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Abstract: In the presented research, machine learning methods were applied to the prediction of
longitudinal cracks in steel slabs during continuous casting. We employ a deep learning approach
to process 68 thermocouple signals as a multivariate time series (MTS) along with 32 static features,
which encompass both chemical composition and process information. Our deep learning approach
integrates two distinct parallel modules, followed by an aggregation block; a Convolutional Neural
Network (CNN) processes the thermocouple MTS, while in parallel, the static data undergo processing
via a Fully Connected Network (FCN). To enhance the performance of the CNN, we incorporate two
Squeeze and Excitation (SE) blocks, which act as an attention mechanism across different channels.
By integrating chemical information with MTS in the detection system, we improve the performance
of defect detection by 15% relatively.

Keywords: continuous caster; data-driven prediction models; multivariate time series; neural networks;
longitudinal crack

1. Introduction

For many years, the formation of defects during the continuous casting of steel slabs
has been the subject of extensive research, and our comprehension of their genesis con-
tinues to deepen. The ideal scenario is to pre-emptively prevent defects by establishing
standard operating conditions and control mechanisms. However, due to unpredictable
or overlooked factors, this is not always feasible. As a result, it is crucial to oversee the
process to identify quality issues and implement timely corrective measures, ensuring
further material is not compromised. To ensure rigorous quality management, the pro-
cedure is observed using an array of thermocouple sensors. These sensors’ readings are
integrated into a control strategy, which then modulates parameters like casting speeds,
flow regulation, electromagnetic forces, and nozzle immersion using mathematical models
and expert systems. Some steel manufacturing facilities have begun to incorporate these
systems to a certain degree [1]. Their efficacy hinges on the comprehensive understanding
and integration of the interplay between the sensor readings, control interventions, and the
defects within the control software algorithms.

Alongside these computational models, which are predominantly derived from a
physical comprehension of the process, there exist clusters of stored data recorded over
years from sensor logs. Historically, in an industrial setting, these data have been primarily
referenced for historical analysis. However, with the rapidly increasing volume of stored
data, there is a growing inclination towards employing big-data methodologies in industrial
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scenarios [2]. This paper unveils the outcomes of a collaborative research endeavor aimed
at developing an automated, data-centric detection system for longitudinal cracks in steel
slabs during continuous casting, conducted at the ArcelorMittal Belgium facility in Ghent.

Given that steel slabs frequently serve as precursors for sheet steel rolling, surface
imperfections like cracks (as illustrated in Figure 1) can lead to extended segments of
flawed products. As a result, inspecting steel slabs before rolling is vital in the industry,
as it pre-empts potential issues in subsequent stages. However, most inspection systems
within the area are still manually operated and certain steel grades with lower carbon
contents cannot be visually inspected for longitudinal cracks since they are not visible on
the surface [3]. A good detection system should efficiently flag potentially problematic
cracks while keeping the number of false positives (non-cracked slabs identified as cracked)
at a minimum.

Figure 1. Example of a visible longitudinal crack.

The focus of this work is a data-driven approach for longitudinal crack detection using
both thermocouple information alongside chemical composition of the steel and process
features (e.g., casted width and type of nozzle and powder). We apply a hybrid Deep
Learning model where the multivariate time series are processed by a one-dimensional
Convolutional Neural Network (CNN) alongside Squeeze and Excitation blocks for channel-
wise attention; in parallel, a Fully Connected Network is used for processing the chemical
and process information.

As a baseline, we use the current model in production alongside a feature extraction
technique based on classic machine learning; the development of such a baseline, the initial
results, and a comparison with other feature extraction approaches were published in [4].
Based on previous results, we chose Gradient Boosted Regression Trees (GBRTs) as our
baseline model.

Longitudinal Cracks

A segment of the continuous casting procedure is depicted in Figure 2: molten steel is
channeled from the ladle (1) into the tundish (2). From there, it descends (3) via a ceramic
nozzle, entering the mold (4). Numerous thermocouples are strategically positioned on the
mold’s surface (5). Within the mold, the molten steel circulates in the liquid pool, carrying
with it superheat, inclusion particles, and turbulence, factors that can influence the top
surface’s level [3]. The molten steel then begins to solidify against the mold walls, forming
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a slender solid shell. This shell is consistently extracted from the mold’s base at a casting
speed synchronized with the inflow of the incoming metal. The nozzle’s flow is propelled
by gravity, driven by the pressure differential between the tundish’s liquid level and the
mold’s top free surface. This flow rate is meticulously regulated to ensure a consistent
liquid level within the mold. Mould powder is introduced to the top surface, where it melts,
forming a protective layer that shields the molten steel from both thermal and chemical
interactions with the environment above. This flux also permeates the space between the
mold and the forming shell, serving as a lubricant to prevent adhesion and modulating
heat transfer across this gap. The solidification process is initiated at the meniscus, the
juncture where molten steel, liquid flux, and the mold wall converge. Surface imperfections
in the forming shell originate at this point, influencing heat transfer further down the mold.
Longitudinal cracks are one of the multiple types of surface defects that can happen during
this process; in extreme scenarios, a localized thinning can result in a costly breakout,
causing molten steel to spill over the lower sections of the casting machine.

Figure 2. Simplified diagram of the casting process and thermocouple location. The molten steel is
poured from the ladle (1) into the tundish (2), and through a nozzle (3) it enters the mold (4). The
mold walls are equipped with thermocouples (5).

Figure 3 shows the time signals of the center-most thermocouples in the mold walls
of four different cases: (a) a clear dip on the top row of thermocouples that is propagated
on the second row after a few seconds and resulted in a longitudinal crack; (b) signals
when a longitudinal crack happened but nothing was detected during casting and was only
discovered during hot rolling; (c) an erratic behavior that resulted in a false positive—an
alarm was given but no crack was present—and (d) the normal behavior that is observed
and expected most of the time.

A comprehensive solution for detecting these irregularities is a rule-based system,
exemplified in [5]. In their work, the authors suggest employing a temperature differential
thermograph for the identification of slab cracks. A system bearing resemblance to this
is already operational at the ArcelorMittal Belgium facility. The primary merit of such a
system lies in its transparent, or “white box”, architecture, enabling any triggered alarm
to be visually verified. While this serves as our initial benchmark, there is room for
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enhancement by introducing a context-sensitive model that considers the properties of the
material set to be cast. This enhancement can be achieved through a feature extraction
methodology, which constitutes our secondary baseline [4]. However, in this study, we
advocate for the adoption of a deep learning model.

Figure 3. Time series of 10 thermocouple signals. Regarding longitudinal cracks on these samples:
(a) shows a clear true positive; (b) shows an undetected defect; (c) a false positive where an alarm
was given but no defect was present; and (d) normal behavior.

2. The Literature

In the continuous casting of steel, quality issues can also be pinpointed by observing
mold signals, such as readings from level sensors, thermocouples embedded in mold walls,
friction measurements, and more. Based on these observations, corrective measures can be
taken, like reducing the casting speed or conducting subsequent visual inspections of the
surface to determine potential downgrades or the need for scarfing. Distinctive thermocou-
ple patterns associated with various defects have been recognized [1], encompassing sticker
breakouts, transverse depressions, pronounced oscillation marks, narrow-face bleeds, trans-
verse corner cracks, longitudinal cracks, and mold level variation defects, among others.
This study narrows its focus specifically to the issue of longitudinal cracks.

In order to continuously monitor the quality, non-destructive testing methods have
been widely developed, such as image analysis [3], eddy currents [6], magnetic powder [7],
ultrasound [8], or sulfur prints [9]. Most of these systems require the installation of sensitive
sensors in the continuous caster line, which is a harsh environment. Longitudinal cracks are
less visible on certain grades of steel (usually slabs casted with low carbon content—also
known as soft grades), which renders visual inspection systems ineffective [10].

The authors of [11] present a precision inspection system tailored to autonomously
identify cracks in “as-cast” steel slabs. The task of identifying cracks is further complicated
by the oxidized layer on the slab’s exterior. A custom-designed laser triangulation mech-
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anism has been introduced. Cracks are detected using a combination of morphological
detection and an SVM classifier. A different technique for forecasting visual breakouts
during mold monitoring is detailed in [12]. This method utilizes temperatures captured by
thermocouples inside the mold and combines them with computer vision methodologies.
Dubbed as mold temperature rate thermography, this strategy aids in pinpointing and
extracting distinct characteristics of temperature zones, including the pace of temperature
fluctuations over time, their geometric shape, and propagation speed.

Another non-destructive approach, as proposed in this paper, is to work with data-
driven models based on process parameters already captured for process steering. Such
data-driven models have proven to be efficient in several sectors of steel production,
like end-point prediction at the basic oxygen furnace [13] and fault detection at the hot
strip mill [14]. Currently, the available literature on longitudinal crack detection lacks
contributions related to big-data applications and is limited to process knowledge systems.

The impact of chemical components, primarily carbon and sulfur, on longitudinal sur-
face cracks has been comprehensively studied. As demonstrated by the researchers in [15],
the carbon concentration at which the longitudinal surface cracking peaks diminishes as the
sulfur content rises. Conversely, for a fixed carbon concentration, the likelihood of surface
cracking escalates with an increase in sulfur content. Separate research [16] delves into the
influence of the mold powder utilized, particularly its SiO2 concentration, on the surface
quality of slabs with a high aluminum composition. This study also reveals that, under
identical processing conditions, wider slabs require a more extended period for the powder
to achieve equilibrium. This pinpoints the importance of aggregating both chemical and
process information into the input space.

Utilizing the thermocouple information, a temperature differential thermograph has
been developed to identify slab cracks [5]. To pinpoint the anomalous temperature zones
resulting from longitudinal cracks, potentially problematic regions are isolated and seg-
mented using computer image processing techniques.

In the study presented in [17], a model is presented for longitudinal crack detection,
leveraging principal component analysis (PCA) and support vector machine (SVM). The
temperature patterns associated with the longitudinal crack defect are isolated. These
encompass the standard casting temperature exhibiting minor and major oscillations, as
well as the specific temperature of the longitudinal crack. PCA is employed to diminish the
dimensionality of these features and an SVM is utilized as a classifier.

Novel machine learning techniques are typically introduced to industrial applications
only after they have gathered substantial validation in academic research. Time-series data
find utility across various industrial domains, including quality assurance, soft sensing,
and predictive maintenance. Although numerous advanced methodologies have been
employed for longitudinal crack detection, the primary focus has been on temperature and
rolling attributes, without incorporating chemical components into the analysis. Moreover,
no study was found where several years of historical data were used for analysis.

2.1. Contribution

As stated in the previous section, inspection of steel surfaces can be challenging;
in particular, rule-based systems that are only based on thermocouple information may
present a high false positive rate while still missing defects that do not present a clear
visual sign on the column of thermocouples. For instance, a crack that is located between
columns of thermocouples generates a different signal pattern than one located exactly at a
thermocouple column. Moreover, it is clear from the literature that chemical composition,
powder, and other process features have a high impact on defect occurrence.

We proposed improving upon the notion that thermocouples and chemical and process
information are of importance for thte detection of longitudinal cracks on casted steel slabs.
In this work, we present a hybrid data-driven strategy for crack detection. The model
takes as input the multivariate time series from 68 thermocouples, along with chemical
composition and process information. Our models will be trained and validated on three
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years of data, respecting temporal order. For baselines, we used the current model in
production and a Gradient Boosted Regression Trees (GBRTs) model trained on extracted
features from the input data. Furthermore, we analyze the impact of adding chemical and
process information to the input space. The varying effect of chemical composition, as
observed through different evaluation metrics, underscores the nuanced impact it has on
prediction accuracy and the potential for uncovering more complex relationships between
process variables and output quality.

2.2. The CNN-SE Network

In this section, we provide an overview of the Convolutional Neural Network (CNN)
framework. Additionally, we discuss the Squeeze and Excitation (SE) blocks, as detailed
in [18], adjusted for one-dimensional convolutions to align with our time-series dataset.

The CNN block is represented by the convolution transformation Ftr : X→ U. This
transformation maps an input X ∈ RT′×C′ to feature maps U ∈ RT×C. Here, T and T′

denote the time dimensions, while C and C′ represent the number of channels,

uc = vc ∗ X =
C′

∑
s=1

vs
c ∗ xs (1)

In this context, U = [u1, u2, . . . , uC] is derived from the convolution of the input vector
X = [x1, x2, . . . , xC′ ] with spatial kernels vc = [v1

c , v2
c , . . . , vC′

c ]. Here, vs
c denotes a spatial

kernel that represents an individual channel of vc, interacting with the corresponding
channel of X.

The SE architecture is illustrated in Figure 4; the operation takes as input the channels
originating from the convolutional transformation Ftr. Overlaid on this signal are two
distinct processes: Squeeze, where information is globally aggregated to distil essential
features, and Excitation, which shows the dynamic modulation of these features, empha-
sizing certain channels of the input for enhanced representation and understanding. This
representation is then used to scale the original input.

Figure 4. Computation of the Squeeze and Excitation block following a CNN.

After the convolutional unit, the SE block starts with the Squeeze function, which
employs global average pooling to produce channel-wise statistics. Statistic information
z ∈ RC is derived by squeezing U across its temporal dimension T. The c-th element of z is
computed as:

zc = Fsq(uc) =
1
T

T

∑
t=1

uc(t) (2)

Following the Squeeze computation, the aggregated information undergoes an Ex-
cite operation. This step is designed to discern and capture dependencies specific to
each channel.

s = Fex(z, W) = σ(W2δ(W1z)) (3)

where weights W1 ∈ R C
r ×C and W2 ∈ RC× C

r are parameters that can be trained. Here, σ
denotes the sigmoid activation function, while δ represents the gating function ReLU. The
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factor r is introduced to reduce dimensionality, serving to curb the model’s complexity.
This factor can be fine-tuned as a hyper-parameter. Research presented in [18] indicates that
setting r = 16 strikes a balance between model complexity and accuracy, especially when
layers consist of 128 to 512 filters. The output block’s c-th channel undergoes a rescaling
process, defined as:

x̃c = Fscale(uc, sc) = scuc, (4)

where X̃ = [x̃1, x̃2, . . . , x̃C], and Fscale(uc, sc) refers to channel-wise multiplication between
the scalar sc and feature map uc ∈ RT .

The SE block can be incorporated into conventional convolutional frameworks, en-
abling adaptive adjustments to the input feature maps. This mechanism is similar to a
self-attention module, where the input values are used to determine their own significance.
Studies have demonstrated that by integrating SE blocks into ResNet-50 [18], a performance
approaching that of ResNet-101 can be achieved. This is impressive for a model requiring
only half of the computational costs. The quantity of additional parameters P needed to
learn these SE maps can be determined as follows:

P =
2
r

S

∑
s=1

Rs · G2
s (5)

where S represents the total number of stages, with a stage being defined as a sequence of
consecutive layers sharing the same kernel size. Rs indicates the count of blocks that are
repeated within stage s, while Gs indicates the number of feature maps associated with
stage s.

3. Methodology

Our approach comprises three stages: Firstly, static and temporal data from multiple
databases are joined and indexed for each slab (sample), then corrupted samples are filtered
out. In the second stage, an extensive number of features from each signal are extracted
and the most relevant are selected through model selection. In the last step, classification
models are trained and evaluated on different levels of imbalance, shuffling or maintaining
time order. The impact of adding the process information and chemical composition in the
dataset is also evaluated. In what follows, we describe the model architectures, dataset,
and evaluation metrics used.

Two baselines are considered, namely, (1) an analytical model based on the physical
behavior of the process which is currently being used in the factory and (2) a GBRT method
trained on the static data and features extracted from the multivariate time series. The
first one is purely the detections from a differential model similar to the one presented
in [5], based solely on historical data. The second is an ensemble model following the
methodology proposed in [4], where a GBRT model was trained using automated time
series feature extraction and selection along with chemical features. The GBRT model
combines multiple decision trees to make predictions. It leverages the strengths of decision
trees, such as non-linearity and ability to handle complex relationships, while mitigating
their weaknesses by boosting the performance of individual trees through iterative training.

Our proposed CNN-SE-FCN model is depicted in Figure 5, where a fully convolutional
block processes the temporal data and an FCN handles the static features. The outputs of
both blocks are then concatenated and passed to the last activation layer.

Regarding the FCN model, two input tensors are defined: one for the time series and
another for the static data. The time series tensor adopts the shape of (N, T, M). Here, N
represents the maximum count of samples (batches) within the dataset, T is the number of
time steps, and M corresponds to the count of time signals in our MTS dataset. Conversely,
the tensor for static data is structured as (N, K), with K denoting the cumulative number of
static features employed.
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Figure 5. In the FCN-CNN-SE model, both static and time-series data are processed in parallel. Once
processed, the outputs from both blocks are concatenated. This combined output then passes through
a final activation layer.

In our architectural design, both the time series and static data are processed concur-
rently by the CNN and FCN blocks, respectively. The convolutional block comprises three
convolutional layers, serving as feature extractors. These layers have kernel sizes of 8, 5,
and 3, with the corresponding number of filters set at 128, 256, and 128. Each of these layers
is succeeded by batch normalization and a ReLU activation function. Additionally, the
initial two blocks end with SE blocks, where the reduction ratio is designated as r = 16,
in line with the recommendations from the original paper [18]. This inclusion augments
the model’s complexity by P = 2

16 (1282 + 2562) = 10, 240 parameters, which translates to a
roughly 5% relative increase in the trainable parameters of our model. The SE mechanism
bolsters performance on multivariate datasets, given that each feature map can influence
the outcome to varying extents. This autonomously acquired form of channel-specific
attention integrates the inter-correlation data among multiple variables.

The FCN block consists of a hidden layer featuring 64 neurons, accompanied by a
dropout rate of 50% to mitigate overfitting. This is succeeded by a ReLU activation layer.
Outputs from both the CNN and FCN blocks are subsequently concatenated and fed
to the concluding activation layer, which employs a sigmoid activation function for our
classification task.

3.1. Data Preparation

The continuous casting process, also known as strand casting, is an essential phase in
steel production, where liquid steel is solidified into a semi-finished slab for subsequent
rolling in the hot strip mill. The quality of the final product is strongly dependent on
numerous variables, such as the temperature, composition of the liquid steel, and casting
speed, among others.

Predictive models for parameters such as temperature and solidification rates are
utilized to determine these specifications. These models enable precise control and manage-
ment of the continuous casting process, thus ensuring that the semi-finished product aligns
with the desired quality standards. Based on these predictions, further adjustments can
be made during the casting process to achieve the desired properties in the steel slab. The
casting phase duration can vary, but is a relatively continuous process, hence the name.

One key aspect of managing the continuous casting process is the collection and
analysis of time-series signals, which provide invaluable data about the casting process. In
this project, we will focus on the temperature data collected from thermocouple sensors
situated around the mold. In addition to this, chemical composition and other process
features will be used to further improve the precision of our predictive models.
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Time-series signals can be conceptualized as univariate time series, symbolized by x,
which is a one-dimensional signal, sampled across a time domain. To be more specific, x is
a sequentially arranged set of real values [x1, x2, . . . , xT′ ], where T′ denotes the comprehen-
sive length of the signal. This sequence typically arises from the output of a sensor that is
sampling while overseeing a process. When a process is under the surveillance of multiple
sensors, it is characterized as a multivariate time series (MTS) because it encompasses
multiple time-dependent variables. An MTS, represented by X, is composed of various
univariate time series [x1, x2, . . . , xC′ ], with C′ indicating the total number of signals (or
channels). The casting procedure is extensively instrumented, with several sensor readings
and measurements available throughout its duration. In terms of data preparation, the
time signals undergo rescaling to fit within the range of [0, 1], and the static features are
normalized to achieve a zero mean and a standard deviation of one (it is noteworthy that
both the training and test sets are rescaled and normalized based solely on the training
set’s values). Figure 3 displays the signals for a specific slab before being rescaled.

The accessible recorded data consist of the latest 85,000 slabs produced. After fil-
tering out corrupted or incomplete entries, the usable dataset comprises approximately
N = 80,000 samples. Each of these samples is equipped with K = 23 static features and
M = 68 thermocouple time signals, each spanning roughly T = 700 timesteps, contingent
on the casting speed. This dataset was partitioned, with 70% allocated for training and
validation, and the remaining 30% reserved for testing. To maintain the chronological
sequence, the samples were not randomized prior to this division. This approach mirrors
a realistic scenario where a model would be integrated into a production environment
to forecast outcomes for subsequent heat batches. It is crucial to highlight that, during
training, the training set undergoes shuffling at the start of each epoch.

Regarding the static data, they are composed of process variables and chemical com-
positions. The chemical composition pertains to the concentrations of chemicals identified
prior to the pouring of steel into the tundish, with 18 features such as C, Mn, S, P, Cu, and
Al, among others. On the other hand, the remaining five static features from the process
variables consist of categorical features like the type of powder, nozzle, and stopper, as well
as numerical features such as casting width and the average speed recorded over the last
3 min.

Time stamp labels were created at the time-of-crack. These labels can be of two
different origins; if detected at the continuous caster by the current alarm system, a time
stamp is recorded, similar to how they are marked in Figure 3a,b. The slab will later be
visually verified as to whether if the defect exists or not. The defects that are not detected
by the system will be automatically identified after the slab is hot-rolled. The longitudinal
cracks are then measured by an automated system and the time-of-crack for each defect is
estimated from these measurements.

3.2. Windowing

The process of the sliding window is shown in Figure 6. The method accumulates
the historical time series data over L time steps (or data points) [19], data contained inside
this window are used as input. The window is moved with a step s in time for the next
prediction. The process will be continued until time series data are exhausted. The final
configuration used was a window size of L = 150 with steps of s = 30. The window size of
150 was empirically chosen as both the Gradient Boosted Regression Trees (GBRTs) and our
deep learning approach exhibited no significant gains when the window size was increased
to 200. Conversely, a reduction in performance was observed when the window size was
decreased to 100 steps. Given that our signal frequency is 1 Hz, a window of 150 time
steps encapsulates two and a half minutes of data, providing sufficient time to capture the
full anomalous signal associated with a longitudinal crack. These anomalies are typically
shorter than 90 s in 98% of cases.
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Figure 6. Using the sliding window method to segment the original Multivariate Time Series into
fixed-length segments. Each data segment corresponds to the time span highlighted by the solid
black box, with intervals between sampled time steps represented by the dotted black boxes.

Due to the large imbalance in our dataset, where the occurrence of cracks is approxi-
mately 0.8%, we adjusted the sampling for our training set. Specifically, we down-sampled
the non-cracked sample windows by half and over-sampled the cracked ones by reducing
the sliding window step to s = 10 on the windows containing longitudinal cracks. Follow-
ing this sampling adjustment, the imbalance in our training set was reduced to about 3%,
while maintaining the original imbalance of approximately 0.8% in the test set.

3.3. Evaluation Setup

We evaluated our proposed multivariate time series model against two baselines based
on numerical features, reflecting a more traditional approach. The initial baseline is the
extant mathematical model employed in production, which relies solely on historical data.
For our second baseline, in order to evaluate the impact of the feature learning component
(specifically, the CNN-SE-FCN), we also employed a feature extraction technique as detailed
in [4]. In this approach, several features are extracted from multivariate time-series signals
using TSFresh [20], and the top 500 most pertinent features are used alongside the process
and chemical features. A Gradient Boosted Regression Tree (GBRT) is utilized in the
classification task.

The F1 score is the harmonic mean of the precision and recall,

F1 = 2× P× R
P + R

(6)

where precision (P) is defined as the ratio of true positive results to the sum of true positives
and false positives. It represents the accuracy of positive predictions. Recall (R), on the
other hand, is the ratio of true positive results to the sum of true positives and false
negatives, indicating the proportion of actual positives that were correctly classified. A
more encompassing metric, Fβ, incorporates a positive real factor β. This factor allows for
differential weighting, favoring either precision or recall depending on its value:

Fβ =
(1 + β2)(P× R)
(β2 × P) + R

(7)

The Fβ score is more interesting in our case, since false negatives have a greater impact
on production costs than false positives; for steel grades where a crack can be identified
via visual inspection, the cost of a false negative can be 20 times larger, while for grades
where no visual inspection is possible, scarfing 10 slabs (all false positives) would cost as
much as having one false negative further down the production line. Using internal cost
calculations, we have established that Fβ = 2.4 better weights the costs between precision
and recall in our case. Therefore, given this context, we will use the Fβ score as our primary
metric for evaluating model performance. Furthermore, we will be optimizing model
hyper-parameters in order to maximize Fβ.

We will also evaluate the Receiver Operating Characteristic (ROC) curve, as it assesses
the prediction ability our classifiers as the discrimination threshold varies. It plots the
true positive rate against the false positive rate. However, in highly imbalanced datasets,
where the minority class is significantly less frequent, the ROC curve may be misleading.
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This is due to the fact that it treats false positives and false negatives equally, potentially
giving an overly optimistic measure of model performance when the number of true
negatives outweighs the false positives. In contrast, the precision–recall (PR) curve is more
informative for imbalanced dataset scenarios [21]. A high area under the PR curve indicates
that the model has good precision and recall simultaneously, providing a more accurate
indication of the model’s performance on the less frequent class. Therefore, it is often the
preferred method for evaluating models in imbalanced data contexts.

4. Results

In this section, we evaluate the described classification models with five different
training configurations in order to measure the impact of different training techniques and
the influence of different features. The evaluation metric is the Fβ = 2.4 score as discussed
in the previous section. Precision–recall and Receiver Operating Characteristic (ROC) [22]
curves are also shown for some experiments.

Table 1 presents a comparison of different models on four metrics: precision, recall, F1
score, and F-beta score (with beta = 2.7). The models compared are rule-based, GBRT, CNN-
SE-FCN without chemical features (−chem), CNN-FCN without Squeeze and Excitation
(−SE), and CNN-SE-FCN with chemical features (+chem) models. The last one is the model
with our proposed architecture.

Table 1. Comparison of precision, recall, F1, and Fβ=2.4 scores across rule-based, GBRT, and CNN-SE-
FCN models with the following variations: no chemical data (−chem), no Squeeze and Excitation
(−SE), and the complete model (+chem).

Baseline CNN-SE-FCN

Rule-Based GBRT −chem −SE +chem

Precision 0.118 0.074 0.070 0.158 0.123

Recall 0.271 0.351 0.303 0.291 0.331

F1 0.165 0.122 0.113 0.205 0.179

Fβ=2.4 0.228 0.226 0.203 0.259 0.265

Looking at the precision, the highest score is achieved by the CNN-SE-FCN model
without SE, with a score of 0.158. This suggests that this model has the highest proportion
of true positive results among all the models but has a lower recall when compared to
others. In terms of recall, the GBRT model performs the best with a score of 0.351, but
shows very low precision.

The F-beta score, our main metric since it reflects production costs, is also highest
for the CNN-SE-FCN model with chemical features (+chem), with a score of 0.265. This
indicates that when giving more importance to recall, this model outperforms the others.
Furthermore, we see a large drop in performance when no chemical features are used
(−chem), highlighting the importance of including chemical and process features into time
series models for industrial applications.

Figure 7 shows the Receiver Operating Curve; the area under the curve for feature
extraction was 0.66, 0.70 for CNN-SE-FCN without chemical features (−chem), 0.72 for
CNN-SE-FCN, and 0.71 for CNN-FCN. For lower false positive rates (<0.15), which are
desired in our case given the high imbalance, GBRT, CNN, and FCN-CNN show similar
performances, while FCN-CNN-SE provides a higher true positive rate. Although the ROC
can be quite informative for classification tasks, in cases with a high class imbalance, it can
be quite misleading [22]. In our case, it enables a cost analysis, since at the factory the real
cost of false positives and false negatives is known; the optimal threshold for a model can
be selected using a cost function based on these values.
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Figure 7. Receiver Operating Characteristic (ROC) curves for models: feature extraction (GBRT),
CNN-SE-FCN without chemical features (−chem), CNN-SE-FCN with chemical features, and CNN-
FCN (no Squeeze and Excitation block). The curves illustrate the trade-off between the true positive
rate and the false positive rate for each model.

Figure 8 shows the precision–recall curve, as it better visualizes the highly imbalanced
nature of this classification task. Here, we can verify that the GBRT has a higher precision
when the recall is low (<0.1), but fails to maintain the performance at higher recall rates,
its performance dropping. Meanwhile, CNN-SE-FCN shows a better performance with a
higher recall.

Figure 8. Precision–recall curves for various models: feature extraction, GBRT, CNN-SE-FCN without
chemical features (−chem), CNN-SE-FCN with chemical features, and CNN-FCN (no Squeeze and
Excitation block). The curves depict the trade-off between precision and recall for each model. The
standard lines for Fβ = 2.4 are also shown.
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4.1. Processing Time

Processing time is an important factor in industrial systems, specially for quality
control during continuous processes. Surface defects are expected to be detected in real time
so operators can take measures towards reducing their impact, for instance, by reducing
the casting speed when a defect occurs. Computations are intended to be executed within a
fraction of a second, given that the system operates with a response time of 1 Hz (sampling
interval). We evaluated the preprocessing and inference duration of FCN-CNN-SE using an
AMD Ryzen 5 six-core processor, with no reliance on a GPU for the inference process. The
deep learning model takes approx. 120 ms for inference while the preprocessing retrieval
and preprocessing step of the time series and static data takes on average 270 ms, which is
within the time requirements for real-time prediction.

For the feature extraction approach, the preprocessing time was on average 2320 ms
due to the high amount of features to be calculated—which includes Fourier transforms
and other computationally demanding calculations. The average inference time was 73 ms.

4.2. Robustness

To assess the temporal robustness of our model, we partitioned the training and test
data based on the chronological order of batches in production. Figure 9 shows the true
positives and false negatives spread across 14,000 samples. For ease of visualization, data
points are consolidated into groups of 100 steel slabs each. The dotted line within the figure
illustrates the linear trend. It is notable that there is no discernible increase in false negatives
over time. Meanwhile, a marginal decline is observed in the linear trend of true positives,
this decline can be attributed to the anomalous peak seen at the start of the timeline.

Figure 9. Relative indication of true positive (TP) and false negative (FN) detection over time,
represented by full lines. Each data point represents 100 steel slabs. The dotted lines indicate the
trend of TPs and FNs over the same period, providing a visual representation of the overall direction
of the detections.

During the initial testing phase, we see a higher occurrence of true positives, while a
consistent level of false negatives is maintained, suggesting a higher incidence of production
defects during the time period, which our model accurately predicted without additional
false negatives. Furthermore, the dataset contains over 60 varieties of casted steel, each
with distinct chemical compositions. Notably, there was no substantial discrepancy in error
across the different grades.

5. Summary and Discussion

A data-driven approach for multivariate time series combined with numerical static
data was presented in this paper; the goal was to detect longitudinal cracks in steel slabs at
the continuous caster. Thermocouple data from 68 sensors were combined with chemical
and process information. We evaluated the performance of our models compared to a more
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classic industrial approach, and we also evaluated the performance gain when adding
process information alongside the multivariate time series data.

Our two baseline models for comparison were the one currently in use at ArcelorMittal
Belgium and a rule-based differential model that was inspired by the current literature.
GBRT was used as the classifier because it meets several criteria required by industry,
mainly in its ability to handle large input spaces and highly imbalanced data while being a
gray box model, where feature importance can be inferred after the training process for a
better understanding of process behavior.

Our choices of the baseline model, to not shuffle the data, and the resampling tech-
niques for the training set were based on our previous work [4], where, based only on
feature extraction methods, we demonstrated the potential pitfalls of shuffling data when
creating training/testing splits. Shuffling can inadvertently lead to data leakage, where
information from the test set leaks into the training set, thereby overestimating the model’s
performance. This is particularly problematic in time-series data, where shuffling can
disrupt the inherent temporal order of observations. Furthermore, we explored the impact
of data imbalance on model training. Imbalanced datasets, where one class significantly
outnumbers the other, can bias the model towards the majority class, resulting in poor
predictive performance for the minority class. We highlighted the importance of using
appropriate techniques, such as resampling or using class weights, to mitigate the effects of
data imbalance and ensure robust model training.

The experiments conducted here have shown that more complex models, such as CNN-
SE-FCN, can outperform classic machine learning techniques, while the addition of the
Squeeze and Excitation blocks has slightly improved model performance via an additional
5% more trainable parameters, and the addition of SE blocks also improved training times.
Our model showed a 15% performance gain (higher Fβ) over our baseline models. We also
showed that removing the chemical features had the largest negative impact.

We have shown that our model is robust in an industrial setting, showing little decay
in detection numbers over time. The recommended model updating period would be every
6 months; this process involves retraining the model with new data, either by including
new data in the existing dataset or by adjusting the model based on the new data alone.

Optimizing the detection of defects early in the production chain is essential to enhance
steel quality and guarantee the supply chain within the factory, as the cost of a defect
significantly grows the longer it stays in production, wasting time and material. Evidence
of which variables are more significant for detection is valuable as it compels the search
for more complex approaches, which can further improve prediction. Additionally, our
work can serve as a stepping stone for future research that may explore adaptable metric
frameworks or tackle the challenges posed by class imbalance and cost considerations in
predictive modeling in industrial domains. Based on the outcome of this research, the
factory aims to further enhance the currently used model with the most important features.
Feature engineering is also a topic to be discussed, as several signals have a larger influence,
e.g., sensors at the center of the mold are more relevant since longitudinal cracks are more
common in that region.
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