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Abstract: High dynamic range (HDR) imaging technology is increasingly being used in automated

driving systems (ADS) for improving the safety of traffic participants in scenes with strong differences

in illumination. Therefore, a combination of HDR video, that is video with details in all illumination

regimes, and (HDR) object perception techniques that can deal with this variety in illumination

is highly desirable. Although progress has been made in both HDR imaging solutions and object

detection algorithms in the recent years, they have progressed independently of each other. This has

led to a situation in which object detection algorithms are typically designed and constantly improved

to operate on 8 bit per channel content. This makes these algorithms not ideally suited for use in

HDR data processing, which natively encodes to a higher bit-depth (12 bits/16 bits per channel). In

this paper, we present and evaluate two novel convolutional neural network (CNN) architectures

that intelligently convert high bit depth HDR images into 8-bit images. We attempt to optimize

reconstruction quality by focusing on ADS object detection quality. The first research novelty is

to jointly perform tone-mapping with demosaicing by additionally successfully suppressing noise

and demosaicing artifacts. The first CNN performs tone-mapping with noise suppression on a

full-color HDR input, while the second performs joint demosaicing and tone-mapping with noise

suppression on a raw HDR input. The focus is to increase the detectability of traffic-related objects

in the reconstructed 8-bit content, while ensuring that the realism of the standard dynamic range

(SDR) content in diverse conditions is preserved. The second research novelty is that for the first

time, to the best of our knowledge, a thorough comparative analysis against the state-of-the-art

tone-mapping and demosaicing methods is performed with respect to ADS object detection accuracy

on traffic-related content that abounds with diverse challenging (i.e., boundary cases) scenes. The

evaluation results show that the two proposed networks have better performance in object detection

accuracy and image quality, than both SDR content and content obtained with the state-of-the-art

tone-mapping and demosaicing algorithms.

Keywords: tone-mapping; high dynamic range imaging; deep learning; object detection; systems for

automotive driving

1. Introduction

Automotive vision needs to cover a wide range of illumination levels spanning multi-
ple orders of magnitude. Not only is there a large overall difference between daytime and
nighttime driving, but even within one scene there can be both deep shadows and blinding
(head)lights, making pedestrians and other hazards hard to detect. Automated driving
systems need to be able to reliably detect infrastructure and road users to ensure road safety.
This implies a necessity for cameras and a video processing pipeline for high dynamic
range (HDR) content. The state-of-the-art object detection approaches used in automotive
vision rely on standard dynamic range (SDR) 8 bits per color channel neural networks,
as in, e.g., YOLOv3 [1]. The consequence is a need to “compress” the dynamic range as
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captured, a task which is called tone-mapping. Ideally, this happens with as little loss of
information as possible. In the processing pipeline, a step further would be to account for
optimal reconstruction quality in the diverse challenging traffic scenes by also considering
raw HDR data as input.

Figure 1 shows some examples of challenging traffic scenes for SDR-based object
detection. The challenging cases cover motion-blur, the existence of strong lights, low-light
conditions, poor contrast, etc.

Difficult SDR scenes due to strong lights. In the first image (from left to right), the cyclist next to the traffic sign

is almost not noticeable. In the second image (from left to right), there are strong lights behind the traffic sign

making it hard to recognize the type of object.

Difficult SDR scenes due to motion blur in low-light conditions. In the first image (from left to right), the people

on the road are blurred. In the second image (from left to right), the cyclist and the bike are heavily blurred.

Difficult SDR scenes due to low contrast. Order of images: left-to-right, top-to-bottom. In the first and the third

images, there are pedestrians walking on the dark (shadowy) side of the street. In the second image, there is a

person sitting next to a wall with similar color and shadows to his clothing. In the fourth image, there is a person

on a motorbike, hardly visible, since he is on the dark side of the road.

Figure 1. Examples of challenging cases for object detection in SDR content.

The goal of this research is to increase the detectability of traffic-related objects in
diverse scenes and conditions to improve road safety while using ADS. The three types of
approaches that are used currently to address this problem are tone-mapping approaches
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(that make use of the HDR data), object detection approaches (mainly devised to work on
8-bit content) and reconstruction (demosaicing and denoising) approaches. We focus on
tone-mapping and demosaicing.

The rest of the paper is structured as follows. In Section 2, we discuss the related
work for the demosaicing and the tone-mapping approaches, both in general and with
respect to object detection, by presenting a review of both the state-of-the-art and the
most recent algorithms. Then, we present the main novelties of the performed research.
Additionally, we briefly describe the architecture of the neural network (devised for inverse-
tone-mapping) that was used as starting point architecture for the approach presented
in [2], upon which we build our research. In Section 3, we propose two CNN architectures
and describe their design and the applied training procedures in more detail. In Section 4,
we present the methodology for the performed evaluation analysis, while in Section 5, we
present and discuss the results from the quantitative and qualitative analyses. In Section 6,
we summarize the conclusions derived from the performed evaluation and discuss the
future prospects of the presented research.

2. Related Work

Here, we first give a short review on the research studies and algorithms for tone-
mapping. Next, we refer to the studies that address the problem of using HDR content for
the purposes of object detection. Then, we present a short review of the vast amount of
research in the demosaicing field. We then present the novelties of the performed research,
by addressing the research gap in which we aim to contribute. Finally, we proceed with
a description of the original architecture of the neural network that was used as starting
point for the proposed CNNs.

2.1. Tone Mapping

Since the arrival of digital photography and video cameras in the 1990s, their resolution
and dynamic range capabilities have been steadily increasing.

In general, tone-mapping is defined as the mapping of image tones from one domain
to another [3]. However, there is a distinction based on whether the output of the processing
is content in the lower dynamic range or the high dynamic range. As mentioned earlier,
high dynamic range content can represent a wider range of brightness and colors and hence,
is encoded in floating point precision, while standard dynamic range (SDR) content is com-
monly encoded in 24 bits per pixel (8 bits for every color channel). Some authors [3,4] refer
to lower dynamic range content as “display-referred”, since such content is always meant
to be displayed, and to HDR content as “scene-referred”, since such content is directly
related to the physical properties and the lighting conditions of the captured scene. For this
reason, HDR content is often used in applications [5–7] where these physical properties are
to be measured, such as physically based rendering and image-based lighting, automotive
applications, remote sensing, medical imaging, etc. Following a similar analogy, a classifica-
tion based on the nature of the source data also exists in HDR imaging approaches. Despite
the general definition of tone-mapping given above, approaches that perform compression
of the dynamic range are commonly referred to as “tone-mapping” approaches, and we
refer to them in this way in this work, while approaches that perform conversion from a
legacy low dynamic range content into content of a higher dynamic range are referred to as
“inverse tone-mapping” approaches. Based on this nomenclature, the devised approaches
that are the focus of this research belong to the “tone-mapping” category.

Different authors have compared and categorized HDR approaches according to
different criteria [3–9]. However, generally, algorithms for tone-mapping are classified into
global [10–19] and local methods [20–29].

In global methods, a tone curve is applied in a pixel-wise manner depending on the
measured per pixel luminance of the HDR input. For preserving the contrast, some meth-
ods apply linear scaling [10], while others use exponential or logarithmic functions [11,12].
Very often, due to their resemblance to the response curve of the HVS, logistic, i.e., sigmoid,
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functions have been used for tone-mapping [14,16,18,25]. To achieve better contrast, expo-
sure and detail visibility, some authors [30,31] proposed histogram-based tone-mapping
curves, the slopes of which are dependent on the measured probability from the distribution
of luminances.

The performance of local tone-mapping methods also depends on the local structure
of the image content. Detail preservation is performed by using edge-preserving filters or
multi-resolution analysis. In earlier works on tone-mapping [24], Gaussian filtering was
used for extracting the local luminance structures. However, these approaches resulted
in halos for large gradient edges. Other approaches make use of pyramid filtering struc-
tures [13,21,25]. Still other approaches [20] use edge preserving filters (e.g., bilateral filter)
to avoid the halo artifacts typically seen with Gaussian filters. However, with these ap-
proaches, problems were encountered at steep and smooth edges, where banding artifacts
were introduced. There are also approaches [28] that employ the concept of high-quality
edge-preserving filtering on the already established tone-mapping [13].

In the evaluations performed in [3,9], the global tone-mapping algorithm of Rein-
hard et al. [13] consistently ranks high, preserving contrast well and producing perceptually
pleasing images. Farbman et al. [28] have proposed an extension of the Reinhard algorithm
with local tone-mapping concepts. Therefore, in this paper, we consider the methods of
Reinhard et al. [13] and Farbman et al. [28], which are representative of the classical SOTA.

Most recently, deep-learning-based algorithms [32–37] for tone-mapping, as well as
algorithms that jointly perform tone-mapping with denoising [38], have been proposed.

2.2. HDR Imaging and Object Detection

Some works specifically focus on HDR for the purpose of object detection. In [39],
the authors perform a study in which they evaluate classical methods for tone-mapping,
with respect to object detection accuracy on the tone-mapped 8-bit content. Their evaluation
is performed on an available limited HDR–SDR data set, that is not specifically traffic-
related and, therefore, does not specifically cover cases that are challenging for ADS. In the
study cited above, the authors are investigating the usefulness of HDR data over SDR data
in improving object detection in general. Their finding is that, in very challenging lighting
conditions, using HDR content over SDR content helps in improving object detection
accuracy. In [40], the authors propose a methodology for obtaining a pseudo HDR data set
that can be used for training and re-training object detectors on HDR data of high bit-depth.
They also investigate the performance of several object detectors when they are trained on
HDR data. Their results show that the object detectors have similar performance regardless
of whether they are trained on SDR or HDR data when the source is HDR content and
the main difference arises from whether the content is non-linearly tone-mapped to 8 bits
or used directly. In [41], the authors propose a deep learning model that selects the best
exposure and is trained with an object detector in an end-to-end training. An end-to-end
training, where both object detection and tone-mapping are optimized, is also proposed
in [42].

Although there is at least one study that performs object detection on HDR content,
the main SOTA object detection algorithms on which improvements are constantly being
made are trained on 8-bit content. A training approach that uses a lightweight CNN
architecture for tone-mapping with the intention, for the first time, of increasing the
detectability of VRUs in reconstructed 8-bit content, is proposed in [2]. The results of a
comparison with one of the classical state-of-the-art algorithms for tone-mapping show that
this approach, by targeting the important aspects of tone-mapping in various challenging
conditions and by performing a region-of-interest (ROI) selective training, succeeds in
increasing the detectability of the VRUs in both challenging and non-challenging cases.

2.3. Demosaicing

Demosaicing is defined as the reconstruction of a full-color (or multi-dimensional)
image from a two-dimensional array of sensors overlaid with a color filter array (CFA).



Sensors 2023, 23, 8507 5 of 38

The most exploited CFA in camera imaging sensors is the Bayer CFA [43]. In the last few
decades, a tremendously large amount of research has been performed on CFA demosaicing
design and co-design [44–48], and the topic of demosaicing itself (survey studies [49–53])
ranges from state-of-the-art classical methods [54–59] to a wide palette of deep-learning-
based methods [60–65].

There are studies [51,61] that show that, among the classical methods, the algorithms
that perform directional interpolation, such as [56,57,59], achieve high-quality performance
and are considered to belong among the state-of-the-art classical demosaicing methods.
Due to the enormous amount of research in this field, achieving high-quality demosaicing
is no longer a problem and the obtained quality between the recently developed methods
is similar. Consequently, most recent deep-learning-based demosaicing methods approach
the problem of demosaicing in a joint manner with denoising [62,64,66,67].

It is well known in the scientific community that building a joint model to solve
two problems that co-exist and are co-dependent is the optimal way to approach the two
problems simultaneously.

2.4. Novelty of the Performed Research

SOTA algorithms for tone-mapping, object detection and demosaicing mainly exist and
have progressed independently from each other. With the performed research, which builds
upon the research presented in [2], we address the common ADS problem they are trying to
solve, which is improving object detection in challenging traffic scenes. With the proposed
research, we attempt to increase the detectability of the traffic-related objects in traffic scenes
with varying degrees of illumination, contrast, weather and daylight ambient conditions
by performing optimal tone-mapping and demosaicing on HDR content.

We start by defining two research hypotheses.
Our first research hypothesis is that by performing optimal tone-mapping with noise

suppression while focusing on ADS object detection, we will improve the detectability
of traffic-related objects and pedestrians compared to two fundamental cases: when SDR
content is used and when state-of-the-art demosaicing and tone-mapping (TM) algorithms
are applied in a sequential pipeline.

The second research hypothesis is that by using the raw (mosaiced with Bayer CFA)
HDR image as input instead of the full-color, full-dynamic-range (e.g., 12 bits/16 bits per
color channel) representation of it, the joint demosaicing and tone-mapping with noise
suppression can be performed in an optimal manner and we can achieve the same or similar
performance and at the same computational cost as with the sequential pipelines from the
first hypothesis.

For this purpose, we model two neural networks (CNNs) with similar architectures,
complexity and training. The first network, “CNN for TM”, is devised solely for tone-
mapping where a full-color, full-range HDR input is used. This network builds upon the
architecture and the methodology presented in [2]. This network is used in the sequential
demosaicing and tone-mapping pipeline. The second neural network, “CNN for joint DM
and TM”, is devised to jointly perform both demosaicing and tone-mapping.

With the two proposed CNN architectures, we propose tone-mapping optimized to
increase the detectability of objects in traffic-related scenes with challenging conditions.
The first novelty of the performed research is that for the first time, to the best of our knowl-
edge, a CNN-based algorithm for joint demosaicing and tone-mapping has been proposed.
Both CNN architectures are additionally trained to suppress noise and reconstruction
artifacts. To test the hypotheses, we introduce a second novelty, which is an extensive
evaluation study performed on real traffic-related content. The evaluation is performed
with respect to ADS object detection accuracy and reconstruction (tone-mapping and demo-
saicing) quality. With this study, we evaluate the impact of the proposed approach on the
detection of vulnerable road users (VRU) and traffic-related objects (such as traffic lights
and traffic signs) important for road safety. Object detection performance is evaluated
by using well-known object detectors, applied on the reconstructed 8-bit content, covering
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a large number of scenes with challenging (i.e., boundary) cases. Additionally, as part of the
evaluation study, we perform a qualitative analysis and comparison of the joint processing
pipeline with the sequential processing pipelines. The evaluation experiments compare
the CNN for joint DM and TM, the sequential pipeline of state-of-the-art demosaicing and
the CNN for TM and the sequential pipelines of competing state-of-the-art demosaicing
and tone-mapping algorithms from the literature. The evaluation is performed on a novel
SDR/HDR test data set constructed for this purpose.

2.5. ExpandNet

Here, we briefly describe ExpandNet [68] (implementation: [69]), a deep learning
algorithm for inverse tone-mapping. Its original architecture was used as the starting point
for the training approach presented in [2], on which we build the proposed CNN for TM
and CNN for joint DM and TM. The end-to-end architecture design of ExpandNet [68]
is presented in Figure 2. The ExpandNet algorithm converts the input SDR image into
content of higher dynamic range. The network architecture consists of three branches (each
a CNN): global, local and dilation.

Figure 2. ExpandNet [68] architecture. The presented architecture is used as the starting point for

the approach presented in [2], on which we build the proposed CNN for TM and CNN for joint

DM and TM. The image is recreated and uses a similar graphic design as the original image source

presented in [68].

The global branch accounts for the higher-level image-wide global features and the
overall appearance of the output. With its large receptive field, it covers an input image
of 256 × 256 × 3 pixels downsampled to 1 × 1 × 3 through seven layers. For each layer,
there are 64 features and the downsampling is performed with a factor of 2. The size of the
convolutional kernel for all layers except for the last one is 3 × 3 × 64. For the last layer,
the convolutional kernel is of size 4 × 4 × 64. If the input image is larger than 256 × 256, it
is downsampled to 256 × 256 prior to feeding the global branch of the network with the
image data.

The local branch accounts for preserving the local structure, the high spatial frequen-
cies and the neighboring features. Its receptive field is 5 × 5 pixels and it consists of two
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layers. The convolutional kernel is 3 × 3. The first layer has 64 feature maps and the second
layer has 128 feature maps.

The dilation branch accounts for preserving the medium range frequencies. It has
a receptive field of 17 × 17 pixels, uses dilated convolutions (for increasing the receptive
field) of size 2 and consists of 4 layers, where each layer has 64 features.

The final layers of the three branches are first concatenated and then fused into one
additional layer of 64 feature maps. The output of this final convolutional layer and,
therefore, the ExpandNet algorithm, here referred to as the “HDR image”, is a converted
image of a higher dynamic range than the input SDR image.

The loss function is a combination of L1 distance and a cosine similarity measure
between the predicted image and the ground-truth image. The cosine similarity term
is used to ensure fidelity of the colors in every pixel. As the authors of [68] explain,
the cosine similarity term measures how close two vectors are by comparing the angle
(color hue difference) between them regardless of the magnitude (brightness). To obtain
color fidelity during training, the difference in the vector directions in the 3D RGB space
of the corresponding two pixel vectors is quantified with the cosine similarity metric and
added to the loss function. The loss function is shown in Equation (1). We use the same
annotation as in the original ExpandNet paper [68].

li =
∥

∥Ĩi − Ii

∥

∥

1
+ λ
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In Equation (1), li represents the loss contribution of the ith image from the training
data set, with which, for one epoch, the overall loss over the complete training data set is
being updated. The predicted image is represented by Ĩi and the ground-truth image is
represented by Ii. The two images are compared for every RGB pixel, the indices for which
in Equation (1) are represented by j. There are k pixels in every image of the data set. The λ

parameter controls the influence of the cosine similarity term on li.
Since tone-mapping is conceptually the same as inverse tone-mapping, the same basic

network architecture with swapping the places of the input and the output data and appro-
priate retraining, can be used to deal with both tone-mapping and inverse tone-mapping
problems. Starting from this idea, like the approach presented in [2], for the proposed
CNNs, we are using modified versions of this architecture and a similar training concept.
The loss and the activation functions, the convolutional kernels and the background CNN
theory used in the proposed CNNs are the same as for the ExpandNet algorithm and are
described in detail in the complete architecture design description given in [68].

3. Proposed Algorithms

In this section, we first give a short introduction to the processes specific for image
acquisition. This is in order to perform training augmentation on the training data used
for the proposed CNNs. In addition to accounting for diverse illumination and contrast
conditions of the scene, we also account for the physical processes during image acquisition
and the internal camera processing. We then proceed with the details of the proposed
CNNs in the following order:

- The devised architectures of the proposed CNNs, based on the architecture of the
ExpandNet [68] network;

- The concepts of the training and inference for the proposed CNNs;
- The details of the training and the validation data sets;
- The details of the augmentation procedures as part of the training methodology for the

proposed CNNs.
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3.1. On Simulating the Effects from the HDR Image Acquisition Processes

The acquisition of HDR images with a single-shot HDR camera follows the same
principle as every standard image acquisition process.

In a standard image acquisition process, the light from the scene passes through the
camera lenses, after which it is focused and projected on the image sensor. The image sensor
consists of an array of sensing nodes, the number of which defines the resolution of the
output image. The sensing node converts the incoming photons into electrical signals. Each
sensing element is overlaid with a color filter. The color filters are arranged into a planar
mosaic structure called a color filter array (CFA). The CFA adds wavelength specificity
to the image sensor, which without the CFA will detect light in an achromatic manner.
The conversion of light depends on the structure, the sensitivity of the sensor material and
the wavelength of the incoming light. During conversion, there is photon noise, which
interferes with the useful signal. The electrical signal obtained from each sensing node is
passed through read-out circuits and analog-to-digital (AD) conversion modules, which
are attached to every sensing node of the sensor. The AD converters discretize the analog
signal depending on their resolution and convert it into a digital form. The process of
conversion from analog to digital form is known as quantization. In order to account
for the effects from the image acquisition process on the image data, it is necessary to
simulate this process during training of the proposed CNNs. In addition to performing
data augmentation (where we account for diverse illumination and contrast conditions in
the scenes) during training, we additionally simulate:

- The acquired HDR training data (by applying the ExpandNet algorithm for inverse
tone-mapping on an SDR data set consisting of traffic scenes annotated for traffic-
related objects);

- The existence of the CFA (by creating mosaics, i.e., Bayer CFA, of the input training
images to the CNNs);

- The presence of photon noise (by the application of noise with a Poisson distribution
on the simulated mosaiced data);

- The AD conversion process (by applying quantization with a predefined bit-depth
parameter higher than 8 bits per channel);

- The internal camera processing (by applying demosaicing with the use of a classical
state-of-the-art algorithm [56]).

3.2. Proposed CNN for TM

Unlike ExpandNet [68], the proposed CNN for TM accepts full RGB HDR images as
input and performs conversion into the low dynamic range. It produces a tone-mapped-
HDR-image (8 bits per channel) of the same resolution as the input. In what follows, we
present the architecture of the proposed network and the workflow for training and inference.

3.2.1. Architecture

Our modification of the Expandnet [68] consists of just two branches, the local and
the global.

Thus, compared to the original ExpandNet [68], as it can be seen in Figure 3, the dila-
tion branch is removed. In the case of ExpandNet [68], the results from the ablation study,
where each of the branches is separately removed and then the performance is analyzed,
show that the low and high spatial frequencies, as well as the overall image appearance,
are largely preserved with the use of just the global and local branches.

In the proposed CNN for TM, by not using the dilation branch from the ExpandNet
algorithm, we aim to decrease the computational cost, while at the same time, preserve
the overall appearance of the reconstructed content. In this manner, we make a small
compromise on the image sharpness in order to obtain lower computational cost.

The input to the local branch is the full RGB HDR image, while the input to the
global branch is a resized version (256 × 256 × 3) of the full RGB HDR input image. The
structure of the local and the global branches, the activation and the loss functions and
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the convolutional kernels are same as for ExpandNet. After concatenating the final layers
of the separate branches, 192 feature maps are fused into one additional layer consisting of
64 feature maps, out of which the tone-mapped-HDR-image is produced.

The workflow for the proposed CNN for TM is presented in Figure 4.

Figure 3. Architecture for the proposed CNN for TM. The presented architecture is modified from

the approach presented in [2], which uses the original ExpandNet architecture [68] as its basis. The

graphic design is inspired by the original image source presented in [68].

Figure 4. Workflow for the proposed tone-mapping network: training and inference. The graphic

design for the illustration was inspired by [68].

3.2.2. Training and Inference

During training, an SDR ground-truth image sample is selected from the training data
set. The SDR ground-truth image is converted to a high dynamic range with ExpandNet [68]
and an HDR representative is obtained. The HDR representative is processed through the
data augmentation procedures and the procedures for simulating the HDR acquisition
process. Part of the HDR representative is selectively cropped (128 × 128 × 3) in the ROI of
the traffic-related objects and is propagated through the local branch. The complete HDR
representative is first downsampled to 256 × 256 × 3 and then it is propagated through the
global branch. The output from the fusion branch is compared to the corresponding ROI
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cropped part from the SDR image sample, and the loss is calculated. Then, the weights and
the overall loss are updated. The proposed CNN model for TM uses the same architecture
as the approach presented in [2], differing only in the image size of the input data on which
it is being trained. The image samples also belong to the same training data set. The only
difference is that for the training of the new model, the image samples have been resized
to 1920 × 1080 × 3, whereas in the approach of [2], the training image samples are of size
1280 × 720 × 3. By doing this, we intend to match the resolution and the actual size of the
objects in the image content from the test data set. The model of the proposed CNN for TM
was trained for 3000 epochs.

During inference, the network accepts full RGB HDR image data of resolution
1920 × 1080 × 3 normalized in the range of [0, 1]. For the global branch, this image is
resized to 256 × 256 × 3 pixels. The tone-mapped-HDR-image is of same resolution as the
input full-color, full-range, HDR image.

3.3. Proposed CNN for Joint DM and TM

The proposed CNN for joint DM and TM accepts raw HDR (CFA mosaiced with the
Bayer pattern) image as input and produces a full-color, 8-bit, tone-mapped-HDR-image,
as output. In what follows we present the architecture of the proposed CNN for joint DM
and TM, and the workflow for training and inference.

3.3.1. Architecture

The architecture, as can be seen from Figure 5, is an extended version of the architecture
presented in Figure 3. It consists of three branches: the local branch, the global branch
and the interpolation branch. In the proposed CNN for DM and TM, we use the local and
global branches in the same manner and for the same reasons as in the proposed CNN for
TM. The input of the local branch is the mosaiced image rearranged in three color channels
(depending on the version of the Bayer pattern), while the input to the global branch is a
resized version (256 × 256 × 3) of the input image to the local branch. The interpolation
branch consists of one layer for the three color channels of the linearly interpolated mosaiced
image, which is then propagated to the further layers of the complete neural network. We
choose linear interpolation due to its simplicity and under the assumption that the neural
network, with the other two branches, is capable of learning how to perform more complex
high-quality interpolation. Our aim is to prove the research hypotheses with simple
solutions rather than applying sophisticated and more complex interpolation methods.
The linearly interpolated image is a first, simple estimate of the HDR demosaiced image.
It serves as a prior image estimate for the further processing and weights adjustment.
Normally, the linear interpolation of a CFA mosaiced image produces output with color
aliasing artifacts around the edges. This is a disadvantage of the interpolated image to be
used as a first estimate of the full RGB HDR input. However, it is expected that the network
during training, by minimizing its loss function, would be capable of learning to deal with
the problem of artifact introduction due to incorrect interpolation in the initial estimate.
Moreover, it is expected that when an interpolated image is available, the network will
efficiently learn to make a distinction between zero values due to missing pixels in the
rearranged three-channel mosaiced image and the zero values because of absence of light
in the pixel of interest. It is also expected that in case of demosaicing artifacts in the
interpolated HDR image, they will occur in the output tone-mapped image as well, which
through comparison with the ground-truth artifact-free SDR image, will increase the loss
measure in its two terms. In that way, the existence of the negative feedback loop during
training for the introduced artifacts and errors is ensured.

The used activation and loss functions and the structure of the local and the global
branches are the same as for ExpandNet. After concatenating the final layers of the
three separate branches, 195 feature maps are fused into one additional layer consisted of
64 feature maps, out of which a demosaiced, full-color, tone-mapped HDR image output
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is produced. The workflow for the proposed CNN for joint DM and TM is presented
on Figure 6.

Figure 5. Architecture of the proposed CNN for joint DM and TM. The presented architecture is

modified from the approach presented in [2], which is based on the ExpandNet architecture [68].

The graphic design is inspired by the original image source presented in [68].

Figure 6. Workflow for the proposed CNN for joint DM and TM: training and inference. The graphic

design for the illustration was inspired by [68].

3.3.2. Training and Inference

During training, the SDR ground-truth image sample selected from the training data
set is first converted to high dynamic range with ExpandNet [68] and an HDR represen-
tative is obtained. The HDR representative is processed through the data augmentation
procedures and the procedures for mosaicing, noise application and quantization. For
feeding the interpolation branch, the mosaiced version of the HDR representative is inter-
polated in the missing pixels with linear interpolation. Part (128 × 128 × 3) of the mosaiced
(after rearrangement into three channels) HDR representative is selectively cropped and
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propagated through the local branch. The corresponding part (128 × 128 × 3) is selectively
cropped from the linearly interpolated HDR image and is sent to the interpolation branch.
Through the global branch, a down-scaled version (256 × 256 × 3) of the mosaiced (rear-
ranged into three color channels) HDR representative is propagated. The image output of
the fusion network branch is compared to the corresponding ROI cropped part of the SDR
ground-truth image sample, and the loss is calculated. The overall loss and the trainable
weights are accordingly updated. The model of the proposed CNN for joint DM and TM
was trained for 1900 epochs.

During inference, the network accepts a mosaiced (Bayer CFA) HDR image of size
1920 × 1080 × 1 normalized in the range of [0, 1]. The mosaiced image is rearranged into
three channels. For the global branch, this image is resized to 256 × 256 × 3. The full-color
tone-mapped HDR image output is of resolution 1920 × 1080 × 3.

3.4. Training and Validation Data Sets

In absence of available SDR–HDR data that can be used in research topics related to
ADS, for the purpose of training the proposed networks, we use an SDR data set consisting
of large amount of diverse traffic/road scenes annotated for traffic-related objects. From the
images of this data set, with the use of ExpandNet [68], we simulate the corresponding
HDR equivalents. The data set was formally released in 2021 and is known as “Berkeley
Driving Dataset 100K” [70,71]. Its implementation is available at [72]. For the purposes
of this research, we use the image subset for object detection, which consists of roughly
4300 images. This subset of the complete data set

- Is annotated for 10 object categories: car, traffic sign, traffic light, person, truck, bus,
bike, rider, motor and train;

- Consist of scenes with diverse weather conditions: rain, snow, sunlight, cloudy weather;
- Consists of scenes captured at different times of day: nighttime, daytime, dawn/dusk;
- Consists of scenes in various locales: city streets, residential areas, highways.

Despite the fact that this dataset abounds with the content of interest, similar to
the approach presented in [2], we use the attached annotations for automatic selective
cropping during the performed training, i.e., to crop the part of the image where most
of the objects of interest are located. For training, we use 3657 image and for validation
550 images. This image subset was the only one available from the whole “Berkeley Driving
Dataset 100K” that is completely annotated for 10 object categories. Normally, a subset
of more than 4300 image samples will contribute to better generalization in the training
process. However, the content abounds with cases from diverse traffic situations, both
very challenging and easy for the ADS object detection. Moreover, we apply augmentation
procedures to additionally account for different times of the day, difficult illumination and
contrast conditions, as well as the presence of noise. By doing this, we largely increase
the diversity of the data set used for training, and we consider that roughly 4000 image
samples in different representations over more than 1500 epochs for the both CNNs is
sufficient to obtain reconstructed content of satisfying quality.

Unlike the approach presented in [2], we do not use the image samples from this data
set in their original resolution. In order to match the resolution of the real HDR test data
set (presented in Section 4.1), we resize the images from the training SDR data set (the
original resolution is 1280 × 720) to 1920 × 1080 and also update the annotation boxes with
the corresponding resize factor.

3.5. Training Methodology

Here, we briefly describe the training procedures (which also serve as augmentation
procedures) that we apply to simulate diverse conditions of the HDR image acquisition
processes. Furthermore, we describe the procedures for data augmentation in order to
account for diverse contrast and lighting conditions. For more details about the procedures,
we direct the reader to [2]. The input HDR representatives, on which the training procedures
are applied, are obtained by applying the ExpandNet algorithm [68] for inverse tone-
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mapping on the SDR image samples from the training data set. Unlike the approach
presented in [2] and in order to be consistent in simulating the camera acquisition process,
for each simulated HDR input sample into the training, we perform the procedures in the
following order:

- Apply data augmentation (contrast and color augmentation) to account for differ-
ent scenes;

- Apply Bayer CFA mosaicing;
- Simulate photon noise;
- Simulate quantization;
- For the proposed CNN for TM, perform demosaicing with a classical SOTA algo-

rithm [56] to simulate the internal camera processing. This procedure is not applied
during training of the proposed CNN for joint DM and TM.

3.5.1. Pre-Processing

Due to the low brightness of the training data set nighttime scenes, in order to train
the proposed CNNs to improve the objects visibility in such scenes, we perform pre-
processing on the contrast of the dark ground-truth images. We do that by increasing the
exposure of the nighttime SDR samples from the training data set. This is done with the
following equation:

Ienh.night, i =
(

Iδ
orig.night,i · 2s

)

1
δ (2)

In Equation (2), Iorig.night,i refers to the original nighttime SDR image sample, where i
is the number of the image sample from the training data set, and Ienh.night, i refers to the
obtained enhanced SDR version of the nighttime sample. The exponential factor δ = 2.2 is
used to account for the camera response function, while the exponential factor s ∈ [0.5, 1.5]
is used to simulate the exposure increase in stops.

3.5.2. Data Augmentation

As part of the data augmentation, we apply contrast augmentation and color tempera-
ture augmentation techniques in sequence.

Contrast Augmentation Procedures

With the contrast augmentation techniques, by creating realistic scenes from the
training data set, we aim to train the proposed CNNs to become robust on diverse contrast
conditions, spanning from very challenging (e.g., entering a tunnel, or the occurrence of
very bright parts against very dark shadows in the same scene) to less challenging and
normal conditions (where the objects have good visibility). We perform this by changing
the contrast in range of five orders of the magnitude between the brightest and the darkest
parts of the scene.

In a same approach as that presented in [2], we apply three different techniques for
the contrast augmentation. These are:

- Gamma expansion (applied either on the luminance channel or on every color channel);
- Sigmoidal contrast stretching [73] (applied either on the luminance channel or on every

color channel);
- Selective contrast degradation [2] (to simulate very difficult conditions) applied on the

luminance channel.

Color Temperature Augmentation Procedures

With the color temperature augmentation, as it is the case in the approach presented
in [2], we ensure the existence of diverse realistic daytime ambient light conditions and use
this to train the proposed CNNs to obtain color-balanced output, especially in challenging
(difficult) conditions. We apply the color temperature changes as described in [74], in the
range from 2000 K to 10,000 K.
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3.5.3. CFA Mosaicing

To simulate the CFA with which the camera sensor is overlaid, we perform RGGB
Bayer mosaicing with three orthogonal subsampling functions mi(x) taking values 1 or 0,
if a color is supposed to be present at the pixel location or not, as shown in Equation (3).

HCFA(x) = ∑
j

Hj(x)mj(x) (3)

In Equation (3), Hj(x) is the intensity from the j-th color component of the simulated
HDR image H at the pixel location given with coordinates x, while HCFA is the obtained
CFA mosaiced HDR image and HCFA(x) is the corresponding intensity at the pixel location
given with x.

3.5.4. Noise Application

The photon (shot) noise that interferes with the useful signal, arises in the camera
acquisition process from the uncertainty of the quantity of photons, impacting the sensing
node in a short time interval, under unchanged and constant illumination. This process
is coupled with uncertainty of the quantity of electrons excited within the sensor semi-
conductor for the same time interval. This is a process that is signal-dependent and it
follows a Poisson distribution. We simulate a CFA mosaiced noisy HDR image HCFA,noise

by applying the Poisson distribution on the pixel intensities of the obtained CFA mosaiced
HDR image in the following manner:

HCFA,noise(x) ∼ Pr(HCFA(x)) (4)

Pr(k) =
e−λ(λ)k

k!
(5)

where ∼ means “is distributed as”, k is the number of occurrences (i.e., number of photons
measured with the sensor element), which in our simulated case corresponds to the pixel
intensity of HCFA, at the pixel with coordinates x, e is the Euler’s number and λ is the
expected rate of occurrences. For larger values of λ, the Poisson distribution approaches
a Gaussian distribution. Therefore, the noise in general is commonly modeled with a
Gaussian distribution, too.

In our realistic noise simulation, the λ parameter changes from 0.2% (simulating
low-level noise) to 20% (simulating high-level noise) of the maximum pixel intensity.

3.5.5. Quantization

The process of mapping continuous values (an infinite set of values) of a signal to a
finite (countable) set of discrete values is called quantization. The process of quantization
happens immediately after the analog-to-digital (AD) conversion. In our simulation,
the quantization is applied immediately after the application of noise to the mosaiced
HDR image. For example, if the AD converter is of 24 bits, this means that there will
be 224 = 16,777,216 levels, with 0 representing the darkest level and 16,777,215 being the
brightest level. The quantization process introduces a quantization error, which happens
due to rounding and truncation. The quantization error is equal to the difference between
the actual input value and its quantized value. The presence of quantization errors is
modeled with quantization noise, which is of much lower intensity and influence on
the captured data compared to the photon noise. To simulate high bit-depth HDR data,
quantized to 24 bits, we perform the quantization in the following manner:

HCFA,noise,q(x) = min

(

max

(

⌊(2q − 1) · HCFA,noise(x)⌋

(2q − 1)
, 0

)

, 1

)

(6)

where HCFA,noise(x) is the pixel intensity of the CFA mosaiced and noisy HDR image
after being normalized in the range [0, 1], q = 24 is the bit-depth to which we aim to
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quantize the image, ⌊∗⌋ is the rounding operator, min(∗, 1) is an operator that takes the
minimum of two numbers and clips the signal to the maximal value (1 in the case of a
normalized signal) and max(∗, 0) is an operator that takes the maximum of two numbers
and ensures that there is no negative value in the signal.

3.5.6. Demosaicing

In order to simulate the demosaicing from the internal signal processing pipeline
of the camera on the augmented, mosaiced and noisy HDR images simulated during
training, we apply the classical SOTA algorithm of Menon et al. [56]. The demosaicing
approach presented in [56] performs an effective directional interpolation, where the most
suitable interpolation direction for the blue and the red color components is made with an
a posteriori decision based on the reconstructed green component. When such a decision is
made and the color components are initially reconstructed, they are further refined based on
the local variation in the color differences along the horizontal and the vertical directions.

3.5.7. Importance of the Applied Pipeline of Sequential Procedures Mosaicing-Noise
Application–Quantization-Demosaicing

In simulating the image acquisition process, it is important to apply the described
procedures in the presented order:

- Mosaicing;
- Application of noise with Poisson distribution;
- Quantization;
- Demosaicing.

When the noise is applied on the CFA mosaiced image and then the image is demo-
saiced, the noise has a granular structure, is color correlated and is dependent on the local
spatial activity, thus creating noise artifacts (see Figure 7). Therefore, it is hard to state that
at this point, this complex noise structure follows the Poisson distribution.

Figure 7. The appearance of noise with demosaicing and noise artifacts when the noise is applied

before demosaicing, as happens in reality. Left: Bayer CFA mosaiced image with noise with Poisson

distribution. Right: the image on the left demosaiced with the algorithm presented in [56]. Note the

complex structure and the severity of the noise artifacts in the demosaiced image. After demosaicing,

the noise appears with a more complex structure than the initial Poisson distribution in the mosaiced

image. It is color correlated and it is dependent on the local spatial activity of the image content.

For this reason, the reconstruction algorithms (among which we consider the tone-
mapping algorithms, too) typically handle the problem of noise and demosaicing artifacts
by approaching it in a joint manner [66,75,76]. Following the same practice:

- For the proposed CNN for TM, we approach the problem of tone-mapping and noise
and artifact suppression in a joint optimal way;

- For the proposed CNN for joint DM and TM, we approach the problem of demosaicing,
tone-mapping and noise and artifact suppression in a joint optimal way.
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4. Evaluation

In this Section, we describe the test data set, select the SOTA algorithms for com-
parison and define the metrics and the methodology for the performed quantitative and
qualitative analyses.

4.1. Test Data Set

The real test data set, which is the same test data set as that used in [2], consists of
371 video frames extracted from synchronized HDR–SDR video sequences. The HDR data
consists of raw (Bayer CFA mosaiced) frames and is acquired with a real HDR camera
(using the Sony IMX490 sensor) with a dynamic range of 120 dB. The resolution of the
frames is 1920 × 1080. The extracted frames (images) consider scenes:

- From different times of day: nighttime, dawn/dusk, daytime;
- With different lighting conditions: very dark scenes, very bright scenes and scenes

with strong lights in the background;
- From traffic jams and from lower frequency traffic;
- Abundant with VRUs and objects crucial for road safety.

The extracted images are annotated for the object classes: “person”, “colored traffic
light” and “traffic sign” (danger, mandatory, prohibitory and stop sign). Annotated in the
extracted images, there are:

- 1477 objects belonging to the class “person”;
- 998 objects belonging to the class “traffic sign”;
- 357 objects belonging to the class “colored traffic light”.

Additionally, information about the scene was added in the annotation files, address-
ing the following aspects:

- The time of day;
- Whether there is sun glare or strong lights present in the scene;
- Whether the captured scene is too bright, too dark, or the lighting conditions are normal;
- Whether or not there is occlusion of the objects or the VRUs of interest;
- Whether or not there is motion blur (caused by a fast change in the motion of the

platform on which the cameras are positioned or because the VRUs are moving too
fast) in the content visible to the annotator;

We use this information in order to split the data set into difficult/challenging scene
cases and easy/non-challenging scene cases. The criteria considered to classify a scene as
difficult/challenging are:

- Existence of strong lights or sun glare in the scene;
- It is a night scene;
- Most of the relevant objects are occluded and hence hard to detect;
- The scene is either too dark or too bright;
- There is motion blur.

We use the created data set to test the proposed CNNs in comparison to the SOTA
algorithms and the SDR content with the metrics and the methodology explained in Section 4.3.

4.2. Methods for Comparison

Since the main scopes of this research are tone-mapping and demosaicing approaches,
we evaluate the proposed CNNs against sequential pipelines of state-of-the-art demosaicing
and tone-mapping algorithms.

As representative of the state-of-the-art demosaicing methods and due to its ease of
use, we select the algorithm of Menon et al. [56] (here referred to as “Menon et al.”).

Based on previously performed analyses [3,9,38], we select the algorithm of Rein-
hard et al. [13] (here referred to as “Reinhard et al.”) as representative of the state-of-the-art
classical global tone-mapping approaches and the algorithm of Farbman et al. [28] (referred
to as “Farbman et al.”) as representative of the state-of-the-art classical local tone-mapping
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approaches. Since the deep learning tone-mapping algorithms are in an emerging phase
and not all of them have publicly available implementations, we select the algorithm of
Vinker et al. [34] (referred to as “DL HDR TM”, which stands for deep learning HDR
tone-mapping) as representative of the deep-learning class of algorithms for tone-mapping.
Prior to applying the TM algorithms, Reinhard et al., Farbman et al., the DL HDR TM and
the proposed CNN for TM, we apply demosaicing of the real HDR data with the algorithm
of Menon et al. [56]. For the proposed CNN for joint DM and TM, we do not perform prior
demosaicing and feed the CNN with the raw HDR data, normalized in the range [0–1].

The tone-mapping settings for the classical methods were optimized to produce the
best results (in terms of PSNR and SSIM) on the training data set. We use the same
optimized parameters for the real test data set. There are no tone-mapping parameters to be
adjusted for the algorithm of Vinker et al. [34], and the neural network (publicly available
at [77]) is applied as it was trained by the authors.

4.3. Metrics and Methodology for Evaluation

For the evaluation study, we perform quantitative and qualitative analyses. For the
quantitative analysis, we perform object detection evaluation over the real HDR–SDR
images from the test data set, on the content obtained with the proposed CNNs and the
SOTA methods from the literature, as well as for the SDR content. For the qualitative
analysis, we first perform visual comparison on the object detection results and then we
continue with qualitative analysis on several aspects of the quality of the tone-mapping
and the demosaicing performance.

4.3.1. Quantitative Analysis

∗ The object detection evaluation is performed with using the following object detectors:

- Yolo v3 [1] for the classes “person”, “stop sign” and “traffic light” (only detection
on colored traffic lights is evaluated, as being the most relevant in tone-mapping
and for road safety).

- Yolo v2 version, trained for three subcategories of the class “traffic sign” (“danger”,
“mandatory”, “prohibitory” ), with an analysis presented in [78] and implementa-
tion publicly available at [79].

∗ The object detection performance is analyzed for each of the three classes: “person” (P),
“colored traffic light” (TL) and “traffic sign” (TS). For the class “traffic sign” (TS), we
consider the three subcategories of traffic signs in combination with the “stop sign”.

∗ From the available metrics for object detection, we use:

- F2 score: because it is a metric that combines precision and recall, while it penalizes
the “missed detections” (False Negatives, i.e., FN) more than the false positives
(FP) and unlike the symmetric F1 score, it gives more weight to the recall than to
the precision;

- True Positive Rate (TPR or recall), as a metric for correct detections;
- False Negative Rate (FNR), as a metric for missed detections;
- False Positives Per Image (FPPI): a metric that is calculated as the average number

of false positives (FP) over all images in the test data set.

The Fβ score, where β ∈ {0.5, 1, 2}, is shown in the following equations. In general, the
Fβ score, as a function of the number of True Positives (TP), number of False Positives
(FP) and number of False Negatives (FN), is given by:

Fβ =

(

1 + β2
)

· TP

(1 + β2) · TP + β2 · FN + FP
. (7)

When β = 2, Fβ becomes F2 score:

F2 =
5 · TP

5 · TP + 4 · FN + FP
. (8)
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As a function of precision and recall, the Fβ score in general can be calculated in the
following manner:

Fβ =

(

1 + β2
)

· precision · recall

β2 · precision + recall
. (9)

∗ The object detection evaluation is performed in two ways:

- By changing the detection thresholds in the range [0–1] of the yolo algorithms [1,79],
and analyzing the results from the curves (F2 score vs. FPPI, TPR vs. FPPI and FNR
vs. FPPI) over the complete test data set for the separate object classes;

- By applying the best performance object detection threshold (found from the F2

score vs. FPPI curves for the best performing algorithm for each object class)
on the content obtained with each of the TM algorithms, as well as on the SDR
content. Then, for the specific best performance object detection threshold for
each object class, we measure the F2 score:

- On the complete test data set;
- On the split test data set in two categories: “difficult” and “easy” traffic scenes.

∗ Additionally, to compare the complexity of the neural networks, for each of the used
CNNs, we measure the number of parameters and the number of multiplication and
addition (multiply-accumulate) operations on floating-point numbers (MACs).

4.3.2. Qualitative Analysis

For the qualitative analysis, first, we visually evaluate the results in terms of object
detection. Then, we proceed with qualitative analysis on the quality of the reconstructed
(demosaicing and tone-mapping) content.

We analyze the quality of the tone-mapping results on several aspects:

- Contrast;
- Color appearance;
- Tone-mapping of strong lights;
- Presence of noise and artifacts.

The quality of demosaicing, in terms of:

- Appearance of disturbing demosaicing artifacts;
- Sharpness of the details;

is analyzed by visual observation on parts of the content with sharp edges and/or repeti-
tive structure.

5. Results

In this Section, we present and discuss the results from the quantitative and the
qualitative analyses.

5.1. Results from the Quantitative Analysis

The results from the overall object detection evaluation on the complete test set are
shown by the curves TPR vs.FPPI, FNR vs. FPPI and F2 score vs. FPPI for the object class
“person” in Figure 8, for the object class “traffic sign”, in Figure 9 and for the object class
“colored traffic light”, in Figure 10.

From Figure 8, from the three types of curves, it can be seen that in terms of object
detection performance for the class "person", the best-performing algorithm consistently is
the SOTA DL HDR TM [34]. The next-best-performing algorithms, with quite similar perfor-
mance to the DL HDR TM, are the proposed CNN for TM and the proposed CNN for joint
DM and TM. In the region of interest (3–4 FPPI), it can be seen that the three best-performing
algorithms show almost the same performance. The object detection performance decreases
for the classical SOTA algorithms, Farbman et al. [28] and Reinhard et al. [13] and is the
poorest for the SDR content. Since the SOTA DL HDR TM increases the contrast around the
edges of the objects, it facilitates the object detection of the class “person”, where the clear
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edges and the shape are the dominant features, while the color fidelity is of less importance.
Improvements in the local contrast positively influences the detection of objects that are not
too far away (not very small) and the lighting conditions are not extremely difficult. In the
cases of distant/small and blurred objects, detection is generally bad for all the algorithms.
However, our hypothesis is that in the case of the DL HDR TM algorithm, with the increase
in the local contrast, the noise artifacts also become severely pronounced, which negatively
affects the detection of small (occluded or distant) objects. Circumstantial evidence toward
this hypothesis is provided by the object detection results for traffic signs. In any case,
the detection results on the content obtained with the DL HDR TM are only slightly better
than those of the proposed CNNs.

TPR vs. FPPI FNR vs. FPPI F2 score vs. FPPI

Figure 8. Object detection results for the class “person” on the complete test data set. Note that

for the proposed CNNs, the CNN for TM and the CNN for joint DM and TM, the results are very

similar to the results for the content obtained with the DL HDR TM [34] algorithm. The slightly better

performance of the DL HDR TM algorithm over the proposed algorithms is mainly due to the better

sharpness of the objects of interest in the image content. The existence of sharp edges facilitates the

object detection of the class “person” in cases of not very distant VRUs and not extremely difficult

lighting and contrast conditions. The object class “person” is an object class where the color is not the

dominantly important feature for accurate object detection. When compared to the results on the

content obtained with the SOTA classical methods for TM, Reinhard et al. [13] and Farbman et al. [28],

the proposed CNNs rank high everywhere along the curves. SDR content has the worst object

detection performance.

From Figure 9, from the three types of curves, it can be seen that the best-performing
algorithms with respect to object detection for the object class “traffic sign” in most of
the cases, are the proposed CNNs. Similar results are observed from the classical SOTA
algorithms, Farbman et al. [28] and Reinhard et al. [13]. The performance is lower for the
SOTA DL HDR TM [34], while the SDR content shows poorest performance. In traffic sign
detection, beside the shape and the clear edges, the color is also an important feature in the
object detection. With the presented object detection results, for the class “traffic sign”, we
are justified in saying that in terms of color fidelity in tone-mapping, the proposed CNNs
produce high-quality image content and show good performance.

Similar conclusions can be obtained if the object detection results presented in
Figure 10 are analyzed. It can also be seen that, when it comes to accurately tone-mapping
traffic lights without an increase in artifacts in their vicinity, the DL HDR TM algorithm [34]
in parts shows poorer performance than the SDR content.

We support the obtained conclusions for the overall object detection analysis with the
F2 score results presented in Figure 11. Here, the F2 score is calculated for every object
class over the complete test data set. The working point, i.e., the object detection threshold,
is selected from the best F2 score value of the best-performing algorithm in every object
class. This object detection threshold is then applied to the content obtained with the other
algorithms from the comparison and also to the SDR content. It can be seen that consistently,
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the content obtained with the proposed CNNs shows best or second-best object detection
performance (although the difference in performance in those cases is negligible) for the
evaluated object classes.

TPR vs. FPPI FNR vs. FPPI F2 score vs. FPPI

Figure 9. Object detection results for the class “traffic sign” on the complete test data set. Note that

the proposed CNNs, the CNN for TM and the CNN for joint DM and TM, achieve the best object

detection performance. The results are broadly similar to the results achieved on the content obtained

with the TM algorithm proposed by Reinhard et al. [13], and better when compared to the results on

the content obtained with Farbman et al. [28] and the DL HDR TM [34] algorithm. The class “traffic

sign” is an object class, where both shape and color are dominantly important features for accurate

object detection. Conversely, when compared to the other TM algorithms, the content obtained with

the DL HDR TM [34] algorithm has the worst object detection results, while SDR content has the

worst overall object detection performance.

TPR vs. FPPI FNR vs. FPPI F2 score vs. FPPI

Figure 10. Object detection results for the class “traffic light” on the complete test data set. Note

that the content obtained with the proposed CNNs, the CNN for TM and the CNN for joint DM

and TM, achieves the best object detection performance. The results from the proposed CNNs are

most similar to the results achieved on the content obtained with the TM algorithm proposed by

Reinhard et al. [13] and better than results on the content obtained with the TM algorithm proposed

by Farbman et al. [28] and the DL HDR TM [34] algorithm. The class “traffic light” is an object class

where both shape and color are dominantly important for accurate object detection. Conversely,

the content obtained with the DL HDR TM algorithm [34] has the worst object detection performance

compared to the content obtained with the other TM algorithms. SDR content has the worst overall

object detection performance.

The results from the separate evaluation on the difficult and the easy scenes from
the test data set are shown in Figure 12. The working points, i.e., the object detection
thresholds, retain the same selected values as for the results presented in Figure 11. For the
object class “person”, the performance on the easy scenes for all the algorithms from the
comparison is similar, while on the difficult scenes, the best-performing algorithm is the DL
HDR TM [34]. For the difficult scenes, the content obtained with the DL HDR TM has only
slightly better object detection results than the results on the content from the proposed
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CNNs. When compared to the classical SOTA TM algorithms, the proposed CNNs are
better. Overall, the performance is better on the easy scenes than on the difficult scenes.
For the object class “traffic sign”, the best-performing algorithm in the difficult cases is the
proposed CNN for joint DM and TM, while for the easy cases, it is the proposed CNN for
TM. For the difficult cases, the algorithms from the comparison show similar performance
to each other and perform worse than the proposed CNNs. For the easy cases, worst in
performance among the algorithms from the comparison is the DL HDR TM [34], due to the
infidelity in color tone-mapping. For the object class “colored traffic light”, the conclusions
are similar, with the difference being that the best-performing algorithm is the proposed
CNN for joint DM and TM for both the difficult and easy cases. When compared with the
proposed CNN for TM, the difference in performance of the proposed CNNs is negligible.
Overall, the performance is better on the easy traffic scenes than on the difficult traffic
scenes. Furthermore, for all of the evaluated object classes, in most of the cases, of the
classical SOTA algorithms, the algorithm of Reinhard et al. [13] shows better performance
than the algorithm of Farbman et al. [28], and the SDR content consistently shows the
worst performance.

Figure 11. Object detection results (F2 score) for the classes “person”, “traffic sign” and “colored

traffic light”. The presented F2 score results are obtained on the content from the algorithms in the

comparison for the same working point/object detection threshold of the object detector in each

object class. The working points (the object detection thresholds), for each object class, are selected

from the best F2-score value (from the results presented in Figures 8–10) of the best performing

algorithm for each object class. The selected thresholds, per object class are then applied in the object

detection on the content obtained with all the algorithms. Note that the content obtained with the

proposed CNNs, the CNN for TM and the CNN for joint DM and TM, achieves best results for the

classes “traffic sign” and “colored traffic light” and similar results to those of the best-performing

algorithm (the DL HDR TM algorithm [34]) for the class “person”.

As part of the quantitative analysis, in order to test our second hypothesis, we also
calculated the computational cost (number of parameters and multiply-and-accumulate
units (MACs)) of the proposed CNNs. The results are presented in Table 1. In terms of
number of trainable parameters, the results show that the proposed CNNs do not differ
much and have similar numbers of parameters. The proposed CNN for joint DM and
TM has a slightly larger architecture because of the additional layers. However, it is not
drastically larger than the proposed CNN for TM; on the contrary, they are similar in size.
Moreover, the proposed CNN for joint DM and TM performs the task of the proposed CNN
for TM, additionally with demosaicing, in an optimal, joint manner. A similar conclusion
can be obtained if the MACs results are compared.
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With the presented results from the quantitative analysis, we justify the use of the
proposed CNN for TM and the proposed CNN for joint DM and TM in tone-mapping (and
demosaicing) of difficult, as well as easy, HDR traffic scenes, with the purpose of improv-
ing the detectability of traffic-related objects. Our hypothesis is that the object detection
performance is improved due to the better contrast, the noise suppression, the absence
of disturbing artifacts and the high color fidelity in the content reconstructed with the
proposed CNNs. We further confirm this hypothesis with the results from the qualita-
tive analysis.

Additionally, with the quantitative analysis, we show that the two proposed CNNs,
at almost the same computational cost, achieve very similar object detection performance
on the reconstructed content.

F2 score for the object class “person” for difficult and

easy cases.

F2 score for the object class “traffic sign” for difficult

and easy cases.

F2 score for the object class “colored traffic light” for diffi-

cult and easy cases.

Figure 12. Object detection results (F2 score) on the split test data set (difficult and easy cases),

for each of the evaluated object classes. Note that the content obtained with the proposed CNNs, the

CNN for TM and the CNN for joint DM and TM, achieves best results in most of the cases in both

subsets (“difficult” and “easy”) of the test data set. Slightly better performance is only achieved by

the DL HDR TM algorithm [34] for the subset of “difficult scenes” for the object class “person”. This

is not the case for the other two object classes, “traffic sign” and “colored traffic light”. Furthermore,

note that the overall performance is better for the subset of “easy” scenes compared to the subset of

“difficult” scenes. The difference in performance between the TM algorithms is the highest and in

favor of the proposed CNNs in the subset of the “difficult” traffic scenes.
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Table 1. Computational cost and number of parameters of the proposed neural networks.

Neural Network Number of Parameters
MACs in G (Input Image

Size: 1920 × 1080 × 3)

Proposed CNN for TM 340,227 32,535 G
Proposed CNN for joint DM

and TM
340,587 32,668 G

5.2. Results from the Qualitative Analysis

Here, we first qualitatively analyze and discuss the object detection results. We then
proceed with the qualitative analysis of the reconstructed content with the algorithms from
the comparison and the proposed CNNs.

5.2.1. Qualitative Analysis of the Object Detection Results

The results from the quantitative analysis are supported with visual examples from the
tone-mapped content and the detections shown as rectangles (green rectangle: True Positive
detection, red rectangle: False Negative, i.e., missed detection, and orange rectangle: False
Positive). With these examples, we visually inspect the reasons for the good or bad object
detection performance on the content obtained with the pipelines of:

- The sequentially combined, SOTA demosaicing and TM algorithms;
- The sequentially combined, SOTA demosaicing and the proposed CNN for TM;
- The proposed CNN for joint DM and TM.

The visual examples, difficult and easy traffic scenes for the object class “person” are
shown in Figure 13, for the object class “traffic sign”, are shown in Figure 14, and for the
object class “colored traffic light”, are shown in Figure 15.

The difficult scenes shown in Figure 13 consider cases of very strong lights in the
vicinity of the relevant objects, poor contrast and occluded pedestrians. It can be seen that
the objects from the class “person” are extremely hard to distinguish in the SDR content.
Most of the objects are detected in the content obtained with the proposed CNNs and the
DL HDR TM [34]. The difference in the visual appearance between the content obtained
with the proposed CNNs and the DL HDR TM [34] algorithm is quite noticeable. The scenes
tone-mapped with the DL HDR TM [34] algorithm are brighter, the sharpness of the edges
is greater and the noise is severe and with granular structure. The noise appearance has a
negative effect on the detection, which can be observed from the content obtained with the
algorithms from the comparison. Specifically, objects that are already hard for detection,
such as the occluded person in the dark left part of the scene (in the first image from
left-to-right), the partially occluded person on the bicycle with strong front lights (in the
first image from left-to-right), are detected only in the content obtained with the proposed
CNNs. Additionally, due to the improved contrast (see the examples presented from the
first to the third image in the left-to-right order) after tone-mapping with the proposed
CNNs, most of the objects become detectable, which is not the case with the other TM
algorithms. Aside from the severe noise presence in the algorithms from the comparison,
we can say that the visual appearance of the content tone-mapped with the proposed CNNs
is most similar to the visual appearance of the content tone-mapped with the classical SOTA
algorithms [13,28]. Positive aspects of the proposed CNNs are the improvements in the
contrast and the amount of noise. For the easy case of traffic scenes (fourth image from
left-to-right), the objects are detected with all of the algorithms included in the comparison,
as well as in the SDR content.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 13. Visually presented results from object detection performance for the class “person” on

selected examples from the test data set. Image order: left-to-right. The images from the first to the third

image in every row are examples from the “difficult” traffic scenes. The fourth image is an example

from the “easy” traffic scenes. A red rectangle denotes a missed detection (FN), an orange rectangle

denotes a False Positives (FP) and a green rectangle denotes a True Positives (TP).(a) Detection results on

the SDR content; (b) Detection results on the content obtained with the pipeline: Menon et al. [56] and

Farbman et al. [28]; (c) Detection results on the content obtained with the pipeline: Menon et al. [56] and

Reinhard et al. [13]; (d) Detection results on the content obtained with the pipeline: Menon et al. [56]

and the DL HDR TM algorithm [34]; (e) Detection results on the content obtained with the pipeline:

Menon et al. [56] and the proposed CNN for TM; (f) Detection results on the content obtained with

the proposed CNN for joint DM and TM. Note that in the extremely “difficult” scenes (strong lights

or low contrast and low-light conditions), in most of the cases, the proposed CNNs achieve object

detection results with fewest missed detections. In the “easy” case, the object detection results between

all algorithms are almost same. The object detection results are worst for the SDR content.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 14. Visually presented results from object detection performance for the class “traffic sign” on

selected examples from the test data set. Image order: left-to-right. The images from the first to the fifth

image in every row are examples from the “difficult” traffic scenes. The sixth image is an example from

the “easy” traffic scenes.A red rectangle denotes a missed detection, an orange rectangle denotes an

FP and a green rectangle denotes a TP. (a) Detection results (class “traffic sign”) on the SDR content;

(b) Detection results (class “traffic sign”) on the content obtained with the pipeline: Menon et al. [56]

and Farbman et al. [28]; (c) Detection results (class “traffic sign”) on the content obtained with the

pipeline: Menon et al. [56] and Reinhard et al. [13]; (d) Detection results (class “traffic sign”) on the

content obtained with the pipeline: Menon et al. [56] and the DL HDR TM algorithm [34]; (e) Detection

results (class “traffic sign”) on the content obtained with the pipeline: Menon et al. [56] and the proposed

CNN for TM; (f) Detection results (class “traffic sign”) on the content obtained with the proposed CNN

for joint DM and TM. Note that in the “difficult” scenes, in most of the cases, the proposed CNNs achieve

object detection results with fewest missed detections. The best results are achieved by the proposed

CNN for joint DM and TM. On the presented “easy” scene, the object detection results of all algorithms

are the same. The object detection results are worst for the SDR content.

The difficult scenes shown in Figure 14 consider cases of sun glare (first image from
left-to-right), strong lights (fourth and fifth image from left-to-right), poor contrast (third
and fourth image from left-to-right), motion of the camera (second image from left-to-right)
and occlusion (second image from left-to-right). It can be seen that most of the objects from
the class “traffic sign” are detected in the content tone-mapped with the proposed CNNs,
specifically the proposed CNN for joint DM and TM. The fourth image from left-to-right
is a good example of a difficult case in terms of accurate color tone-mapping. Some ROI
parts in the content obtained with the DL HDR TM [34] algorithm lack color saturation,
which makes the traffic signs less detectable. The behavior is similar for the case from
the fifth image from left-to-right. On the third image example from left-to-right, it can be
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seen that the noise is very pronounced and the contrast is very poor, and these aspects
severely affect the object detection with the algorithms from the comparison. The traffic
sign of interest from the third image is only detected in the proposed CNN for joint DM
and TM. The noise and the poor contrast are the main reasons for the missed detections
from the “difficult cases” in the content obtained with the classical SOTA tone-mapping
algorithms: [13,28]. In the presented visual example, for the easy case (sixth image from
left-to-right), the objects are detected in the content obtained with all of the algorithms
included in the comparison, as well as in the SDR content.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 15. Visually presented results from object detection performance for the class “colored traffic

light” on selected examples from the test data set. Image order: left-to-right. The images from the

first to the fifth image in every row are examples from the “difficult” traffic scenes. The sixth image

is an example from the “easy” traffic scenes. A red rectangle denotes a missed detection, an or-

ange rectangle denotes an FP and a green rectangle denotes a TP. (a) Detection results on the SDR

content; (b) Detection results on the content obtained with the pipeline: Menon et al. [56] and Farb-

man et al. [28]; (c) Detection results on the content obtained with the pipeline: Menon et al. [56] and

Reinhard et al. [13]; (d) Detection results on the content obtained with the pipeline: Menon et al. [56]

and the DL HDR TM algorithm [34]; (e) Detection results on the content obtained with the pipeline:

Menon et al. [56] and the proposed CNN for TM; (f) Detection results on the content obtained with

the proposed CNN for joint DM and TM. Note that in the “difficult” scenes, in most of the cases,

the proposed CNNs achieve object detection results with the fewest missed detections. The best

results are achieved by the proposed CNN for joint DM and TM. On the “easy” case, the object

detection results between all algorithms are almost same. The object detection results are worst for

the SDR content and the content obtained with the pipeline: Menon et al. [56] and the DL HDR

TM algorithm [34].
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The difficult scenes in Figure 15 consider cases of strong lights in the vicinity (from
the first to the fifth image from left-to-right) of the traffic lights and poor contrast in the
local regions of the traffic lights (from the first to the fourth image from left-to-right). Most
of the objects are detected in the content obtained with the proposed CNNs. For the scene
on the fifth image from left-to-right, which is an extremely difficult case, there are no
traffic lights detected in any of the content obtained with the SOTA algorithms from the
comparison. On the contrary, one traffic light is detected only in the content obtained with
the proposed CNN for joint DM and TM. This points to the advantage of the proposed
CNN for joint TM and DM to be used in demosaicing and tone-mapping of extremely
difficult cases. The situation is similar for the scene from the fourth image. Traffic lights are
only detected in the content obtained with the proposed CNNs. In this specific scene, the
noise presence is severe in the content obtained with the DL HDR TM [34] algorithm and
also quite noticeable, although to a lesser extent, in the content obtained with the classical
SOTA algorithms [13,28]. Conversely, the noise is highly suppressed and the contrast is
improved in the content obtained with the proposed CNNs, hence, more of the traffic lights
are detected. For the same reason, some of the traffic lights (second image from left-to-right)
are detected in the SDR content, too. For some of the scenes, where some of the traffic lights
are very strong, the DL HDR TM [34] algorithm fails to accurately tone-map the local region
of the light source and creates a large halo artifact with severe noise artifacts in the light
source surroundings. The “halo” artifacts around the light sources are bad because they
change the local contrast, hence, the surrounding structures become less visible, negatively
affecting the object detection performance. These “halo” artifacts with additional noise
artifacts, are especially noticeable in the scenes from the second image, the third image
and the fifth image from left-to-right in the content obtained with the SOTA DL HDR TM.
Large “halo” artifacts do not appear after tone-mapping when the proposed CNNs and
the other TM algorithms from the comparison are applied. Another positive aspect is that,
in the cases where the contrast is generally poor (scenes from the first to the third image
from left-to-right), in the surroundings of the traffic lights, the best results in terms of
object detection are achieved for the content obtained with the proposed CNNs. For the
easy scenes (the sixth image from left-to-right), the colored traffic lights are detected in the
content obtained with all of the algorithms included in the comparison, as well as in the
SDR content.

5.2.2. Qualitative Analysis of the Tone-Mapping and Demosaicing Results

Here, for the qualitative analysis, we visually present the results of tone-mapping,
as well as demosaicing, and discuss the different aspects of the obtained visual quality in
tone-mapping and demosaicing, with the proposed CNNs and the SOTA algorithms from
the comparison.

For the results presented in Figure 16, we discuss the contrast; for the results presented
in Figure 17, we discuss the tone-mapping as far as the color appearance is concerned;
for the results presented in Figure 18, we discuss the tone-mapping of strong lights and
in the vicinity of strong lights; for the results presented in Figure 19, we discuss the
noise appearance in the differently tone-mapped content; and for the results presented in
Figure 20, we discuss the demosaicing quality.

With visual observation of the examples presented in Figure 16, it can be seen that the
content with pleasant visual appearance for the HVS and with high global and local contrast
is obtained with the proposed CNNs. This can not be stated for the content obtained with
the other algorithms from the comparison. For the content tone-mapped with the DL HDR
TM [34], there are cases where the overall contrast, as it is in the presented examples of
bright daytime scenes, is lower than the contrast in the content obtained with the proposed
CNNs. Furthermore, very often, the global contrast in the tone-mapped content with the
DL HDR TM algorithm may be very high and the edges of the objects may have strong
sharpness, to a level that the tone-mapped content starts to resemble “cartoon-like content”.
Such cases can be observed in Figure 17, the second and the third image from left-to-right.
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The situation is similar for the content obtained with the classical SOTA tone-mapping
algorithms: Reinhard et al. [13] and Farbman et al. [28].

From the examples presented in Figure 17, it can be seen that the colors are more
saturated, more apparent and more vivid in the content obtained with the proposed CNNs.
It can also be seen that the content obtained with the proposed CNNs resembles the SDR
content in terms of color appearance, which means that the proposed CNNs do not perform
incorrect color tone-mapping. This is a very important aspect in the detection of traffic
signs and traffic lights. The colors are less saturated in the content tone-mapped with
the DL HDR TM [34] algorithm, and to a lower extent, less saturated in the content tone-
mapped with the classical SOTA algorithms, Reinhard et al. [13] and Farbman et al. [28].
Additionally, for the content tone-mapped with the DL HDR TM [34] algorithm, there are
cases with wrong color tone-mapping, especially if the example from the first image from
left-to-right, is observed. In this image example, the red back-lights of the car are uniformly
tone-mapped in the content obtained with the DL HDR TM algorithm. Conversely, there is
a visible distinction between the color-saturated and the luminance-saturated regions in the
content obtained with the other algorithms, implying that, indeed, the color tone-mapping
for this specific example is wrong when the DL HDR TM [34] is applied.

From the examples presented in Figure 18, it can be seen that the strong lights are tone-
mapped without large halo artifacts around the light source (and hence, the light source is
well localized) with the proposed CNNs and the algorithm by Reinhard et al. [13]. The clip-
ping and the halo artifacts become slightly more pronounced in the content tone-mapped
with the algorithm by Farbman et al. [28]. The halo artifacts become severe, with surround-
ing noise artifacts, in the content obtained with the DL HDR TM [34] algorithm.

In Section 3.5.7, we elaborated that the photon noise (noise with a Poisson distribution),
initially present in the CFA mosaiced image, after demosaicing, becomes severe, with noise
artifacts and with complex structure. For that reason, the same noise artifacts are likely to
appear in the tone-mapped content as well. From the examples presented in Figure 19, it
can be seen that the noise is most severe (most pronounced and with granular structure) in
the content tone-mapped with the DL HDR TM [34] algorithm. It is present and noticeable,
although not so disturbing, in the content tone-mapped with the other classical SOTA
algorithms, Reinhard et al. [13] and Farbman et al. [28]. Fortunately, it is suppressed
to a large extent in the content obtained with the proposed CNNs (with slightly better
suppression in the content obtained with the proposed CNN for joint DM and TM).

From the examples presented in Figure 20, it can be seen that there are no very
disturbing demosaicing artifacts; however, they do exist and interfere with the noise
structure. The HDR content prior to being processed with the tone-mapping algorithms
has been demosaiced with the algorithm of Menon et al. [56]. Therefore, the artifacts
in the content obtained with the sequential pipelines of demosaicing and tone-mapping
algorithms occur in the same place, and are more or less pronounced. The intensity to
which they are pronounced depends on how the tone-mapping algorithms deal with that
problem. A good example with the presence of demosaicing artifacts is given in the first
image from left-to-right (note the wrong color pixels around the text in the content obtained
with the sequential pipelines). The classical tone-mapping algorithms, Reinhard et al. [13]
and Farbman et al. [28], do not perform denoising, so the artifacts remain, only their
magnitude as pixels with wrong color value becomes increased. These artifacts are severely
pronounced in the content tone-mapped with the DL HDR TM [34] algorithm. This is due
to the fact that the DL HDR TM, in an attempt to maximize the local contrast, makes the
artifacts more apparent. Fortunately, the proposed CNN for TM, since it has been trained
on noisy data and data with artifacts from demosaicing, in most of the cases, suppresses
these types of artifacts and tone-maps the content according to the local surroundings and
the local spatial activity. From this aspect, we point to the advantage of our proposed
CNN for TM to suppress noise and demosaicing artifacts in the tone-mapped content. The
situation is similar, with slight worsening, for the content obtained with the proposed CNN
for joint DM and TM. The effect of slight blurring, however, with no additional artifacts, can
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be seen in the second image from left-to-right when the proposed CNNs are applied. The
suppression of artifacts and noise for the proposed CNN for joint DM and TM comes at a
cost of not having a very high sharpness of the edges in the reconstructed content. However,
as long as the content is not noticeably blurred, high global and local contrast is ensured,
and the objects are well detectable (i.e., object detection is not negatively affected), while
still producing visually pleasant content for the HVS, this is an acceptable compromise
made with the proposed CNNs.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 16. Visual results from the qualitative analysis of the performance quality concerning contrast.

Image order: left-to-right. (a) SDR content; (b) Content obtained with the pipeline: Menon et al. [56]

and Farbman et al. [28]; (c) Content obtained with the pipeline: Menon et al. [56] and Rein-

hard et al. [13]; (d) Content obtained with the pipeline: Menon et al. [56] and the DL HDR TM

algorithm [34]; (e) Content obtained with the pipeline: Menon et al. [56] and the proposed CNN for

TM; (f) Content obtained with the proposed CNN for joint DM and TM.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 17. Visual results from the qualitative analysis of the performance quality concerning color

appearance. Image order: left-to-right. (a) SDR content; (b) Content obtained with the pipeline:

Menon et al. [56] and Farbman et al. [28]; (c) Content obtained with the pipeline: Menon et al. [56]

and Reinhard et al. [13]; (d) Content obtained with the pipeline: Menon et al. [56] and the DL HDR

TM algorithm [34]; (e) Content obtained with the pipeline: Menon et al. [56] and the proposed CNN

for TM; (f) Content obtained with the proposed CNN for joint DM and TM.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 18. Visual results from the qualitative analysis of the performance quality concerning tone-

mapping of strong lights. (a) SDR content; (b) Content obtained with the pipeline: Menon et al. [56]

and Farbman et al. [28]; (c) Content obtained with the pipeline: Menon et al. [56] and Rein-

hard et al. [13]; (d) Content obtained with the pipeline: Menon et al. [56] and the DL HDR TM

algorithm [34]; (e) Content obtained with the pipeline: Menon et al. [56] and the proposed CNN for

TM; (f) Content obtained with the proposed CNN for joint DM and TM.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 19. Qualitative results (presented with zoomed image crops) of the performance qual-

ity concerning the presence of noise. (a) SDR content; (b) Content obtained with the pipeline:

Menon et al. [56] and Farbman et al. [28]; (c) Content obtained with the pipeline: Menon et al. [56]

and Reinhard et al. [13]; (d) Content obtained with the pipeline: Menon et al. [56] and the DL HDR

TM algorithm [34]; (e) Content obtained with the pipeline: Menon et al. [56] and the proposed CNN

for TM; (f) Content obtained with the proposed CNN for joint DM and TM.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 20. Visual results (presented with zoomed image crops) from the qualitative analysis of the

performance quality concerning demosaicing. (a) SDR content; (b) Content obtained with the pipeline:

Menon et al. [56] and Farbman et al. [28]; (c) Content obtained with the pipeline: Menon et al. [56]

and Reinhard et al. [13]; (d) Content obtained with the pipeline: Menon et al. [56] and the DL HDR

TM algorithm [34]; (e) Content obtained with the pipeline: Menon et al. [56] and the proposed CNN

for TM; (f) Content obtained with the proposed CNN for joint DM and TM.
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With the results from the qualitative analysis, we are again justified in claiming that the
proposed CNNs for tone-mapping and demosaicing succeed in increasing the detectability
of objects and in that regard, are useful in both ADS and AVS. We show that the proposed
CNNs outperform the SOTA demosaicing and tone-mapping algorithms:

- In consistently obtaining overall high global and local contrast;
- In obtaining high fidelity in color tone-mapping especially for traffic signs and traf-

fic lights;
- In performing localized tone-mapping of the strong lights (without producing “halo”

artifacts in the surroundings);
- In performing noise suppression;
- In obtaining robustness to demosaicing and noise artifacts.

We also show that the proposed CNNs obtain very similar qualitative results. The
CNN for joint DM and TM succeeds in achieving almost the same quality as the proposed
CNN for TM without noticeable visual differences, with no additional artifacts, with al-
most the same computational cost and most importantly, by performing both tasks of
demosaicing and tone-mapping in an optimal, joint manner.

6. Conclusions and Future Work

For use in automotive driving systems, we propose two neural networks, one that
performs tone-mapping on demosaiced HDR content and a second that performs joint
demosaicing and tone-mapping on raw HDR content. The main idea is to overcome the
limitations of the SDR content and the limitations arising from the SOTA object detection
algorithms designed to work on 8-bit content, by using HDR content and its proper tone-
mapping. We focus on increasing the detectability of the VRUs and traffic-related objects
important for road safety in various challenging illumination and contrast conditions. We
achieve this by increasing the contrast, maintaining the color appearance, suppressing
the noise and avoiding artifacts introduction in both difficult and easy traffic scenes. We
evaluate the content produced by the proposed CNNs, with regards to ADS object detection
accuracy and visual qualitative analysis. We compare the performance of the proposed
CNNs to that of the sequential pipelines of applied SOTA demosaicing and tone-mapping
algorithms, as well as to the SDR content. Additionally, we compare the computational
cost between the proposed CNNs.

There are two main contributions of this research:

- Incorporating demosaicing in a neural network devised for tone-mapping. Based on
the proposed CNN model for TM, we devise a CNN that performs joint demosaicing
and tone-mapping of HDR content with noise suppression and good robustness on
artifacts occurrence. The proposed CNN for joint DM and TM also has light-weight
architecture and only slightly higher computational cost than the proposed CNN
for TM.

- Extensive evaluation with respect to ADS object detection accuracy of reconstructed
(demosaiced and tone-mapped) content obtained with SOTA demosaicing and tone-
mapping algorithms and the proposed CNNs. There is also a discussion and analysis
on the quality of the reconstructed content by addressing the main aspects of high
quality tone-mapping and demosaicing.

With the results from both the quantitative analysis and the qualitative analysis, we
confirm our two research hypotheses:

- The content obtained with the proposed CNN models shows similar or distinctively
better ADS object detection performance compared to the content obtained with the
SOTA tone-mapping and demosaicing algorithms and also compared to the SDR
content. Specifically, with the proposed CNNs, we succeed in improving the detectability
of traffic-related objects and pedestrians over two existing fundamental cases, that of
sequential demosaicing and tone-mapping of HDR data and only using the SDR content.
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- With the obtained similar computational cost between the proposed CNNs and the
very similar results from the quantitative and the qualitative analysis, we confirm our
second hypothesis.

With the results from the quantitative and the qualitative analysis, we justify the use
of the two proposed CNNs in automotive driving and vision systems.

Our future research will include improving the sharpness around the edges in the tone-
mapped and demosaiced content without the introduction of artifacts and with satisfying
noise suppression; and reconstruction of HDR scenes of diverse weather conditions, includ-
ing fog, rain (light or heavy rain), snow etc., with the purpose of increasing detectability
and facilitating ADS object detection in such scenes, too.
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Abbreviations

The following abbreviations are used in this manuscript:

HDR High dynamic range

SDR Standard dynamic range

ADS Automated driving systems

AVS Automotive vision systems

CNN Convolutional neural network

TM tone-mapping

CNN for joint DM and TM Convolutional neural network for joint demosaicing and tone-mapping

CNN for TM Convolutional neural network for tone-mapping

DL HDR TM Deep-learning high dynamic range tone-mapping

LDR Low dynamic range

SOTA state-of-the-art

CFA Color filter array

AD Analog to digital

MACs Multiply-accumulate operations

PSNR Peak Signal-to-Noise Ratio

SSIM Structural Similarity Index

HVS Human visual system

FP False Positives

TP True Positives

TN True Negatives

FPPI False Positives per Image
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