITY ANALYSIS

for an NP-hard problem [6] which makes it generally hard to
give meaningful complexity analysis.

We characterize the complexity in two ways, firstly for
general graphs, and in terms of the number of edges |E|,
vertices |V |, and commodities |C|. And secondly, for the
specific hexagonal tiling that we use, which is in terms
of the radius r and the number of commodities |C|. Our
implementation of Dijkstra’s algorithm has a time complexity
of O(|E|+ |V | log |V |). Now, in the graph we use, for every
node, the sum of the indegree and outdegree is at most 3,
and |E| ≤ 3|V |, thus this time complexity simplifies to
O(|V | log |V |). The number of nodes is a multiple of the
number of hexagons which, in turn, scales quadratically with
the radius r. This gives us a complexity O(r2 log r) for
Dijkstra’s algorithm, which is part of the main loop. Dijkstra’s
algorithm is called at most once1 for every commodity in
the main loop. This happens only for commodities that have
a conflict. Hence, the complexity becomes O(|C|r2 log r).
As discussed in Section VIII-E, the maximum number of
iterations of the main loop is a multiple of the number of
commodities and thus a total complexity of O(|C|2r2 log r).
See Table I for the description in terms of |E| and |V |.

V. INTEGER PROGRAM FOR AN OPTIMAL SOLUTION

We describe the integer program that we utilize to obtain an
optimal solution. This integer program is strongly dependent
on the graph representation that is used. As mentioned before,
every arc a has an opposite arc, aop. Now we introduce
variables xca ∈ B for every commodity c and every arc a,
indicating that the path for this commodity uses this arc. A
commodity c has a node cs and cd denoting the source and
destination of that commodity. The set of all commodities is
denoted by C and the set of all arcs by A. We use the set of
all nodes N and let N∗(c) be the set of all nodes, without
the source and destination of c, thus N∗(c) := N \ {cs, cd}.
Let δ−(n) be the set of all incoming arcs of a node n, and
δ+(n) be the set of all outgoing arcs. The integer program
now becomes the following:

Minimize
∑

c∈C

∑
a∈A baxca.

Subject to
∑

a∈δ−(n) xca =
∑

a∈δ+(n) xca, ∀c ∈ C,

∀n ∈ N∗(c),∑
c∈C xca + xcaop ≤ 1, ∀a ∈ A.

The objective function is as stated before, to minimize the total
base weight of the used arcs. The first constraint is Kirchhoff’s
law which makes sure that in every node, if a path enters the
node, it also leaves the node, except in the case that this is

1Technically twice, because it can be called again in the sequential routing,
however, this only happens a fixed number of times. This does not change
the time complexity analysis.

the source or destination node for this commodity. The second
constraint states that for every arc, at most one commodity can
use this arc or its reverse arc.

For every commodity c, the following 4 constraints are also
added. This ensures that there is a path starting in the source
cs and going to the destination cd.∑

a∈δ−(cs)
xca = 0,∑

a∈δ+(cs)
xca = 1,∑

a∈δ+(cd)
xca = 0,∑

a∈δ−(cd)
xca = 1.

(1)

Note that this fully captures the definition of congestion,
proposed in Section II. This integer program completely
represents the problem, but largely because of the underlying
graph representation. To give an example of this dependence,
we do not need to specify that a path cannot pass through the
source of another commodity. This follows from the fact that a
source node is always chosen to have exactly one outgoing arc,
and thus that arc has to be used for the path of that commodity.

VI. TEST SETS

We use multiple test sets to benchmark our algorithm. One
test set consists of multiple related problem instances with the
same radius r, which is first explained. A mesh of radius r
has 1 + 3r(r + 1) hexagonal cells. One single hexagonal cell
is considered a mesh of radius r = 0. In Fig. 3, a mesh of
radius r = 1 can be seen. Most test sets are on a mesh of
radius r = 8, which consists of 217 hexagons. This radius is
chosen because it is the largest on which optimal solutions
can still be found systematically. For every problem instance
in a test set, it is exactly known if it is feasible or not. If it is
feasible, the optimal solution is also known. This is realized
by the integer program described in Section V.

Now, every test set is based on a radius r and a list of
commodity candidates (s1, t1), . . . , (sn, tn). The first problem
instance, P1, consists of routing the first commodity (s1, t1) on
a mesh of radius r. The second problem instance, P2, is routing
the first and second commodity (s1, t1), (s2, t2). Now at a
certain index m, it is possible to route commodity 1 through
m, but routing commodity 1 through m + 1 is infeasible.
Remember, this infeasibility is shown by an integer program
and thus proven infeasibility. Then, commodity m + 1 is not
included in the next problem instance, and the next commodity
is added instead. If this is feasible, problem instance Pm+1

becomes routing (s1, t1), . . . , (sm, tm), (sm+2, tm+2). If this
is again infeasible, the process repeats itself and the next
commodity is tried. This gives a chain of related problem
instances, where each problem instance is more difficult than
the previous one. Another advantage is that the problem
instances are ‘randomly’ generated. In a solution of the last
problem instance of a test set, the mesh is often quite full,
with little space for more commodities. We say that the mesh is
densely used then. As a consequence of this way of generating
problem instances, the number of commodities can differ
between problem instances, and having more commodities
does not necessarily mean that a problem instance is more
difficult. Nor that it is more densely used. Instead, there

This article has been accepted for publication in IEEE/OSA Journal of Lightwave Technology. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JLT.2023.3275385

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

7

might be a couple of commodities where the source and
target are located close to each other. This is often easier
to route than when the commodities are always located far
away from each other and many paths cross each other. The
list of commodity candidates is generated with the sources
and destinations randomly distributed through the mesh, but
an emphasis is put on populating the outer layers of the mesh,
simulating the functionality of the mesh as a switch box.

VII. COMPARISON OF AURORA TO SEQUENTIAL ROUTING
AND AN OPTIMAL SOLUTION

Here, we look at the performance of the algorithm, Aurora,
with optimized parameter values. To avoid the fact that the
parameters are overfitted to the problem instances that are
used to obtain the parameters, there are two sets of test sets.
One on which the optimized parameter values are obtained,
and another, larger one. All plots here are created from the
performance of Aurora on the second set of test sets, thus
ensuring that the parameters are not specifically adapted to the
exact test sets that were used to obtain the parameter values.
The optimizer and the exact parameter values are described
and studied in the section after this one, Section VIII.

We compare Aurora to a sequential routing algorithm, as
described in [9]. To improve the results of this algorithm,
instead of only trying one order, 50 random orders are tried,
and the best result is kept. As shown in Fig. 6, sequential
routing fails on some smaller instances and on almost all
medium and larger instances. This is not unsurprising as
explained in Section III-A. Depending on the exact location
of commodities, it might not be possible that a solution can
be found, and the possible number of different orders to try
grows very quickly. However, this does not make it impossible,
but rather unlikely. For example, sequential routing finds a
solution at 21 and 22 commodities a couple of times. This
explains the fluctuations in the number of unsolved feasible
instances. In comparison, Aurora manages to solve 100% of
the feasible problem instances, thus outperforming sequential
routing by a wide margin when considering the number of
solved instances. If we only look at the subset of problem
instances that sequential routing can solve, its performance
is similar to Aurora on smaller instances. On the few larger
instances that it manages to solve, it has around 2-5% longer
path results than Aurora, see Fig. 7. In Fig. 8, the time
needed for Aurora and sequential routing is compared on the
instances where sequential routing finds a solution. Towards
the higher number of commodities, this happens only on a few
instances. Aurora is much faster on the entire range. Sequential
routing only finds solutions on “easier” problems with few
commodities for the size of the mesh, hence Aurora quickly
finds solutions here as well.

Looking at the general performance of Aurora in Fig. 9, on
average, it stays well within 2% of the optimal length. Even at
the ninety-fifth percentile, the solutions are at most 4% longer
than optimal. The time needed for Aurora in comparison to
an integer program can be seen in Fig. 10 where Google OR-
tools [17] is used as the solver. Here we can see that Aurora
scales significantly better, unsurprisingly given the exponential

0 5 10 15 20 25 30 35
Commodities

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f f
ea

sib
le

 in
st

an
ce

s u
ns

ol
ve

d

Sequential
Aurora

Fig. 6. Percentage of unsolved feasible instances of sequential routing over
all test sets with radius r = 8 by the number of commodities.

0 5 10 15 20 25
Commodities

2

1

0

1

2

3

4

5

6

7

Pe
rc

en
ta

ge
 lo

ng
er

 th
an

 A
ur

or
a

Average

Fig. 7. A comparison of sequential routing versus Aurora on all instances
for which sequential routing found a solution. They perform similarly for a
small number of commodities, but this degrades quickly with a rising number
of commodities.

nature of a solver for integer programs. We can see that it is
several orders of magnitude faster, which only becomes more
apparent with larger mesh radii and more commodities. For
radius r = 8, the integer program solver often needs multiple
hours to days to find all solutions to the problem instances of
one test set. For higher radii, this is increased by another order
of magnitude. Lastly, we look at the time needed on a mesh
of a larger radius as can be seen in Fig. 11. The radius here is
r = 13 and the mesh contains 546 hexagons. Besides a spike
at 43 commodities, the algorithm quickly finds a solution to
all 48 problem instances in less than 50 seconds.

VIII. PARAMETER TUNING

A. Performance metrics

In this section, we study more extensively the effect of
parameter values and elaborate on how we optimize the
parameter values. In this paper, we limit our scope to meshes

This article has been accepted for publication in IEEE/OSA Journal of Lightwave Technology. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JLT.2023.3275385

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

8

0 5 10 15 20
Commodities

0

2

4

6

8

10

12

14

Ti
m

e
(s

)

Sequential
Aurora

Fig. 8. Average time needed of Aurora and sequential routing on all feasible
problem instances where sequential routing finds a solution. Sequential routing
barely finds solutions towards the higher number of commodities, hence the
jagged line towards the end.

0 5 10 15 20 25 30 35
Commodities

0

1

2

3

4

5

6

7

Pe
rc

en
ta

ge
 lo

ng
er

 th
an

 o
pt

im
al

 v
al

ue Average
5 to 95 percentile

Fig. 9. Performance of Aurora with parameter values according to differential
evolution, see Section VIII. History increase: 0.053, ε: 0.335, maximum
convergence: 6, rip-up: 17.5%, history reduction: -0.27 (Lower is better.)

0 5 10 15 20 25 30
Commodities

0

1000

Ti
m

e
(s

)

Test set 0

0 5 10 15 20 25 30 35
Commodities

0

500

Ti
m

e
(s

)

Test set 1

0 5 10 15 20 25 30
Commodities

0

250

Ti
m

e
(s

)

Test set 2

Integer program
Aurora

Fig. 10. Time comparison of an integer program and Aurora on 3 test sets.
Other test sets paint a similar picture. We have plotted single test sets because
of the large variation in the time needed between test sets.

0 10 20 30 40 50
Commodities

0

10

20

30

40

50

60

Ti
m

e
(s

)

Aurora

Fig. 11. Number of commodities versus the time needed on a mesh of radius
r = 13.

that are based on hexagons. However, this limitation is not
used anywhere in the algorithm. The mesh’s exact topology
might impact the optimal parameter values, but then these
values can again be found by the parameter tuning in this
chapter. We do not expect the effect of parameters such as
history increase and restart to change drastically.

The quality of a specific parameter setting is measured by
3 key factors. These are listed in order of importance.

1) Number of feasible problem instances solved
2) Percentage longer than the optimal length
3) Time
To explore the parameter space smartly, we use differential

evolution as described in [15]. Differential evolution spreads
agents in the parameter space, and each agent represents a
specific choice for every parameter. These agents then explore
the space by choosing to either keep their own values or
change to a linear combination of the parameter values of other
agents. Differential evolution was chosen for its simplicity in
design and the convincing performance as mentioned in [15].
We use the recommended hyperparameter settings but limited
the number of agents to 10 and the number of differential
evolution iterations to 8. This is a low number of agents and
iterations and is chosen to reduce computation time. Besides
this, as seen in various plots, there is a degree of randomness
in the result for each parameter value. There is little reason
to try to find if the optimal value for a parameter is 0.338
or 0.339 since this is more depending on the exact problem
instances we use to run differential evolution on. We are more
interested in general trends and good parameter ranges, which
we study here. The overall data used for the plots that follow
are taken from the data gathered during differential evolution.

There are several parameters we study. These are history
increase (Section III-C), history vary (Section III-F), ε (Sec-
tion III-D), rip-up percentage and the maximum number of
convergences (Section III-F). Given a value for these, Aurora
runs on test sets each comprising several problem instances.
We then get the results produced by this version of the
algorithm on one test set and the fitness is calculated. This

This article has been accepted for publication in IEEE/OSA Journal of Lightwave Technology. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JLT.2023.3275385

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

9

fitness is computed with the following fitness function f : if u
is the number of unsolved feasible problem instances, lopt the
sum of the optimal lengths of all the problem instances in one
test set, and lsol the sum of the solution lengths in that test set:

f(u, lopt, lsol) = 10 · u+ 100 ·
lsol − lopt

lopt
.

Note that for this fitness function, lower is better, with fitness
of 0 meaning optimal. This convention is chosen to agree with
the literature on differential evolution. This fitness function
largely focuses on solving all instances, and then afterward on
finding solutions close to optimal. We investigate the effect
of the parameters on the runtime, but it is not one of the
objectives we explicitly minimize for.

B. General trends for history increase

We extensively compare different parameter choices and
their effect on performance. Firstly, we look at the effect
of history increase. For history increase, we studied values
ranging from 0.01 to 1. This coincides with being 1% to 100%
of the base weight of an arc. A couple of general trends are
clear. Too small of a value often leads to the algorithm not
finding a solution as seen in Fig. 12. It runs out of iterations
since too little happens with each iteration. For most values of
history increase, there are some unsolved feasible instances,
indicating that a single value for history increase might not be
preferable. Fig. 13 is a plot of how much longer the solution
is than the optimal value in function of history increase. An
abundantly clear trend can be seen, a higher history increase
leads to longer and thus worse solutions.

Secondly, we look at the effect of history increase on time.
Different test sets have a varying number of problem instances
and a different number of commodities for each problem
instance. Thus to have an insightful comparison, it is necessary
to normalize the time of each test set. Given a test set T ,
a specific choice of parameter values psp and the set of all
parameter values P , the normalized time for the parameter
choice psp on T is:

normalized time(T, psp) =
time(T, psp)

minp∈P time(T, p)
. (1)

The normalized time expresses how much longer this param-
eter choice needed in comparison to the shortest time needed
for this test set. For example, a value of 2 indicates that this
parameter choice needs twice as long as the fastest parameter
choice on the same test set.

When plotting the normalized time versus history increase
as seen in Fig. 14, it is striking that small values have high
running times. This agrees with the earlier observation that
too small of a value for history increase leads to either not
finding solutions or only finding them after many iterations.
This leads to high runtimes. Then a less clear trend emerges,
where the fastest time seems to occur for values of history
increase going from 0.17 to 0.47. Values outside this range
seem undesirable timing-wise.

If we look at both solution quality and time, we can see
that there is a trade-off. Small values (0.02-0.10) for history
increase give high-quality solutions but at the cost of high

0.0 0.2 0.4 0.6 0.8 1.0
History increase

0

1

2

3

4

5

Nu
m

be
r o

f u
ns

ol
ve

d
fe

as
ib

le
 in

st
an

ce
s

Fig. 12. Number of unsolved feasible instances, one dot represents a result
on a test set, and every test set contains between 25 and 35 problem instances.
(More unsolved instances is worse.)

0.0 0.2 0.4 0.6 0.8 1.0
History increase where all solved

1

2

3

4

5

6

7
Pe

rc
en

ta
ge

 lo
ng

er

Fig. 13. Percentage longer than the optimal length versus history increase,
every dot represents one run of the algorithm for a fixed parameter choice on
a fixed test set. (Longer is worse.)

runtimes. Vice versa, higher values (0.10-0.47) result in faster
solutions and a loss of solution quality.

Now, we use the tuned parameter value of history increase
from differential evolution and plot the total performance on
all test sets that have optimal solutions. This is the performance
of single-convergence. A solution is found for all of the
approximately 450 different feasible problems. The resulting
performance is plotted in Fig. 15. Above 30 commodities,
there aren’t many test sets where an optimal solution can
be found within reasonable time, hence the narrowing 5 to
95 percentile band. A solid performance is shown, with an
average performance that stays below 3%. Looking at the time
needed to get these solutions, our algorithm scales a lot better
than the exponential scaling of the integer linear program, as
shown in Fig. 16.

This article has been accepted for publication in IEEE/OSA Journal of Lightwave Technology. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JLT.2023.3275385

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

10

0.0 0.2 0.4 0.6 0.8 1.0
History increase where all solved

1

2

3

4

5

6

7

No
rm

al
ize

d
tim

e

Fig. 14. Normalized time versus history increase, different markers indicate
different test sets. Time is normalized per test set, see (1).

0 5 10 15 20 25 30 35
Commodities

0

1

2

3

4

5

6

7

Pe
rc

en
ta

ge
 lo

ng
er

 th
an

 o
pt

im
al

 v
al

ue Average
5 to 95 percentile

Fig. 15. Performance of single-convergence with parameter values according
to differential evolution. History increase: 0.053, ε: 0.335. Note that, whereas
this is similar to Fig. 9, their multi-convergence performance is shown.

0 5 10 15 20 25 30
Commodities

0

1000

Ti
m

e
(s

)

Test set 0

0 5 10 15 20 25 30 35
Commodities

0

500

Ti
m

e
(s

)

Test set 1

0 5 10 15 20 25 30
Commodities

0

250

Ti
m

e
(s

)

Test set 2

Integer program
Aurora

Fig. 16. Time comparison of an integer linear program solver to a single
convergence of Aurora on different test sets. Similar to Fig. 10, but towards
the higher number of commodities, the time needed is even lower by an order
of magnitude.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Rip-up value in %

1

2

3

4

5

6

7

Fit
ne

ss

Fig. 17. A downward trend can be seen between rip-up value and fitness
with 12% to 18% giving good values. (Lower fitness is better.)

C. Effects of cost-based rip-up

We now look towards multi-convergence. After one solution
is found, the algorithm does not terminate. Instead, it rips up
certain paths and resets all congestion. Two parameters are an
obvious choice to tune for this restart: at which percentage
R% does the algorithm rip up and how many times n does
it look for a solution? We call n the maximum convergence
number. Looking at the previous section, we want to tune the
history increase HI and introduce a fourth parameter. It seems
logical to slightly scale the history increase by a value v after
each solution.

The effect of multi-convergence is now the following: after
one solution is found, the algorithm restarts by ripping up all
paths that are R% longer than their shortest path in the mesh.
It changes the history increase HI to v · HI and does this
until n solutions are found. The first time HI is used, after
the first solution v ·HI , after the second solution v2 ·HI , etc.

Firstly, we look at the rip-up value. The idea of ripping some
parts up, but not all, is that the previous solution contains good
parts and bad parts. The good parts consist of paths that are
optimal or close to optimal, whereas the bad parts can still
be improved. As seen in Figs. 17 and 18, choosing a rip-up
value that is too low both causes worse fitness and greater
time usage. A value of around 15% gives the most consistent
performance.

Restarting has a clear effect on performance, and also the
number of times matters. As seen in Fig. 19. Restarting only
once already improves fitness on average by 33%. Restarting
more keeps improving fitness but with diminishing returns.
Differential evolution ended with a maximum convergence
value of 6, thus for the allotted number of iterations, there
is no meaningful value in restarting more than 6 times.

D. Preprocessing effects

Preprocessing changes the initial weights by a small value
ε, see Section III-D. This stimulates paths to not use the

This article has been accepted for publication in IEEE/OSA Journal of Lightwave Technology. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JLT.2023.3275385

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

11

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Rip-up value in %

0

5

10

15

20

25

No
rm

al
ize

d
tim

e

Fig. 18. Rip-up value versus normalized time. No clear trend emerges
here, but a value of 0%, which means ripping up everything, seems to be
undesirable. Time is normalized per test set, see (1).

1 2 3 4 5 6 7 8
Convergence amount

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Fit
ne

ss

Fig. 19. Effect of the number of restarts on fitness. Restarting more is better
but with diminishing returns.

shortest paths that share edges with the shortest paths of other
commodities.

The effect of preprocessing seems to be less outspoken,
however, whereas only a fourth of all runs are on a test
set without preprocessing, it does account for a third of
all situations where not all feasible instances were solved.
Besides this, there are noticeably more unsolved instances
when not using preprocessing. As depicted in Table II, using
preprocessing reduces the chance of not finding a solution by
around 25%. Not using preprocessing not only increases the
chance of not finding a solution to a problem instance in a
test set, but it also increases the number of problem instances
it did not find a solution for in a single test set, see Fig. 20.

E. Number of iterations

The maximum number of iterations is an important param-
eter to tune. With the current fitness function, a higher value

Unsolved Total % unsolved
With preprocessing 28 230 12%
W/o preprocessing 15 88 17%

TABLE II
NUMBER OF TEST SETS WHERE AT LEAST ONE FEASIBLE PROBLEM

INSTANCE REMAINS UNSOLVED.

Fig. 20. All test sets and the number of unsolved problem instances mapped
out by value for ε. The left box is all test sets where no preprocessing was
done, a noticeably higher number of instances remains unsolved.

for the number of iterations is always better. More iterations
can only improve the number of feasible instances solved and
the quality of solutions. Because of this, a second goal is put
forward that the maximum number of iterations should strive
for. This should be an estimation by which the algorithm
should have found a solution. If it does not find a solution
by then, the algorithm concludes that no solution exists. This
estimation will depend on the number of commodities. Fig. 21
plots the maximum number of iterations the algorithm needs
over all problem instances by the number of commodities.
Here, at most, 65 iterations are needed per commodity. This
peak of 1618 iterations is reached for one problem instance
with 25 commodities. This motivates the following rule: if
there are n commodities and Aurora has not found a solution
after 80 · n iterations, it halts. This rule should provide a
high enough safety margin to find a solution while being
proactive in deciding when there is no solution. If Aurora finds
a solution, then the maximum number of iterations is increased
by 50%, giving it plenty of time to improve its results through
multi-convergence.

IX. CONCLUSION

We have demonstrated a high-performance routing algo-
rithm specifically adapted to the unique topology of photonic
integrated circuits. Aurora produces close-to-optimal results
in reasonable time and does this so consistently over a wide
variety of different problem instances. On average, the results
are within 2% of the optimal solution and it finds these several
orders of magnitude faster than an integer linear program
solver. Starting from hexagonal meshes with radius r = 8,
the runtime of these solvers easily goes up to hours. On

This article has been accepted for publication in IEEE/OSA Journal of Lightwave Technology. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JLT.2023.3275385

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

12

0 5 10 15 20 25 30 35
Commodities

0

500

1000

1500

2000

2500

M
ax

im
um

 n
um

be
r o

f i
te

ra
tio

ns
Maximal number of needed iterations
Commodities × 80

Fig. 21. The maximum number of iterations that is needed to find a solution
by number of commodities over all problem instances.

higher radii, it is infeasible to expect results in reasonable
time on normal hardware, whereas Aurora still produces good
solutions within seconds to minutes. The effect of the different
parameter choices was studied and more interesting values
were highlighted. We implemented an optimizer to attain good
parameter values and validated the obtained parameter values
on a wide variety of test sets.

There are still some aspects where future work can be done.
Right now, the algorithm only terminates once it reaches the
maximum number of iterations. However, by analyzing the
progress of the algorithm, for example, in terms of available
routing resources and current iteration, it might be possible to
detect early if there is no feasible solution. This could greatly
reduce runtime on unroutable problem instances.

Couplers also have a coupling mode, meaning that they can
split the light over both waveguides. This allows for single-
source multi-target commodities. The proposed algorithm is
designed to be fairly easily adaptable to accommodate this
problem, but further research would be required to devise a
strategy to properly implement this.

REFERENCES

[1] Wim Bogaerts and Abdul Rahim. “Programmable Pho-
tonics: An Opportunity for an Accessible Large-Volume
PIC Ecosystem”. In: IEEE Journal of Selected Topics
in Quantum Electronics 26.5 (Sept. 2020). Conference
Name: IEEE Journal of Selected Topics in Quantum
Electronics, pp. 1–17. ISSN: 1558-4542. DOI: 10.1109/
JSTQE.2020.2982980.

[2] Yen-Jung Chang, Yu-Ting Lee, and Ting-Chi Wang.
“NTHU-Route 2.0: A fast and stable global router”.
In: 2008 IEEE/ACM International Conference on
Computer-Aided Design. 2008 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD). San
Jose, CA, USA: IEEE, Nov. 2008, pp. 338–343. ISBN:
978-1-4244-2819-9. DOI: 10 . 1109 / ICCAD . 2008 .
4681595.

[3] Xiangfeng Chen and Wim Bogaerts. “A Graph-based
Design and Programming Strategy for Reconfigurable
Photonic Circuits”. In: 2019 IEEE Photonics Society
Summer Topical Meeting Series (SUM). 2019 IEEE
Photonics Society Summer Topical Meeting Series
(SUM). Ft. Lauderdale, FL, USA: IEEE, July 2019,
pp. 1–2. ISBN: 978-1-72810-597-0. DOI: 10 . 1109 /
PHOSST.2019.8795068.

[4] Xiangfeng Chen et al. “Graph Representations for Pro-
grammable Photonic Circuits”. In: Journal of Lightwave
Technology 38.15 (Aug. 1, 2020), pp. 4009–4018. ISSN:
0733-8724, 1558-2213. DOI: 10 . 1109 / JLT . 2020 .
2984990.

[5] E. W. Dijkstra. “A note on two problems in connexion
with graphs”. In: Numerische Mathematik 1.1 (Dec.
1959), pp. 269–271. ISSN: 0029-599X, 0945-3245. DOI:
10.1007/BF01386390.

[6] Tali Eilam-Tzoreff. “The disjoint shortest paths prob-
lem”. In: Discrete Applied Mathematics 85.2 (June
1998), pp. 113–138. ISSN: 0166218X. DOI: 10.1016/
S0166 - 218X(97) 00121 - 2. URL: https : / / linkinghub .
elsevier.com/retrieve/pii/S0166218X97001212.

[7] Nicholas Harris et al. “Linear programmable nanopho-
tonic processors”. In: Optica 5 (Dec. 19, 2018). DOI:
10.1364/OPTICA.5.001623.

[8] Ferre Vanden Kerchove et al. “Adapting Routing Algo-
rithms to Programmable Photonic Circuits”. In: Euro-
pean Conference on Optical Communication (ECOC)
2022. Optica Publishing Group, 2022, We5.19. URL:
https://opg.optica.org/abstract.cfm?URI=ECEOC-2022-
We5.19.

[9] Aitor López et al. “Auto-routing algorithm for field-
programmable photonic gate arrays”. In: Optics Express
28.1 (2020), p. 737. DOI: 10.1364/oe.382753.

[10] Daniel Pérez López. “Programmable Integrated Silicon
Photonics Waveguide Meshes: Optimized Designs and
Control Algorithms”. In: IEEE Journal of Selected Top-
ics in Quantum Electronics 26.2 (Mar. 2020), pp. 1–12.
ISSN: 1077-260X, 1558-4542. DOI: 10 .1109 / JSTQE.
2019.2948048.

[11] L. McMurchie and C. Ebeling. “Pathfinder: A
negotiation-based performance-driven router for fpgas”.
In: Third International ACM Symposium on Field-
Programmable Gate Arrays (1995). DOI: 10.1109/fpga.
1995.242049.

[12] Kevin E. Murray, Sheng Zhong, and Vaughn Betz.
“AIR: A Fast but Lazy Timing-Driven FPGA Router”.
In: 2020 25th Asia and South Pacific Design Automation
Conference (ASP-DAC). 2020 25th Asia and South
Pacific Design Automation Conference (ASP-DAC).
Beijing, China: IEEE, Jan. 2020, pp. 338–344. ISBN:
978-1-72814-123-7. DOI: 10 . 1109 / ASP - DAC47756 .
2020.9045175.

[13] Kevin E. Murray et al. “VTR 8: High-performance CAD
and Customizable FPGA Architecture Modelling”. In:
ACM Transactions on Reconfigurable Technology and
Systems 13.2 (June 10, 2020), pp. 1–55. ISSN: 1936-
7406, 1936-7414. DOI: 10.1145/3388617.

This article has been accepted for publication in IEEE/OSA Journal of Lightwave Technology. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JLT.2023.3275385

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://doi.org/10.1109/JSTQE.2020.2982980
https://doi.org/10.1109/JSTQE.2020.2982980
https://doi.org/10.1109/ICCAD.2008.4681595
https://doi.org/10.1109/ICCAD.2008.4681595
https://doi.org/10.1109/PHOSST.2019.8795068
https://doi.org/10.1109/PHOSST.2019.8795068
https://doi.org/10.1109/JLT.2020.2984990
https://doi.org/10.1109/JLT.2020.2984990
https://doi.org/10.1007/BF01386390
https://doi.org/10.1016/S0166-218X(97)00121-2
https://doi.org/10.1016/S0166-218X(97)00121-2
https://linkinghub.elsevier.com/retrieve/pii/S0166218X97001212
https://linkinghub.elsevier.com/retrieve/pii/S0166218X97001212
https://doi.org/10.1364/OPTICA.5.001623
https://opg.optica.org/abstract.cfm?URI=ECEOC-2022-We5.19
https://opg.optica.org/abstract.cfm?URI=ECEOC-2022-We5.19
https://doi.org/10.1364/oe.382753
https://doi.org/10.1109/JSTQE.2019.2948048
https://doi.org/10.1109/JSTQE.2019.2948048
https://doi.org/10.1109/fpga.1995.242049
https://doi.org/10.1109/fpga.1995.242049
https://doi.org/10.1109/ASP-DAC47756.2020.9045175
https://doi.org/10.1109/ASP-DAC47756.2020.9045175
https://doi.org/10.1145/3388617

13

[14] Min Pan and Chris Chu. “FastRoute 2.0: A High-quality
and Efficient Global Router”. In: 2007 Asia and South
Pacific Design Automation Conference. 2007 Asia and
South Pacific Design Automation Conference. ISSN:
2153-697X. Jan. 2007, pp. 250–255. DOI: 10 . 1109 /
ASPDAC.2007.357994.

[15] Magnus Erik Hvass Pedersen. “Tuning & Simplifying
Heuristical Optimization”. PhD thesis. University of
Southempton, School of Engineering Sciences, 2010.

[16] Daniel Pérez, Ivana Gasulla, and José Capmany. “Pro-
grammable multifunctional integrated nanophotonics”.
In: Nanophotonics 7.8 (July 28, 2018), pp. 1351–1371.
ISSN: 2192-8614. DOI: 10.1515/nanoph-2018-0051.

[17] Laurent Perron and Vincent Furnon. OR-Tools. Ver-
sion v9.3. Google, Aug. 11, 2022. URL: https : / /
developers.google.com/optimization/.

Ferre Vanden Kerchove received his M. Sc. in
mathematics at Ghent University, Ghent, Belgium,
in 2021.

Currently, he is pursuing a Ph.D. in Computer
Science at IDLab, Ghent University - imec. His
research interests include algorithms, graph theory,
logic, and computability.

Xiangfeng Chen (Student Member, IEEE) received
the M.Sc. degree from the Center for Optical Mate-
rials Science and Engineering Technologies, COM-
SET, Clemson University, Clemson, SC, USA, in
2018 by carrying out research on array waveguide
gratings for III-V on silicon nitride hybrid integra-
tion.

He is currently working toward a Ph.D. degree
with the Photonic Research Group, Ghent University
- IMEC, Ghent, Belgium. His research focus is
on large-scale programmable photonic circuits at

both circuit and component levels. He enjoys the interdisciplinary nature of
photonic engineering.

Didier Colle received a Ph.D. degree in 2002 and
an M. Sc. degree in electrotechnical engineering in
1997 at Ghent University, Belgium.

He is a senior full Professor at Ghent University
since 2022. He was an associate Professor since
2011 and a full professor since 2014 at the same
university. He is co-responsible for the research
cluster on network modeling, design, and evalua-
tion (NetMoDeL) inside the IMEC IDlab research
group. This research cluster deals with fixed internet
architectures and optical networks, green ICT, the

design of network algorithms, and techno-economic studies. His research
is mainly conducted inside international (mainly European), national, and
bilateral research projects together with the industry. This research has been
published in more than 500 international journal and conference articles and
has resulted in more than 20 Ph.D. degrees.

Wouter Tavernier received his BS and MS degrees
in Computer Science in 2002 from Ghent University
(Belgium). He joined the Internet-Based Commu-
nications Networks group (which became part of
IDLab in October 2016) of Ghent University in
2006 as a researcher on Carrier Ethernet. In 2012
he obtained a Ph.D. degree from the same university
on reliable routing and switching.

Currently, he is employed as Professor at Ghent
University, where he teaches courses on computer
networks. His current research interests focus on

performance and resource optimization aspects of Network Function Virtu-
alization and deterministic networking. This work is performed in the context
of European projects such as H2020 5G-CHAMPION, NGPAAS, SONATA-
NFV, and 5G TANGO. This research has been published in more than 100
scientific publications.

Wim Bogaerts received his Ph.D. in the modeling,
design, and fabrication of silicon nanophotonic com-
ponents at Ghent University, Belgium, in 2004. Dur-
ing this work, he started the first silicon photonics
process on imec’s 200mm pilot line, which formed
the basis of the multi-project-wafer service ePIXfab.
Wim’s current research focuses on the challenges for
large-scale silicon photonics: Design methodologies
and controllability of complex photonic circuits.

In 2014, he co-founded the spin-off company
Luceda Photonics to further develop unique software

solutions for silicon photonics design, using the IPKISS design framework.
Since 2016 Wim is again full-time Professor at Ghent University, looking into
novel topologies for large-scale programmable photonic circuits, supported by
a consolidator grant from the European Research Council (ERC). Wim has
a strong interest in telecommunications, information technology, and applied
sciences. He is a Fellow of IEEE and a Senior Member of Optica and SPIE.

Mario Pickavet received the M.Sc. and Ph.D. de-
grees in electrical engineering from Ghent Univer-
sity, Ghent, Belgium, in 1996 and 1999, respec-
tively.

Since 2000, he has been a Professor at Ghent
University, where he is teaching courses on dis-
crete mathematics and network modeling. He is co-
leading the research cluster on network modeling,
design, and evaluation (NetMoDeL). His main re-
search interests are fixed internet architectures and
optical networks, green ICT, and the design of

network algorithms. In this context, he is currently involved in several
European and national projects. He has authored or co-authored about 500
international publications, both in journals and proceedings of conferences.
He is co-author of the book ‘Network Recovery: Protection and Restoration
of Optical, SONET-SDH, IP, and MPLS’. He is holder of a bronze medal at
the International Mathematical Olympiad (Sweden, 1991).

This article has been accepted for publication in IEEE/OSA Journal of Lightwave Technology. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JLT.2023.3275385

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://doi.org/10.1109/ASPDAC.2007.357994
https://doi.org/10.1109/ASPDAC.2007.357994
https://doi.org/10.1515/nanoph-2018-0051
https://developers.google.com/optimization/
https://developers.google.com/optimization/

	Introduction
	Problem statement
	The algorithm
	Sequential routing
	Aurora: an Automated Router with Optical Resource Adaption
	Weights
	Preprocessing
	Configuration repetition avoidance
	Cost-based rip-up

	Complexity
	Integer program for an optimal solution
	Test sets
	Comparison of Aurora to sequential routing and an optimal solution
	Parameter tuning
	Performance metrics
	General trends for history increase
	Effects of cost-based rip-up
	Preprocessing effects
	Number of iterations

	Conclusion
	Biographies
	Ferre Vanden Kerchove
	Xiangfeng Chen
	Didier Colle
	Wouter Tavernier
	Wim Bogaerts
	Mario Pickavet

