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ABSTRACT TFHE is a practical fully homomorphic encryption scheme (FHE) capable of computing any
boolean gate or non-linear function. The scheme was originally designed to work for the single key setting.
To implement realistic application scenarios, it is necessary to extend it to handle multiple users. In this
paper, we introduce a new approach to generate TFHE bootstrapping keys for (predefined) multiple users.
Hence, a fixed number of users can enjoy the same level of efficiency as in the single key setting, keeping
their individual input privacy. Our construction relies on a novel algorithm called homomorphic indicator,
which can be of independent interest. We provide a detailed analysis of the noise growth and a set of secure
parameters suitable to be used in practice. Moreover, we compare the complexity of our technique with other
state-of-the-art constructions and show which method performs better depending on the parameter sets. We
also provide a prototype implementation of our technique. To the best of our knowledge, this is the first
implementation of TFHE in the multiparty setting.

INDEX TERMS Homomorphic Encryption, Multiparty TFHE, Post-Quantum Cryptography

I. INTRODUCTION
Many privacy preserving protocols are efficiently designed
in a non-interactive way with practical implementation re-
sults thanks to recent improvements on FHE. However, some
problems arise when it comes to handling multiple users. The
easiest way to handle multiple users is to share the same
secret key among them and then ask a third party (a server
in general) to compute a function of the given encrypted data
of each user under the same key. However, in this case, some
dishonest parties can easily intercept others’ encrypted inputs
through the public channel and decrypt them. Therefore, this
naive approach does not guarantee input privacy [1], [2].

If numerous users want to compute a common function
keeping their input privacy, multi-key homomorphic encryp-
tion (MKHE) [3] and multiparty homomorphic encryption
(MPHE) (a.k.a. threshold-multikey FHE) [4] are the best
solutions for non-interactive protocols1. That is, both designs
allow users to keep partial information of the master secret
keywithout the need to involve a third trusted party during key
distribution. In other words, no one knows the master secret

1Each user can protect its input from other parties in both designs since
the secret key is never shared.

key, so decrypting other’s ciphertexts becomes impossible.
Decryption is possible only when all the participants (users)
agree to do so by the definition of MKHE/MPHE.
Despite providing user privacy, MKHE has a serious prac-

tical problem when the number of users is large, since the
ciphertext size increases depending on the number of users.
On the other hand, MPHE does not have such ciphertext
expansion, so it can achieve (asymptotically) the same com-
putational complexity as single key FHE. However, it requires
a setup phase where users must interact at least once to
generate their common public key, which is not necessary in
MKHE. Therefore, both approaches have distinct advantages
and there are different applicationswhere each can have better
performance than the other, as analyzed in [5]. For example,
if there are already predefined inputs for a function which a
server is going to compute, such as the training of a machine
learning model, MPHE outperforms MKHE.
The main technical difficulty of designing MPHE is to

create the common bootstrapping key. Mouchet et al. [4], in-
troduce a MPHE construction requiring two rounds between
participants. In [5], the author improved upon [4] by de-
signing a non-interactive algorithm, once the public keys are
already known. The setup phase (generation of the common
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keys) of the above works has practical computation time and
memory consumption. Once the common public keys (includ-
ing bootstrapping keys) are generated during the setup phase,
most of the algorithms that the server runs have the same
performance as those of the underlying single key scheme.
Indeed, the asymptotic complexity of previously designed
MPHE is the same as their single key FHE versions (BGV [6],
FV [7], and CKKS [8]).

MPHE designs based on TFHE have not been well studied
even though TFHE is widely used in privacy preserving pro-
tocols [9]–[11]2. TFHE enables to compute a gate operation
over bits homomorphically, whereas the other schemes aim
for (approximate or exact) arithmetic operations. After each
gate operation (which only consists of a few additions), TFHE
needs to run a bootstrapping algorithm to refresh the noise
level to allow further operation without decryption failure.
Therefore, constructing TFHE in the multiparty setting boils
down to designing an efficient TFHE bootstrapping algorithm
handling multiple keys.

Recently, Lee et al. [12] briefly introduced (a theoretical
version of) a MPHE protocol based on TFHE. They first de-
sign a single key TFHE with larger coefficients for the secret
key and then, they naturally extend it to the MPHE version,
introducing a simple (global) bootstrapping key generation
algorithmwhich requires all parties’ local bootstrapping keys.
This makes sense because the common secret key of MPHE
corresponds to the sum s := s1 + · · · + sk , where si’s is the
binary secret key of the i-th user, which is viewed as a secret
key of a single user, corresponding to a secret s with large
entries. However, a direct extension without implementation
might hide the actual computation overhead caused by the
noise contained in the global bootstrapping keys. The main
difference between single key FHE with larger secret entries
and its MPHE version is the noise contained in the same
types of keys. Since the global keys are made of all parties’
keys, the noise contained in the keys grows proportional to the
total number of parties (which we denote by k). Therefore, in
practice, we cannot directly use the same parameters which
are recommended for the single key setting. In other words,
we must take the noise contained in the global keys into
account, when it comes to choosing parameters.

A concurrent paper [13] gives a protocol for TFHE with
larger key size with a different technique. We observe that
their technique requires only k multiplications in the FFT
domain among bootstrapping keys in the main loop of the
boostrapping algorithm. Whereas Lee et al. [12] makes use of
key switching including two FFT conversions and an external
product, which is more expensive than the k FFT multiplica-
tions in every loop. However, a detailed comparison of both
techniques, even in the single key setting, has not appeared in
the literature just yet.

2TFHE outperforms other schemes such as BGV, FV and CKKS when the
computation is over bits and for non-linear functions such as ReLU, max/min
functions.

A. OUR CONTRIBUTIONS
In this work, we extend [13]’s scheme to a version of MPHE,
introducing an efficient bootstrapping key generation algo-
rithm. To do this, we introduce an algorithm called homo-
morphic indicator, which homomorphically computes a unit
vector of a suitable dimension. That is, the algorithm takes as
input a bit string and outputs a unit vector with an encryption
of 1 in the position corresponding to the Hamming weight of
the input string. This algorithm is the main building block
of our bootstrapping key generation to indicate which key
is selected during bootstrapping. The server can therefore
run the bootstrapping algorithm of [13] with the indicated
bootstrapping key, without revealing the corresponding secret
value because the output of the algorithm is the same as
their bootstrapping key. We believe that our technique for
constructing the bootstrapping key can be of independent
interest.
Furthermore, we compare the complexity of the bootstrap-

ping technique of [12] with our extension of [13] and we
show which scheme performs better in what parameter sets,
based on our noise analysis. We provide a prototype imple-
mentation of our key generation algorithm using the Concrete
library [14] with exact parameters yielding at least 110 bits
security. With a number of parties of up to 16, we are able
to perform bootstrapping in less than a second. To the best of
our knowledge, this is the first implementation of TFHE in
the multiparty setting. Since we also analyze the practicality
of both our approach and [12] based on different metrics
including noise analysis and complexity, this work can serve
as a guide for readers to choose the right one for their use-
cases.

B. A BRIEF NOTE ON APPLICATIONS
A direct application of MPHE is privacy preserving machine
learning [10], [11], [15] where a model provider holding its
private machine learning model encrypts the model under
the common public key, and the client encrypts its private
input data under the common public key, then both party
sends ciphertexts to the server (which is the (semi-honest)
third party) for a computation (See Fig. 1). At the end of
the server’s computation and partial decryption [16] inter-
acting with the model provider, the client only gets the in-
ference/predicted value from the server. The whole protocol
is non-interactive thanks to homomorphic encryption on the
client’s side, therefore the client can go offline after query
phase, until the computation is over. More applications are
discussed in Section IX-A.

C. PAPER ORGANIZATION
In Section II we establish notation and give background on
FHE. In Section III, we detail the bootstrapping process of
single-key TFHE. In Section IV, we detail the blind rotation
algorithms of [12] and [13]. In Section V we explain the
homomorphic indicator algorithm and we detail how to use
it to construct suitable bootstrapping keys to be used with the
blind rotation of [13]. In Section VI, we explain how MPHE
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FIGURE 1. Illustration of an application scenario of MPHE (two-party case). (1) Once a client and a service provider generates a common key (pk) during
setup phase, both can send their item (m : client’s data, f : machine learning model) encrypted under the key to the server. (2) After the computation is
over, server sends the output (Enc(f (m), pk)) to the model provider so that (3) he can run partial decryption with his own secret key sk _2 and (4) sends the
output which is an encryption of Enc(f (m), sk _1)) to the server. (5) The server sends the given value from the model provider to the client, so that he can
obtain f (m) by decrypting the ciphertext with its own secret key sk _1.

TFHE based on [13] works using the keys constructed in the
previous section. In Section VII we study the noise growth
of our construction. In Section VIII we provide a comparison
between the MPHE approach of [12] and our approach, we
also provide the implementation details and our parameter
recommendations. Finally, in Section IX we conclude the
paper, providing a few extra comments on applications.

II. PRELIMINARIES
In this section, we fix notation for the rest of the paper and
provide the necessary background on FHE and multiparty
FHE to understand our contributions. The interested reader
can find more background in [17].

A. NOTATIONS.
We denote the security parameter of the FHE scheme by λ.
The dot product of two vectors v,w is denoted by ⟨v,w⟩.
For a vector x, both xi and x[i] denote either the i-th scalar
component or the i-th element of an ordered finite set. The
i-th element of an array A is denoted by A[i]. We denote the
logarithm function in base two by log(·). LetR andRq denote
the rings of polynomialsZ[X ]/(XN+1) andZq[X ]/(XN+1),
respectively, for positive integers q andN . Let θ, θ′ denote the
standard deviation of the noise contained in a fresh RLWE
ciphertext and a fresh LWE ciphertext, respectively. All the
noise is sampled from a distribution denoted by χ according
to a suitable standard deviation. Let ℓ = O(log q) be the
parameters of the TFHE scheme [18]. We denote the number
of users by k . The LWE (resp. RLWE) secret key of each user
is denoted by si = (si,0, . . . , si,n−1), where si,j ∈ {0, 1} and
n ≥ 1 (resp. si ∈ R). The (master) secret key corresponding
to the common public key for an LWE ciphertext is denoted
by S = (S0, S1, . . . , SN−1), where Sj =

∑k
i=1 si,j ≤ k for

all j ∈ {0, . . . , n − 1}. Similarly, s := s1 + s2 + · · · + sk
is the master secret key for an RLWE/RGSW ciphertext.
Given a base g and ℓ = O(log q), we define a gadget vector

g = (1, g, . . . , gℓ−1)t . An RGSW ciphertext is of the form
RGSWs(m) := (a,b) ∈ R2ℓ×2

q . Let G be a gadget matrix
defined asG := I2⊗g. LetG−1(·) be the gadget decomposi-
tion function, which satisfiesG−1(a)·G ≈ a mod q for any
a ∈ R2

q . We define G−1(c) := (G−1(c1), . . . ,G−1(cδ)),
for a vector c = (c1, . . . , cδ) ∈ Rδ×2

q . In this paper, we
use the terms parties and users interchangeably to refer to
the entities who join the homomorphic computation.

B. BASIC BACKGROUND ON FHE
Informally, a public key Fully Homomorphic Encryption
scheme is an encryption scheme which allows us to per-
form arbitrary computations over encrypted inputs without
decrypting them first. That is, given a ciphertext ct encrypting
a plaintextm and an arbitrary function f , we can obtain a new
ciphertext ct

′
encrypting f (m) without decrypting ct.

Definition 1 (Public key homomorphic encryption scheme):
A public key homomorphic encryption scheme E con-
sists of a set of probabilistic polynomial-time algorithms
(KeyGen,Enc,Dec,Eval) such that:

• KeyGen(1λ): outputs the secret key sk, the public key pk
and the evaluation key evk given the security parameter
λ. The evaluation key is also public, and it is used to
perform the homomorphic operations over ciphertexts.

• Enc(pk,m): Outputs a ciphertext ct encrypting m under
the public key pk.

• Dec(sk, ct): Outputs a message m. If the algorithm can-
not recover m from ct, the output is ⊥.

• Eval(evk, f , ct1, . . . , ctn): Outputs a ciphertext ctf such
that Dec(sk, ctf ) = f (m1, . . . ,mn), where cti ←
Enc(pk,mi) for all i ∈ {1, . . . , n}.

If a homomorphic encryption (HE) scheme has an addi-
tional algorithm called bootstrapping, we say that it is a fully
HE scheme.
Bootstrapping is a techniquewhich reduces the error within

a ciphertext, which enables the computation of arbitrary
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functions. In Section III-D, we will describe in detail the
bootstrapping procedure of TFHE, now we give a high-level
overview of the general template of this technique.

Let (pk1, sk1) and (pk2, sk2) be two different pairs of
keys produced by KeyGen and let ct ← Enc(pk1,m). To
bootstrap ct, we first need to encrypt sk1 under pk2, obtaining
sk

′

1 ← Enc(pk2, sk1). Then we encrypt ct under pk2, obtain-
ing ct

′ ← Enc(pk2, ct). Finally, the key step is to decrypt
homomorphically ct

′
using sk

′

1 using the Eval procedure.
That is: ct

′′ ← Eval(evk,Dec, ct
′
, sk

′

1). By construction, we
have that m ← Dec(sk2, ct

′′
). The error within ct

′′
consists

of the error of a freshly encrypted ciphertext plus the error
introduced by homomorphically evaluating the decryption
circuit. If the error of ct corresponds to an evaluation of a
circuit of less depth than the decryption circuit, then the error
of ct

′′
will be less than the one contained in ct.

The security of the most well-known FHE schemes cur-
rently in use is based on the learning with errors (LWE) or
the ring learning with errors (RLWE) problems. We describe
the decisional version of both problems below.
Definition 2 (Decisional Learning with Errors (LWE)): Let n
be a power of 2, let q ≥ 3 be an odd integer and let χ be a
distribution over Zn

q. The LWEn,q,χ problem is to distinguish
the following two distributions over {(ai, bi)}i ⊂ Zn

q×Zq: In
the first distribution one samples (ai, bi) uniformly at random
from Zn

q × Zq and, in the second distribution, one secretly
samples s← Zn

q uniformly and then defines (ai, bi = ⟨ai, s⟩+
ei) ∈ Zn

q × Zq by sampling ai ← Zn
q uniformly and ei ← χ.

Definition 3 (Decisional Ring Learning with Errors (RLWE)):
Let f (x) = xn + 1 where n is a power of 2. Let q ≥ 3 be an
odd integer. Let χ be a distribution over R. The RLWEn,q,χ
problem is to distinguish the following two distributions over
{(ai, bi)}i ⊂ R2

q defined as follows: In the first distribution
one samples (ai, bi) uniformly at random fromR2

q and, in the
second distribution, one secretly samples s ← Rq uniformly
and then defines (ai, bi = ai · s + ei) ∈ R2

q by sampling
ai ← Rq uniformly and ei ← χ.
We use the fact that TFHE scheme is IND-CPA secure

under the assumption that (R)LWE (defined above) is hard.

C. MULTIPARTY FHE
In this paper, we are concerned with a generalization FHE
to a setting where we have multiple parties. Let P =
{P1, . . . ,Pk} be a set of k parties. Informally, a multiparty
homomorphic encryption scheme (MPHE) over P is an ho-
momorphic encryption scheme where the secret key is a func-
tion of the k individual secret keys of each party s1, . . . , sk .
In this paper, we are interested in the case where the secret
key s of the MPHE is computed as s = s1 + · · · + sk .
Notice that obtaining this secret key structure from existing
lattice-based HE schemes is already well known and simple
in a common random string (CRS) model [4], [5], [19]. For
example, following the same notation as in subsection III-A,
the ciphertext LWEs1(0) + · · ·+ LWEsk (0) can be decrypted
using the secret key s provided that the samemask awas used

for all parties as the masks of these k LWE ciphertexts3 . We
follow the most communication efficient MPHE protocol [5],
which can be described as follows:
1) Each party generates its own (local) public key using a

common random string and distributes the keys to all the
predefined users Pi’s.

2) All parties locally generate (public) bootstrapping keys
and ciphertexts by aggregating the given k different keys,
obtained in 1). Then, they send them to a computing
party (server).

3) The computing party generates the global evaluation key
to perform the necessary operations over a set of given
ciphertexts.

4) The computing party can now perform homomorphic
operations over ciphertexts given by the k parties using
the global keys computed in step 3).

We note that step 1) is a (one-round) setup for k parties, and
step 3) is a (non-interactive) setup for the computing party.
Therefore, for the same party set P , the outcomes of step 1)
and 2) are reused over and over. The difficulty of building
practically efficient MPHE schemes stems from the fact that
more complex types of keys also need to be condensed to a
global key from the individual keys produced from the parties
in P (step 3).

III. BACKGROUND ON TFHE
The goal of this section is to provide the reader with a basic
understanding of TFHE and its bootstrapping procedure. We
refer the interested reader to [14], [17], [18] and [20] for
further details on the topics exposed in this section.

A. TFHE CIPHERTEXTS.
We denote the ciphertext modulus as q and encode a message
m ∈ {0, 1} as ∆ · m, where ∆ = ⌊q/8⌉. In our design, we
only focus on binary messages and binary secret keys for each
party.

• An LWE ciphertext is defined as LWEs(m) := (a, b) ∈
Zn+1
q , where a is a random vector, b = ⟨a, s⟩+∆ ·m+e

for a message m ∈ {0, 1}, a secret key s ∈ Zn, and a
noise term e← χθ′ .We call a themask and b the body of
an LWE ciphertext. To decrypt, we compute b−⟨a, s⟩ =
∆ ·m+ e and then apply a rounding operation to obtain
the message m.

• ARLWE ciphertext is defined asRLWEs(m) := (a, b) ∈
R2
q , where b = a ·s+∆ ·m+e′ for a random polynomial

a ∈ Rq, a message polynomial m ∈ R2, a secret key
s ∈ R, and e′ ← χθ. Similarly, a and b are called the
mask and the body of an RLWE ciphertext, respectively.
To decrypt, we compute b− a · s = ∆ ·m+ e′ and then
apply a rounding operation to obtain the message m.

• Fix a base Bg and ℓ = O(log q), and the gadget vector
g = (1, g, . . . , gℓ−1)t . An RGSW ciphertext is of the
form RGSWs(m) := (a,b) ∈ R2ℓ×2

q , where Rq = and

3However, due to security issues, this technique is not directly used for
generating ciphertexts, only for generating keys.
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b = H+m ·G, each row ofH is a RLWEs(0) andG is
a gadget matrix defined asG := I2⊗g. The decryption
process of a RGSW is not relevant to this work and we
omit it.

• TrivialNoiseless(tag, µ) : it takes as input a tag tag ∈
{LWE,RLWE,RGSW} which indicates the ciphertext
form, and a message µ, and outputs a ciphertext with
the form according to tag with a noiseless mask.

B. EXTERNAL AND INTERNAL PRODUCTS.
Given C1 = RGSWs(m) and c2 = RLWEs(µ), the external
product produces the ciphertext RLWEs(m · µ). It is defined
as follows:

⊡ :RGSW×RLWE→ RLWE

(C1, c2) 7→ C1 ⊡ c2 = G−1(c2) ·C1.

The internal product of two RGSW ciphertextsC1 andC2 is
equivalent to computing the external product of C1 with all
2ℓ RLWE rows (c1, . . . , c2ℓ)t of C2. It is defined as follows:

⊠ : RGSW × RGSW→ RGSW

(C1,C2) 7→ (C1 ⊡ c1, . . . ,C1 ⊡ c2ℓ).

C. CMUX GATE.
The main use of external products in TFHE is in the instan-
tiation of the controlled multiplexer (CMUX) gate. Given
two RLWE ciphertexts c0 and c1 encrypting messages m1

and m2 respectively and a RGSW ciphertext C encrypting a
(controller) bit b, the CMUX gate returns a RLWE ciphertext
encrypting mb. That is, the CMUX essentially selects either
c0 or c1 depending on the controller bit encrypted in C. The
CMUX gate is instantiated as follows:

CMUX⊡(C, c0, c1)← C⊡ (c1 − c0) + c0.

It can also be instantiated with internal products, producing a
RGSW ciphertext encrypting mb, as we use in our bootstrap-
ping key generation. In this case, it is computed as follows:

CMUX⊠(C,C0,C1)← (C1 −C0)⊠C+C0.

D. TFHE BOOTSTRAPPING
The bootstrapping of TFHE consists of four algorithms: mod-
ulus switching, blind rotation, sample extraction and key
switching. In what follows, we describe how these algorithms
work and their role in TFHE bootstrapping.

1) Modulus switching
Modulus switching is the first step of the bootstrapping al-
gorithm and compresses the information of the input LWE
ciphertext to a smaller space. Consider a ciphertext ct =
LWEs = (a, b) ∈ Zn+1

q . The goal of modulus switching is
to change the modulus of ct from q to another modulus h.
This is done by changing the modulus of all components of
ct (let us say that an := b) as follows

ãi =

⌊
(h · ai mod q)

q

⌉
∈ Zh.

In TFHE bootstrapping, the key switching is done from q
to the modulus 2N , where N corresponds to the polynomial
degree defining Rq. Notice that 2N is much smaller than q,
for example N = 210 and q = 232.

2) Blind rotation
The core and most computationally expensive procedure of
TFHE bootstrapping is called blind rotation. This algorithm
takes a trivial RLWE encryption of a vector v and rotates it
by a ciphertext LWEs(m) = (a, b) ∈ Zn+1

q . That is, the result
of the blind rotation is a ciphertext RLWEs′(X−m · v) ∈ R2

q ,
where m is a rounded approximation of b − ⟨a, s⟩. In more
detail, notice that we can write

m = b−
n∑

j=1

sjaj,

where b and aj are rounded approximations of b and aj re-
spectively. The algorithm starts by generating a trivial RLWE
encryption of X b · v (referred to as accumulator in the
literature). The goal now is to obtain a RLWE encryption
of Xm · v. Notice that we only need to multiply the trivial
encryption by X−aj for all j if sj = 1. This conditional is
instantiated using a CMUX gate and the bootstrapping keys
(or bootstrapping keys), which are RGSW encryptions of the
secret key components. That is, bsk[j] ← RGSWs′(sj) for
1 ≤ j ≤ n.

Algorithm 1 Blind rotation in the binary case

1: acc← (0, . . . , 0,X−b · v)
2: for j = 1 to n do
3: acc← acc+ bsk[j]⊡ ((X−aj − 1) · acc)
4: end for
5: return acc

This blind rotation procedure only works when the secret
keys are binary. In Section IV, we will see two approaches
to perform a blind rotation where the secret keys are sampled
from an arbitrary distribution.

3) Sample Extraction
The output of the bootstrapping procedure should be a LWE
ciphertext, however the output of the blind rotation procedure
is a RLWE ciphertext. For this reason, after running the blind
rotation, it is necessary to extract a LWE ciphertext from
the output RLWE. Asume that the output RLWE ciphertext
encrypts a plaintext polynomial with constant term µ0. The
extraction process consists in carefully selecting some of
the coefficients of the RLWE ciphertext and then building
the output LWE ciphertext corresponding to µ0. How this
selection is done is not relevant to this work, and we refer
the reader to the literature provided at the beginning of the
section for further details.
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4) Key Switching
At this point we have a ciphertext under the secret key s′ but
we need a ciphertext under s. To obtain the desired ciphertext,
we can apply key switching, which is a common technique
used in homomorphic encryption. Consider a LWE ciphertext
c′ = (a, b) encrypting a plaintext m under s′. The basic idea
of key switching is to compute b − ⟨a, s′⟩ homomorphically
providing s′ as an encryption under s. This will cancel out s′

and allow us to decrypt the resulting ciphertext with s. The
encryptions of the bits of s under s′ correspond to the key
switching keys, which are constructed as follows. Let Bks <

q
2

be the key switching basis and let lks be such that logB(lks) =
q. For every bit s′i of s

′, the corresponding key switching key
will be

kski = {LWEs(s′i), LWEs(s′iBks), . . . , LWEs(s′iB
lks−1
ks )}.

We can now compute

c = (0, . . . , 0, b)−
n∑

i=1

⟨Decomp(ai), kski⟩,

whereDecomp(ai) = (ai,0, . . . , ai,lks−1) is the decomposition
of ai in base Bks. It is easy to see that c is a correct LWE
ciphertext encrypting m under the secret key s.

IV. TFHE BLIND ROTATION WITH ARBITRARY SECRET
KEY DISTRIBUTION
In the following subsections we explain the twomost efficient
state-of-the-art approaches of TFHE blind rotation which can
work with an arbitrary secret key distribution.

A. BLIND ROTATION OF LEE ET AL. [12]
The work of Lee et al. [12] introduces a new efficient blind
rotation algorithm that works with arbitrary secret key distri-
butions and requires small bootstrapping keys. Very briefly
and omitting a lot of technicalities, each loop of their blind
rotation algorithm consists of a number of external prod-
ucts followed by one automorphism (key switching). That
is, starting with an accumulator acc = RLWEs(f ′(X)) and
a collection of bootstrapping keys bskj := RGSWs(X sj)
for j ∈ J , for some indexing set J , their blind rotation
algorithm proceeds by multiplying acc by all bskj, obtaining
acc = RLWEs(f ′(X)X

∑
j∈J sj). Then, applying an automor-

phism they obtain

acc = RLWEs(f ′(X g)X g·
∑

j∈J sj),

for a suitable integer g depending on the polynomial degree
N . After repeating this process with other indexing sets they
finally obtain acc = RLWEs(f (X) · Xβ+⟨α,s⟩).
This blind rotation technique requires a total of at least

1.5 ·n external products, where n is the dimension of the input
LWE ciphertext.

To use this blind rotation algorithm in the MPHE setting,
they require the construction of a common blind rotation key
(bsk) and a common automorphism key (ak). We only give
a short summary of how a computing party can obtain bsk

and refer the interested reader to the original paper for the
construction of ak. Let s1, . . . , sk be the secret keys of a set
of k parties. Each party j computes bskj,i = RGSWs(X sj,i)
where sj,i is the i-th component of sj and sends this to the
computing party. Then, the computing party obtains

bski = ⊠∏
j∈J
bskj,i = RGSWs(X s∗,i).

B. BLIND ROTATION OF JOYE AND PAILLIER [13]
As mentioned in the introduction, each loop of the blind
rotation in [13] consists of k RGSW ciphertext additions
followed by an external product. Their bootstrapping key
is a set of RGSW ciphertexts which encrypt either 0 or 1.
Basically, a client generates k RGSW ciphertexts, denoted by
{keyj,i}i∈[k], per secret key component Sj (j ∈ {0, . . . , n})
such that all of them are encryptions of 0 or only one of them
encrypts 1 and the rest encrypt 0. Then, the computing party
runs a selection algorithm to choose the corresponding X aj·Sj ,
as follows:

1+(X aj−1)·keyj,1 +(X2·aj−1)·keyj,2 + · · ·+(X k·aj−1)·keyj,k .

For example, if Sj = 3, then keyj,3 is an encryption of 1 and
the rest are encryptions of 0. Here, we note that the X i·aj ’s
for i ∈ [k] are precomputed and the product with keyi is a
multiplication in the FFT domain which is the most expensive
part in this selection algorithm.
For the interested reader, we now provide a more detail de-
scription on how the bootstrapping keys constructed and how
to use them during the blind rotation step. For simplicity, we
will assume that we sample keys from the set S = {0, . . . , k}.
Let I be the indicator function, that is, I{t = Sj} = 1 when
t = Sj and I{t = Sj} = 0 otherwise. Notice that we can write

X ajSj =

k∑
i=0

I{i = Sj}X i·aj =

k∑
i=1

I{i = Sj}(X i·aj − 1)

Therefore, we can compute acc by setting

keyj,i ← RGSW(I{i = sj})

and iterating

acc← acc+
( k∑

i=1

(X i·aj − 1) keyj,i

)
⊡ acc

C. CHOOSING A BLIND ROTATION ALGORITHM FOR
MPHE TFHE
As we have mentioned in the introduction, the goal of this
work is to extend [13] to the MPHE setting by constructing
suitable bootstrapping keys and see under which conditions
this approach is better than that of [12]. This analysis is done
in Section VIII-A.

V. BOOTSTRAPPING KEY GENERATION FOR MPHE TFHE
Since we wish to use Joye and Paillier’s approach for TFHE
bootstrapping, our main goal in this section is to create on
the fly a common bootstrapping key compatible with their
blind rotation algorithm. This new key will be created from
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the locally generated keys sent by all users. To do this, we
introduce our novel algorithm called homomorphic indicator
and we explain how to use it to build theMPHE bootstrapping
keys.

A. HOMOMORPHIC INDICATOR
Given an array A of encryptions of 0’s and 1’s, the goal of
the homomorphic indicator algorithm is to homomorphically
produce a new array with an encryption of 1 in the position
corresponding to the Hamming weight (WH ) of A, that is, the
output array will have an encryption of 1 in the WH (A)-th
position and encryptions of 0 everywhere else.

Let us start by explaining how a plaintext version of the
homomorphic indicator works. The algorithm takes as input
an array A of k slots4 filled with 0’s and another array C
with also k slots but filled with 0’s and 1’s, which we will
call controller bits. The algorithm proceeds by iterating over
C as follows. If the first controller bit is 1, the first slot of
A becomes 1, and the rest of A is untouched. If the second
controller bit is also 1,A remains the same except the first and
second slots, where the first slot becomes 0, and the second
slot becomes 1. After repeating this k times, the array A will
have a 1 at the position corresponding to the number of 1’s in
C.
In the ciphertext case, we start with two arrays of k + 1

slots, denoted by Aold and Anew, where the 0-th slot of Aold

contains an encryption of 1 and the rest are set to encryptions
of 0. Additionally, we need k controller bits {Ci}i∈[k], each of
which encrypts a bit. We note that the last k slots of Aold are
what we have at the beginning in the cleartext case. We store
the desired value (which is 1) at the 0-th slot. In each loop,
Anew is updated based on the corresponding controller bit and
the values in the slots of Aold , as follows. For each j ∈ [k],
Anew[j] ← Aold [j − 1] if Ci is an encryption of 1, otherwise,
Anew[j]← Aold [j]. This can be instantiated as

Anew[j] := (Aold [j− 1]− Aold [j])⊠Ci + Aold [j].

In order to update the first slot, we need to deal with the 0-th
slot as well since it influences on the first slot ofAnew. The 0-th
slot should also be updated to 0 or remain 1. That is, Anew[0]
is updated to Aold [0] if Ci is an encryption of 0, otherwise,
Anew[0] becomes an encryption of 0. This is instantiated as

Anew[0] := Aold [0]⊠ (1−Ci).

After all the slots of Anew are updated, Aold is set as Anew and
we repeat the protocol until all k controller bits are used. At
the end of the protocol, we will take the last k slots of Anew as
the desired result.

Note that we use the internal product to instantiate the
CMUX gate and the multiplication between two ciphertexts.
However, one can use the internal product or any type of
homomorphic multiplication. Since the multiplicative depth
of the homomorphic indicator algorithm is linear in the size

4A slot of an array refers to an element of an array in this paper, we use
these terms interchangeably.

Algorithm 2 Homomorphic Indicator (Hom.Indicator)

Input: {Ci}i∈[m],A
new and Aold .

Output: Aold .
for i← 1 to k do

for j← 1 to k do
Anew[j] := CMUX⊠(Ci,A

old [j],Aold [j− 1])
end for
Anew[0] := Aold [0]⊠ (1−Ci)
for j← 0 to k do

Aold [j] := Anew[j]
end for

end for

of the output (unit vector), the use of internal/external product
is highly recommended if the size of the output is large, in
order to manage the noise growth.

B. INSTANTIATION OF BOOTSTRAPPING KEY GENERATION
In this subsection, we explain how to use the homomorphic
indicator to construct suitable bootstrapping keys for the blind
rotation algorithm of [13]. We start by explaining how the
users need to prepare their local keys, and then we detail how
the server can build the bootstrapping keys from the local
keys.

1) Local bootstrapping key generation
We generate the local bootstrapping key similarly to [5], how-
ever, the instantiation is a bit different in order to minimize
the noise. We adapt the typical technique, which transforms a
private-key ciphertext into a public-key ciphertext. Our goal
is to turn single key ciphertexts encrypted under a user’s
public key into a ciphertext encrypted under global public key
via one interaction. We specifically follow the way of [20]
which is designed for TFHE ciphertexts. Each user does the
following:
1) Generates a vector consisting of size m = O(n log q)

LWE/RLWE/RGSW encryptions of 0 under its own
key, and distributes the vector of the ciphertexts to the
other predefined k − 1 users. In other words, each
component of the vector looks like (a, bi), where bi =
a · si+ ei, with a being a common random string (CRS)
which has already been provided to all the users. Once
this step is done, the rest can be run multiple times
without interactions among users.

2) Generates k random bit vectors of dimension m.
3) Computes k dot products between the bit vectors

and the given k ciphertext vectors, including its own
vector, and adds up the results. The outcome is an
LWE/RLWE/RGSW encryption of 0 under the master
secret key, which is s := (s1 + s2 + . . .+ sk).

Every time all k users generate ciphertexts/ local bootstrap-
ping keys, each user does the second and the third step de-
scribed above and add the message term on the desired spot
at the end. We give an algorithm of this procedure below. In
practice, we set m = ⌈3 · log q⌉ as [6] analyzed.
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Algorithm 3 Local encryption (Local.Enc)
Input: A vector of dimension m consisting of cipher-

texts (all of which can be one of LWE/RLWE/RGSW
forms), denoted by V, and a message µ, a tag tag ∈
{LWE,RLWE,RGSW}.

Output: an LWE/RLWE/RGSW ciphertext c encrypting a
message µ.
Sample a random vector R← {0, 1}m
Computes µ̄ := TrivialNoiseless(tag, µ).
Computes c := ⟨V,R⟩+ µ̄

2) Global bootstrapping key generation
The main goal of this algorithm is to create the global boot-
strapping key of [13] on the fly using all clients’ keys which
have already been given at the beginning of the protocol.
As we explained in Section II, the global bootstrapping key
is an array of k RGSW ciphertexts per coefficient. We de-
note this key as b̂sk := [b̂sk0, . . . , b̂skn−1], where each
component consists of k RGSW ciphertexts, that is b̂ski =
[RGSWs(bi,1), . . . ,RGSWs(bi,k)], where bi,j ∈ {0, 1} for and
j ∈ [k] and i ∈ [0, . . . n− 1].

To generate b̂sk, the following actions are required by each
user and by the server (or a computing party).

Each user. Each client i sends its (local) bootstrapping key
bski := (RGSWs(si,0), RGSWs(si,1), . . ., RGSWs(si,n−1)) to
a server.

Server.
• Initialization: The Server creates two arrays of k+1 slots

per coefficient, denoted by Aold and Anew, respectively,
where the first slot of Aold is 1 and the rest are zeros.

• As soon as it receives the (local) bootstrapping keys
bsk1, . . . , bskk from the predefined k users, it executes
the algorithm 4, running Hom.Indicator as a subroutine.

Algorithm 4 Global bootstrapping key generation

Input: {bski}i∈[k],A
new and Aold .

Output: b̂sk.
for t ← 0 to n− 1 do

for i← 1 to k do
Parse Ci,t := bski[t]

end for
A := Hom.Indicator({Ci,t}i∈[k],A

new,Aold)

b̂sk[t] := [A[1], . . . ,A[k]]
Refresh Anew and Aold

end for

C. A TOY EXAMPLE FOR 4 PARTIES
Assume that we have four users (k = 4), and each has a
secret key si for i ∈ [4]. For ease of exposition, we only focus
on the constant term of each si, the process is the same for
the rest of the coefficients. Let us say that s1,0 = 1, s2,0 =
1, s3,0 = 1, and s4,0 = 0, hence the constant term of the

master secret key is 3 (S0 = 3). The server creates two arrays
of k + 1 = 5 elements, as we explained in the above section,
called Aold ,Anew. The array Aold has a RGSW encryption of
1 at the first position and a RGSW encryption of 0 in the rest
while Anew consists of RGSW encryptions of 0.
In the first iteration, since s1,0 = 1, we will set Anew[1] =

RGSW(1) and Anew[j] = RGSW(0) for all j ̸= 1. We have
then an encryption of 1 in position 1. The same would happen
in the next two iterations until we reach s4,0. In this case, since
s4,0 = 0, the algorithm does not change the plaintexts of
all elements in the output array (but the noise is increased).
At the end, we get an array with an RGSW encryption of 1
in position 3, and a RGSW encryption of 0 in the rest. The
last 4 elements of the final array exactly correspond to the
bootstrapping keys needed for 4 parties in the blind rotation
protocol of [13]. This example is depicted in Figure 2.

FIGURE 2. Example for k = 4 of our bootstarpping key generation. The
blue arrow shows the direction of moving the first slot. The black arrows
show that the elements in the new array comes from the previous slots in
the old array when the corresponding secret key component is 1. The red
arrow shows that the elements in the new array come from the same
slots of the old array when the corresponding secret key component is 0.

VI. TFHE BOOTSTRAPPING IN THE MULTIPARTY SETTING
Once the predefined k users (parties) generate their own local
bootstrapping key as discussed in Section V-B and upload
them to server, the server runs Algorithm 4 to create the
common/global bootstrapping key. The global bootstrapping
key is stored, and the server can reuse it as long as the
computation is for the same set of users.
After running the blind rotation algorithm of Joye and

Paillier with the global bootstrapping key, the output is an
RLWE ciphertext under the k "RLWE keys" defined over a
polynomial ring of degree N . However, the result of a TFHE
bootstrapping should be an LWE ciphertext encrypted under
the k "LWE keys" to enable further computations.
As explained in Section III-D, in single key TFHE, we

switch the ciphertext format from a RLWE to an LWE cipher-
text by running an algorithm called sample extraction. How-
ever, the outcome has still dimension N which is larger than
the original input dimension n. Therefore, TFHE introduced
a key switching algorithm to switch an LWE from dimension
N to dimension n. We can adapt the single key version of this
algorithm to the multiparty setting as follows.
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A. KEY SWITCHING IN THE MULTIPARTY SETTING
The key switching algorithm for the MPHE case is the same
as in the single key TFHE setting, the only change is in the
key switching keys. Assume that we want to switch from
LWE

′

s(m) to LWEs(m) where s = s1 + s2 + · · · + sk and
s′ = s′1 + s′2 + · · · + s′k with si and s′i being the secrets of
the i-th party. Let us define s = s1 + s2 + · · · + sk and
s′ = s′1+s

′
2+· · ·+s′k , where each si and s′i are the secrets of the

i-th party. Each user only needs to produce kski := LWEs(s
′

i )
as their key switching key by running the function Local.Enc.
To obtain the global key switching key, the server only needs
to add up all kski.

B. OVERALL DESCRIPTION OF OUR BOOTSTRAPPING
We now have all the ingredients to performMPHE bootstrap-
ping using the blind rotation of [13]. We describe the process
below.

Each i-th user:
• Setup for public key: generates its own local public

key; a vector of ciphertexts of dimensionm(= O(log q))
per ciphertext format (LWE,RLWE,RGSW), where all
the masks of the ciphertexts are set to a which is a
common random string (CRS). We denote the vectors
by VLWE,VRLWE,VRGSW.

• Generating local bootstrapping keys: generates local
bootstrapping key bski by running
Local.Enc(VRGSW,RGSW, si,j) for all j ∈ [n]. Simi-
larly, generates local key switching key kski by running
Local.Enc(VLWE, LWE, si).

• Generating ciphertexts: generates ciphertexts for ho-
momorphic evaluation by running
Local.Enc(VLWE, LWE,m), where m ∈ 0, 1.

Server:
• Setup for server: runs Algorithm 4 to generate a global

bootstrapping key b̂sk. Generates a global key switching
key denoted by k̂sk by summing up all given kski given
by k users.

• After a gate operation: run Joye and Paillier’s boot-
strapping with b̂sk and k̂sk.

C. SECURITY
We rely on the fact that TFHE is IND-CPA secure (due to
(R)LWE assumption (See Section II) for one key and the
security of ciphertexts under multiple keys discussed in [2],
[5].

• Local Public key: each local key is encrypted under
the owner’s key, therefore other users cannot decrypt
the secret key from the public key (due to IND-CPA of
TFHE).

• Common public keys: common public keys (including
bootstrapping keys, key switching keys) are encrypted
under sk1 + sk2 + · · · + skk . Even though k − 1 keys
are compromised, still the ciphertext is encrypted under
one valid key, hence IND-CPA of TFHE guarantees the
security of the common public keys.

• Security model: We present our construction under the
assumption that both the users and the server are semi-
honest. Lattice-based commitment schemes and zero-
knowledge proofs can be used to transform a semi-
honest MPHE protocol into a maliciously secure one,
see for example [21].

VII. NOISE ANALYSIS
In this section, we analyze the noise growth of the setup phase
and the final noise after bootstrapping. We recall the noise
growth of TFHE ciphertexts taking from [18] below, briefly.
LetC1 andC2 be two RGWE ciphertexts encrypting m1 and
an m2, respectively. After one internal product between C1

andC2, denoted byC′ := C1⊠C2, the variance of the noise
contained in the output is like the following:

Var(Err(C′)) ≤ ℓ·N ·g2·Var(Err(C1))+(1+N )+Var(Err(C2)).
(1)

Let e be the initial noise in each user’s (local) public key,
that is, Var(e) = θ2 as we defined in Section II. After
receiving all the public keys from the predefined users, the
noise contained in each user’s bootstrapping key becomes
k ·ι·e due to additions, where ι = ⌈3·log q⌉ to guarantee LWE
security [6] (as we mentioned in Section V-B). Therefore,

Var(Err(bski)) ≤ k · ι · θ2.

The noise becomes larger during the generation of the
global bootstrapping key. Each element in the initial array
is a plaintext which has no noise. We can upper-bound the
variance of the i-th output array Ai of one homomorphic
indicator operation as

Var(Err(Ai)) ≤ k · ℓ · N · g2 · Var(Err(bski)) + k · (1 + N ),

from Equation (1). Each element of ˆbsk is a vector of RGSW
ciphertexts (denoted by [A0, . . . ,An−1]). Each component
of such vectors is created via homomorphic indicator which
consists of k consecutive CMUX gates (internal products).
We define the variance of b̂sk to be the maximum variance
ofAi’s. Hence, the noise contained in b̂sk can be bounded as
follows:

Var(Err(b̂sk)) = maxi(Var(Err(A0)), . . . ,Var(Err(An−1)))

≤ k · ℓ · N · g2 · Var(Err(bski)) + k · (1 + N ) · ϵ2.

Now, we run bootstrapping as specified in [13] with the
constructed b̂sk. In the blind rotation algorithm of [13], there
are k additions among the corresponding b̂sk components in
every loop. After the additions, the output, sayCadd , contains
the noise of which the variance is

Var(Err(Cadd)) ≤ 2 · k · Var(Err(b̂sk)).

In terms of noise growth, the blind rotation of [13] is viewed
as TFHE bootstrapping with Cadd as the bootstrapping key.
After blind rotation, the output RLWE ciphertext c has a noise
that can be bounded as follows:

Var(Err(c)) ≤ n · ℓ ·N · g2 ·Var(Err(Cadd)) + n · (1 +N )ϵ2.
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Scheme blind rotation
[12] (1.5n+ w) · Tmult
[13] n · Tmult + k · n · (4 · ℓ · TPM )

TABLE 1. Comparison in terms of the number of expensive operations
such as external products denoted by Tmult and a point-wise
multiplication between two polynomials of degree N in FFT domain,
denoted by TPM used in blind rotation. w is a small constant.

Performing a key switching to convert c to an LWE ciphertext,
denoted by c, only adds a small noiseN ·ℓ·g2 ·Var(Err(evki))
which is not a dominant term compared to the noise in c.
Therefore, the variance of the final noise in our case has
complexity

O(k3 · ι · n · ℓ2 · N 2 · g4 · θ2),

whereas [12] has O(k2 · ι · n · ℓ2 · N 2 · g4 · θ2). Under
the central limit heuristic, the noise contained in the output
LWE ciphertext c has the following boundwith overwhelming
probability:

∥Err(c))∥∞ ≤ 6 ·
√

Var(Err(c)).

As a result, we can find the relation among parameters
(mainly q,N , n and k) from the following bound in order to
guarantee the correctness,

∥Err(c)∥∞ ≤ q/16.

Overall, our bootstrapping key generation algorithm gives the
same noise propagation as Lee et al.’s approach, however,
our choice of bootstrapping adds more noise depending on
the number of users during blind rotation. Therefore, the
final noise contained in the output of bootstrapping using our
technique has a bigger factor (k1.5) than the approach of Lee
et al., where the noise grows linear in k .

VIII. PERFORMANCE EVALUATION
In this section, we detail our implementation choices and pro-
vide the best parameter sets together with their benchmarks
with respect to the actual running time of the main homo-
morphic operation and noise growth. We came across some
difficulties when comparing our implementation numbers
with the existing design of [12] since they did not implement
their multi-key extension. Therefore, for fair comparison, we
analyze the noise growth of bootstrapping key of both designs
in terms of crucial parameters such as k,N , n, ℓ, and provide
benchmarks with respect to the running time of dominant
operation of both cases on the same machine.

A. COMPLEXITY COMPARISON
1) Bootstrapping running time
In Table 1 we provide the computational cost of the blind
rotation algorithms of [12] and [13] in terms of the cost of
one point-wise multiplication in the FFT domain (denoted by
TPM ) and one external product (denoted by Tmult ). An external
product consists of 4 ∗ ℓ point-wise multiplications in the

FFT domain and 2ℓ + 2 FFT conversions of a polynomial
(denoted by TFFT ) (from the standard domain to FFT domain
and vice versa). Since the dominant part of one external
product is (2ℓ + 2) FFT conversions , we can consider TFFT
as the dominant factor. The actual computational cost of blind
rotation will, of course, depend on the chosen parameters for
the schemes.
We want to know up to which k our MPHE approach based

on [13] outperforms that of [12]. For this, we can use Table 1
and upper bound k as follows:

k ≤ 0.5 · Tmult
4 · ℓ · TPM

=
1

2
+

(ℓ+ 1)

4l
· TFFT
TPM

. (2)

Theoretically, the ratio between TFFT and TPM (denoted by r)
is O(logN ), however, the hidden constant in the complexity
varies depending on machines and FFT libraries the server
runs. Moreover, with the bound on the noise after blind rota-
tion derived in Section VII, we obtain the following relation
among parameters

k ≤
(

q
96 ·
√
ι ·
√
n · ℓ · N · g2 · θ

) 2
3

(3)

to guarantee the correctness in the multiparty setting with our
global bootstrapping key.
With the parameters that we used in our implementation

(see Table 2), we can handle up to k ≤ 213.3 parties according
to (3). However, the practical bound for k depends on r and
ℓ, as described by (2). For example, let us fix ℓ = 3. If r < 4,
it is better to use single-key TFHE directly, if 5 ≤ r ≤ 7 then
the optimal approach is to use our technique for k ≤ 2 and
the approach of [12] for k ≥ 3. Similarly, for 8 ≤ r ≤ 10 the
optimal is to use our technique when k ≤ 3 and the approach
of [12] for k ≥ 4. When r ≈ 64 in our implementation,
we can expect the upper bound of k which guarantee that
our approach is better up to 21 parties for N = 211, ℓ = 3.
Therefore, our approach is better the higher the ratio r is. This
is the case when we want to handle larger message spaces in
TFHE. That is, in order to handle message spaces larger than
bits, TFHE offers functional bootstrapping, which uses N up
to 214 [22]. In this case, r will increase with respect to the
case N = 211, resulting in higher values of k for which our
approach provides faster bootstrapping than that of [12].

2) Setup phase
Once the global keys are generated, the server can reuse the
keys multiple times. Therefore, in the MPHE case, the global
key generation is considered as being part of the setup phase.
The setup phase of Lee et al. consists of n ·k internal products
withmultiplicative depth k . Similarly, our homomorphic indi-
cator consists of k CMUX instantiated with internal products
per secret key element. Therefore, our approach also requires
k · n internal products, in total, with multiplicative depth
k . As a result, both approaches have the same computation
complexity and the same noise propagation during this phase.
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3) Memory blowup
The main downside of our approach is linear memory blowup
as the number of parties grows, whereas the other existing
approach has constant memory overhead. Therefore, one can
enjoy our approach up to reasonably many parties in the
computing environment where the memory blow-up is not a
big issue. With a normal laptop, we show our implementation
result up to 16 parties in the next section.

B. IMPLEMENTATION
We provide a prototype implementation of our multikey boot-
strapping key generation algorithm. We have also imple-
mented the blind rotation algorithm of [13] instantiated with
our bootsrapping keys. The prototype was done in Rust using
the Concrete library (concrete-core version 1.0.0-beta) [14]
and can be found at this GitHub repository. We include the
Cargo.lock file of our project and the generated files from our
benchmarking to ensure reproducibility.

C. RESULTS AND RECOMMENDED PARAMETER SETS
To test our new key generation algorithm, we have computed
a NAND gate using the blind rotation algorithm of [13] and
our bootstrapping keys. We want to remark that the noise
after bootstrapping is independent of the noise of the LWE
ciphertext being bootstrapped. As long as the noise after
bootstrapping is smaller than q/16 it is possible to compute
a new gate. Therefore, our approach can be used for a more
complex circuit than just a single NAND gate.

We have performed a search over a set of 26 possible
parameter sets for decomposition base g and level ℓ of the
RGSW ciphertexts composing the keys, and we have selected
the best parameters in terms of bootstrapping time and noise
growth. This selection was done after computing 500 NAND
gates per parameter set. Our experiments were done using
a machine with an Intel(R) Core(TM) i7-8550U CPU @
1.80GHz with 8GB of RAM and the results can be found in
Table 2.

We use parameter N = 2048, logQ = 64, θ = 1.85 · 24
for local public key (generated during parties’ setup phase)
to achieve 110 bit security. The keys are used to generate
ciphertexts and global keys which has higher security due to
k aggregation.

We can see that the trade-off between running time and the
noise contained in the ciphertexts and keys, depending on the
choice of B = log2 g and ℓ, where g

ℓ ≤ Q in Table 2. Since ℓ
influences on the size of bootstrapping key, it also affects the
running time. Moreover, as we can see from Section VII, both
ℓ and g are important factors for the noise growth. However,
the noise grows in poly(g). Therefore, our small choice of B
increases bootstrapping running time but decreases the noise
contained in bootstrapping key and the final ciphertext after
bootstrapping, significantly, which guarantees much lower
decryption failure probability. In Table 2, we give two ver-
sions of noise in logarithmic form, in the second column from
the right. The first one is the noise in RQ and the second one
in the parentheses is the noise after modulus switching from

Q to q. Since our message m ∈ {0, 1} is encoded as q/8 · m,
the final noise should be smaller than q/16 to guarantee the
correctness. Blind rotation with the global bootstrapping key
works over RQ, therefore, the correctness holds if the noise
contained in the output of blind rotation is less thanQ/16. Our
result shows that we still have enough noise room to handle
more operations before decryption failure occurs. Moreover,
our bootstrapping key noise grows linearly in k as our analysis
expected (for fixed parameters Q, θ,N and similar choice of
ℓ and B).
In Table 3, we show how much the server consumes mem-

ory to store bootstrapping keys, which increases linearly in k .
We also show the time to generate the keys.Wewant to remain
to the reader that this key generation happens only once and
can be done by the server alone. Therefore, the parties can
produce their individual keys, send them to the server and
go offline until the server produces the bootstrapping keys.
For the single-key case, the original TFHE key generation
takes around 1.5 seconds, while ours takes 6 seconds. Since
bootstrapping keys are forms of RGSW ciphertext and the
number of keys are depending on the size of secret key, the
keys are the main factor of server’s memory overhead of
FHE in general. As we mentioned above (Section VII), Lee
et al. [12]’s bootstrapping key generation would be so much
similar since the number of the dominant operation (internal
product) of their algorithm is same as our case. Since they
don’t provide experimental result, our result can be used for
a reference for their case.

IX. DISCUSSION AND CONCLUSION
A. APPLICATIONS OF TFHE-BASED MULTIPARTY FHE
Determining whether a MKHE or a MPHE approach is better
for a given application will come down to understanding
two things. First, the character of the parties involved. If the
application needs to provide parties with the capability of
joining and leaving during the life cycle of the application,
then multikey is the only choice. On the other hand, if the
application has a static number of users from start to finish,
then both approaches can be considered. The deciding factor
in this case will be the bandwidth of the network and the
storage capabilities of the parties. That is, the ciphertexts
produced by a multikey scheme grow linearly in size with
respect to the number of parties. The ciphertexts considered
in a multiparty scheme have constant size. In fact, they have
the same size as the single-party equivalent of the scheme.
Another detail that need to be considered in this discussion
is the setup time. A multiparty based application requires
an expensive setup phase, since the generation of the global
bootstrapping key is very computationally expensive. If the
application only needs to run once, the multiparty approach
might not be the best approach and the user should favor
some other alternative. On the other hand, if the application
will execute a good amount of times, the amortized cost well
compensates the initial requirement of the setup phase.
In what follows, we give examples of applications that

could benefit from the multiparty variant of TFHE that we
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k N n log q logQ σrlwe(= θ) σlwe B l Time (in seconds) Bootstrapping noise Bsk noise

2 2048 530 32 64 1.85 · 24.2 217
12 3 0.20 56.2 (24.2) 35.91
6 8 0.48 45.6 (13.6) 30.37

4 2048 495 32 64 1.85 · 24.2 217
11 4 0.33 56.12 (24.12) 36.95
7 7 0.59 48.97 (16.97) 32.98

8 2048 495 32 64 1.85 · 24.2 217
8 4 0.46 57.51 (57.51) 40.29
7 6 0.70 50.65 (18.65) 33.85

16 2048 495 32 64 1.85 · 24.2 217
10 5 0.90 58.37 (26.37) 38.02
7 6 1.06 52.79 (20.79) 35.81

TABLE 2. Parameter sets recommended achieving at least 110-bit security based on LWE estimator [23] for different number parties k . We indicate by
log q and log Q the LWE and RLWE modulus, respectively. The noise in a fresh RLWE ciphertext is indicated as σrlwe. The noise in a fresh LWE ciphertext is
indicated as σlwe. B corresponds to log(g). The last column details the noise contained in the bootstrapping keys after running the homomorphic indicator
algorithm. The values in the last three columns correspond to the average of 500 NAND operations, each performed with a freshly encrypted LWE
ciphertext.

k N n log q logQ B l Bsk size Bsk generation time Other keys generation time

2 2048 530 32 64
12 3 0.42 220 3.80
6 8 0.45 620 3.70

4 2048 495 32 64
11 4 0.63 540 7.29
7 7 0.66 970 7.26

8 2048 495 32 64
8 4 1.3 1330 15.20
7 6 1.1 1600 14.94

16 2048 495 32 64
10 5 2.3 2900 31.29
7 6 2.2 3570 37.76

TABLE 3. Size in GB and time of generation (in seconds) of the bootstrapping keys produced by our approach with respect to the best parameters for
time/noise error. We also provide the time of generation (in seconds) of the rests of the keys generated during setup. That is, the generation of all the
users public and secret keys, the global public and secret key and the global key switching key. The values in the last two columns correspond to the
average of 500 NAND operations, each performed with a freshly encrypted LWE ciphertext.

present in this paper. We will try to provide the best explana-
tion as of why we think that these applications would indeed
need to use a multiparty variant of TFHE and not some other
FHE-based solutions such as multikey or the use of some
other scheme instead of TFHE.

• k-NN learning. k-NN is a well-known Machine Learn-
ing algorithm that given a distance δ, a collection of
vectors D (model vectors) and a source vector v returns
the k vectors in D closest to v with respect to distance δ.
Using our new technique for generating bootstrapping
keys for TFHE, it is possible to run k-NN homomorphi-
cally in the following scenario, as discussed in Fig. 1.
The data owner sends its data to a server (the computing
party), by encrypting D with the global public key. The
client, encrypts its source vector v using the same global
public key and sends it to the server, which runs the k-
NN algorithm homomorphically using the bootstrapping
procedure of [10], together with our bootstrapping keys
to evaluate the sign function as described in this work.
The server sends back to the client the set of model vec-
tors M closest to v together with the partial decryption
interacting with the data owner. This allows the client
to decrypt M . If another party wants to do the same,
it simply interacts with the server to generate a new
collection of global public key, bootstrapping keys and
secret keys.

• Privacy-Preserving Analysis on Medical data A very
recent work [24] on privacy-preserving analysis on med-

ical data was done via multiparty homomorphic encryp-
tion. They are using collaborative (interactive) version of
bootstrapping as the original MPHE [4] proposed. It can
use our protocol built upon [5](non-interactive design)
when the data analysis requires non-linear function, or
gate operation, which is more attractive in cloud service
scenario.

B. DISCUSSION
Our homomorphic indicator can be of independent interest to
homomorphically indicate where the desired position is in an
array/vector. There is a similar work which achieves the same
functionality as ours, introduced in [11]. Their algorithm is
called homomorphic traversal and outputs a unit vector where
the desired component is set to 1, and 0 elsewhere. Their
algorithm gives less noise in the output than the homomorphic
indicator procedure since the multiplication depth is log k
instead of k , where k is the dimension of the output vector.
However, they need a bit representation form of i for inputs,

which is an implementation bottle-neck in our case. That is,
we would need a bit representation of each Sj ≤ k which
is a master secret element to run their algorithm for all j ∈
{0, . . . , n − 1}. Since Sj’s are not known to every user, the
only way to do this is to homomorphically compute binary
addition of all the bit representations of si,j’s which were sent
by all k users.
Moreover, handling a carry bit homomorphically is not

well studied and not practical enough for now. This is the
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reason why we have designed a new way to output the same
unit vector with only simple homomorphic operations. There-
fore, each approach can be used in different applications,
depending on the required input form.

C. CONCLUSION AND FUTURE WORKS
We propose a novel approach to construct bootstrapping keys
for the TFHE scheme in the multiparty setting given a pre-
defined set of parties. We compare two different TFHE boot-
strapping designs which can handle multi-digit secret keys in
the single user setting and that can be extended to deal with
multiple users. From our comparison, we have determined
which of the two approaches provides a faster bootstrapping
algorithm, and we have built an efficient global bootstrapping
key compatible with it.

To this end, we introduce a novel algorithm called homo-
morphic indicator to obliviously compute an (encrypted) unit
vector where the encryption of one is placed according to the
input parameters. We believe that this construction can be of
independent interest.

We have implemented our design as a proof-of-concept.
Given a suitable set of parameters, we have been able to
compute TFHE gate bootstrapping in less than a second for
up to 16 parties.

As it is detailed in the paper, our method induces a memory
blow-up in the bootstrapping keys when the number of parties
grows. As future work, we will address this issue and provide
optimal parameters for as many parties as possible. We also
leave as future work the instantiation and performance evalu-
ation of a real-use case using our technique.
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