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ABSTRACT A common problem in medical applications is predicting the time until an event of interest
such as the onset of a disease, time to tumor recurrence, and time to mortality. Traditionally, classical
survival analysis techniques have been used to address this problem. However, these techniques are of limited
usage when considering nonlinear and interaction effects among biomarkers, and high profiling survival
datasets. Although supervised machine learning techniques have shown some advantages over standard
statistical methods in handling high-dimensional datasets, their application to survival analysis, particularly
in the context of feature-based approaches, is at best limited. A major reason behind this is the difficulty
in processing censored data, which is a common component of survival analysis. In this paper, we have
transformed the time-to-event prediction problem into a semi-supervised regression problem. We utilize
a self-training wrapper approach, where an outer layer guides the iterative refinement of predictions.
This approach enhances the performance of our model by leveraging confident predictions from censored
instances. The self-training wrapper is applied in conjunction with random survival forests as the base
learner. In this approach, censored observations are introduced as partially labeled observations since their
predicted time (target value) should exceed the censoring time. First, the algorithm builds a base model
over the observed instances and then augments them iteratively with highly confident predictions over the
censored set, using a smart stopping criterion based on the censoring time. The proposed approach has
been evaluated and compared on fifteen real-world survival analysis datasets, including clinical and high-
dimensional data. The ability of our proposed approach to integrate partial supervision information within a
semi-supervised learning strategy has enabled it to achieve competitive performance compared to baseline
models, particularly in the case of a high-dimensional regime.

INDEX TERMS Random survival forest, self-training, semi-supervised learning, survival analysis.

I. INTRODUCTION

Survival analysis is a subfield of statistics concerned with the
analysis of data where the outcome of interest is the time
until a particular event of interest occurs. There is widespread
use of survival analysis in medicine, where events of interest
might include death, tumor recurrence, and hospital dis-
charge, among others. Censoring, which can occur for various
reasons such as drop-out, is one of the main challenges of sur-
vival analysis. Observations that are censored (right-censored
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or left-censored) cannot provide the true survival time, as,
for example, in the right-censored case, we know that the
observed time is an underestimate of the survival time [1].
Traditionally, methods like Cox Proportional Hazards
(CPH) and Accelerated Failure Time (AFT) models have
been widely used throughout literature to overcome censor-
ing; however, these methods have been unable to cope with
real-world datasets with hundreds or thousands of features.
Additionally, these models are not able to incorporate the
nonlinear relationship that exists between the features [2], [3].
The field of survival analysis has adopted many supervised
machine learning algorithms in recent years, but the problem
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of applying these techniques directly to censored data is chal-
lenging since the time to the event is only partially known.
Sometimes the task is transformed into a binary classification
task (does the event happen before a certain time?), in which
censored data points are either eliminated [4] or their impact
is diminished by a weighting procedure [2]. A number of
machine learning algorithms have been successfully mod-
ified to employ censored information in survival analysis.
For example, decision trees [5], artificial neural networks
(ANN) [6], and support vector machines (SVM) [7]. Among
the most popular ensemble-based frameworks are bagging
survival trees [8] and random survival forests [9]. There has
also been an extension of more advanced learning tasks such
as active learning [10] and transfer learning [11] towards
survival analysis.

Although in recent years, applying supervised machine
learning-based techniques in the survival analysis domain
has gained attention [12], semi-supervised learning (SSL)
methods [13], [14] are also briefly addressed in the survival
analysis literature. The study by Bair and Tibshirani [15],
combines supervised and unsupervised learning to predict
survival times for cancer patients. A supervised approach
is used to select a subset of genes from a gene expression
dataset that correlates with survival. Then, to identify cancer
subtypes, unsupervised clustering is applied to these gene
subsets. Having identified such subtypes, they apply super-
vised learning techniques again to classify future patients into
the appropriate subgroups (low-risk or high-risk) or to predict
their survival. The low- and high-risk groups are created by
comparing the survival time to the median survival time. For
the censored patients, based on the Kaplan-Meier survival
curve for all the patients, they estimate the probability that
a censored case survives a specified length of time and thus
belongs to the low-risk and high-risk classes, respectively.

Roy et al. [16] modeled the time-to-event prediction as a
multi-target regression problem, with censored observations
modeled as partially labeled. More specifically, the different
event times in the dataset are viewed as binary targets. For
each data instance, it is specified whether it has experienced
the event or not at each time stamp, using missing values
when an instance has been censored after a certain period of
time. Then they apply semi-supervised predictive clustering
trees and ensembles thereof to the resulting data.

Furthermore, there has been some research that models a
survival analysis task as a semi-supervised learning problem
by employing a self-training strategy to predict event times
from observed and censored data. Both [17] and [18] treat
the censored data points as unlabeled, thus not taking into
account the time-to-event information that these data points
provide.

Although several previous studies have applied semi-
supervised learning approaches to survival data analysis, not
many have utilized the underlying information contained
within the censored data, which is the fact that the tar-
get value for right-censored observations should be greater
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than the censoring time. Liang et al. [19] disregard data
points for which the model predicts a value lower than the
right-censored time points. They combine Cox proportional
hazard (Cox) and accelerated failure time (AFT) model in a
semi-supervised set-up to predict the treatment risk and the
survival time of cancer patients. Regularization is used for
gene selection, which is an essential task in cancer survival
analysis. The authors found that many censored data points
consistently violate the constraint that the predicted survival
time should be higher than the censored time, restricting the
full exploitation of the censored data. Therefore, in follow-up
work [20], they embedded a self-paced learning mechanism
called Cox-SP-AFT in their framework to gradually introduce
more complex data samples in the training process, lead-
ing to a more accurate estimation for the censored samples.
To estimate the coefficients of the AFT model, they introduce
a loss function derived from the constraint that the survival
time must not be less than the censoring time. As a result,
if the estimated survival time of a sample is less than the
censoring time, then this sample must be falsely labeled, and
its loss value must be positive infinity. A censored sample,
however, has a square loss function if it obeys the censoring
condition. Then in order to select confident samples from the
censored dataset, they define a threshold (age parameter) for
the loss function in which the samples with losses smaller
than the age parameter (o) will be kept at the training phase,
otherwise will be assigned zero weight. It should be noted
that a traditional parametric model (AFT) has been used for
the training process. Specifically for such high-dimensional
datasets that were used in the study, an advanced machine
learning model that is capable of properly handling nonlinear
relations between the features could be more effective and
superior to the AFT.

In this paper, using a semi-supervised learning approach,
we propose a new time-to-event prediction algorithm that
utilizes the underlying information contained within the cen-
sored data. Specifically, this paper utilizes the widely used
self-training wrapper technique [21], [22], which builds a
classifier/regressor over the labeled (in our case, observed)
data points and then augments the labeled set iteratively with
highly confident predictions over the unlabeled (censored) set
of data. Our approach uses random survival forests as the base
learner [9] and compares the proposed algorithm’s predictive
performance with three competing methods based on fifteen
real-life healthcare datasets.

Il. BACKGROUND
The proposed method is explained after a brief introduction

to survival analysis, followed by an exploration of the models
that have been employed in our methodology, namely the
random survival forest model, followed by a discussion of
the self-training models.

A. SURVIVAL ANALYSIS
Survival analysis is a widely used subfield of statistics that
was originally designed to predict the lifespan of patients in
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a clinical setting. The primary objective of survival analysis
is to predict time-to-event distributions based on features,
address factors influencing the distribution, and determine
their nature.

More specifically, for a given instance i, represented by
a triplet (X;, y;, 6;), where X; € RP” is the feature vector; 8;
is the binary event indicator (i.e., §; = 1 for an uncensored
instance and §; = 0 for a censored instance); and y; denotes
the observed time and is equal to the survival time 7; for an
uncensored instance and C; for a censored instance; that is,

T ifs = 1.
- 1
Vi {Ci, if 8 = 0. M

The objective is to estimate the time to the event of interest
denoted by Tj for a new instance j based on feature predictors
described by X;. For an arbitrary time point ¢, survival func-
tion S(¢) represents a probability that a specified event will
not take place earlier than time #, i.e., S(¢) = P(T > t) [12].

The hazard function h(¢), is defined as h(t) = f(¢)/S(¢),
where f(¢) is the density function for the time to an event
and f(t) = —%S(t). More specifically, h(t) represents the
likelihood of the event occurring at time ¢ given that no
event has occurred before time ¢ [23]. The Cumulative Hazard
Function (CHF) is defined as H(t) = fg h(u)du which results
in the following equation:

S(t)=e 1O )

where H(¢) and S(¢) denote the cumulative hazard function
and the survival function, respectively.

In contrast to the above non-parametric methods, in the
semi-parametric category, the Cox model [1] is the most
commonly used regression analysis approach for survival
data. In spite of being based on a parametric regression
model, the Cox model is described as semi-parametric due
to the fact that no knowledge of the underlying distribution
of time to the event of interest is required [12]. Many real-
world domains have accumulated high-dimensional data due
to the development of data collection and detection tech-
niques. An example of this would be datasets where the
number of features (P) is much more than the number of
instances (N). Therefore, a good prediction model cannot
incorporate all of the information available in the feature set.
In this regard, several different penalty functions including
the Lasso (Lasso-Cox) [24], the Ridge (Ridge-Cox) [25],
and the Elastic-Net (EN-Cox) [26] have been developed to
identify the features that are most relevant to the outcome
variable among what can be tens of thousands of features.

B. RANDOM SURVIVAL FOREST MODEL
Regression trees have been extended to survival data [5], and
survival trees have been used in ensemble methods, such as
bagging and boosting.

Random Survival Forest (RSF) [9] is a statistical algorithm
that is widely used in machine learning for predicting the sur-
vival time of an individual or an event. It is an extension of the
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random forest [27] algorithm, which is a well-known ensem-
ble method that combines multiple decision trees to make
predictions. The primary distinguishing feature of RSF is that
the trees are trained to split data based on both the predictor
variables (features) and the survival time of the observations.
This enables RSF to handle censored data. The RSF algorithm
functions by randomly selecting a subset of features and
constructing multiple decision trees. Each tree is built using
a different bootstrap sample (B) of the data and a random
subset of the features. In order to split the node into two
child nodes, the best candidate feature and split point should
be determined by the log-rank test [28]. Optimal splitting is
one that maximizes survival differences between the child
nodes. A stop criterion is used to decide when to stop grow-
ing the tree structure (for example, when the number of
observed instances in the terminal nodes declines below a
certain threshold). By the end of the analysis, the Nelson-
Aalen estimator, which is a non-parametric estimator of the
cumulative hazard function CHF, is used to determine the
CHEF associated with each node in the tree [29].

The CHF is the same for all cases within the same terminal
node. The ensemble CHF is calculated as the average over the
CHF of the B survival trees.

The RSF algorithm has several advantages over tradi-
tional survival analysis methods, such as Cox regression. RSF
can handle high-dimensional data, nonlinear relationships
between predictor variables and the outcome, and interactions
between variables. It also provides measures of feature impor-
tance, which can help identify the most important features
for survival. Random survival forest has been applied to a
range of problems, including predicting the survival of cancer
patients, the failure time of mechanical components, and the
risk of loan default. The versatility and effectiveness of RSF
have made it a popular algorithm in the field of survival
analysis.

C. SELF-TRAINING MODEL

As a combination of supervised and unsupervised learning,
semi-supervised learning (SSL) has been used in many appli-
cations [30], [31], [32]. In order to obtain a more accurate
prediction model, SSL methods seek to make use of unla-
beled data as well as labeled data. In some applications,
it is difficult to achieve good performance with supervised
techniques due to the relatively small number of labeled
instances. This is due to the fact that labeling techniques are
generally expensive and time-consuming. Consequently, over
the years, many SSL techniques have been proposed [13],
[14]. In this article, we will focus on self-training (also called
self-learning) [21] which is one of the earliest approaches
in semi-supervised learning. In recent years, self-training
has gained popularity and has been used in different ways
like deep neural networks [33], face recognition [34], and
parsing [35]. By augmenting the training set with unlabeled
instances, this framework overcomes the problem of insuffi-
cient labeled data. This wrapper algorithm starts by training
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Algorithm 1 Self-Training
Require: Labeled data (L), Unlabeled data (U)
Ensure: Trained model
1: Train a base model using L
2: while |U| # 0 do
3:  Make predictions for U using the trained model
4:  Select T instances from U, where T contains unla-
beled samples with high confidence predictions

5:  Label all samples in T using the trained model
6: L=LUT

7: U=U-T

8:  Retrain the model using L

9: end while

a model using a base learner on the labeled data set. Then
the model assigns pseudo-labels to unlabeled data using its
predictions, after which it augments the labeled data set with
predictions for unlabeled instances that the model is most
confident in by considering these confident pseudo-labeled
unlabeled data as additional labeled points (see Algorithm 1).
This process of pseudo-labeling and learning a new model
continues until there is no more unlabeled data to pseudo-
label. The process could be stopped before adding all the
unlabeled data if a certain stopping criterion is defined. The
stopping condition, the number of examples to be increased
per iteration, and the definition of confidence is determined
based on the problem being addressed. The selection of
each of these three factors is crucial, particularly since the
first two are often set arbitrarily or with costly parameter
optimizations.

lll. THE PROPOSED METHOD

In our proposed approach, we apply a semi-supervised
learning approach, the widely used self-training wrapper
technique, that was explained earlier [36]. The current work
presented in this paper is an extension of the previous
work [37]. While the previous study focused on predicting
survival outcomes in the presence of unlabeled data, this
current work builds upon the earlier findings by exploring
the performance of the predictive model without the use of
unlabeled data.

Using the self-training wrapper technique, we build the ini-
tial model using only the observed data points, then iteratively
augment it with high-confidence predictions from the cen-
sored data. In other words, we treat the censored examples as
unlabeled, and the observed examples as labeled, and cast the
problem as a pure semi-supervised learning problem. How-
ever, in this scenario, the censored instances are not totally
unlabeled, since we know that their event time is greater
than the censoring time (assuming right-censored instances).
As a result, we aim to exploit this information of censored
instances to introduce a smarter stopping criterion in the data
augmentation process. We denote this approach as STUART:
Self-Trained sUrvivAl foResT which is a self-trained ran-
dom survival forest corrected with censored times. Figure 1
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shows the learning process in this self-training algorithm.
This technique first builds an initial model using RSF over the
labeled (in our case, observed) data points and then iteratively
augments the labeled set with the most confident predictions
of survival time for the unlabeled dataset (censored). In order
to predict the survival time for each individual, we calculate
the expected future lifetime (7,) which at a given time 7y is
the time remaining until the event, given that the event did not
occur until 7y [38]:

1 o
T, = m/to S(t)dt 3)

where S(¢) is the survival function predicted by RSF and #j is
the smallest unique event time in the sample size.

Using the variance of the individual tree predictions as a
confidence measure of the ensemble predictions, we deter-
mine which unlabeled (censored) instances to add to the
augmentation process. Given the inherent generation of an
ensemble of decision trees by RSF, the variance emerges as a
natural metric to quantify the ensemble’s consensus. Notably,
our methodology addresses time-to-event prediction, a con-
text often characterized by censored observations and inher-
ent uncertainty. The variance, as an index of dispersion, aligns
well with the need to identify instances for augmentation
where the ensemble’s predictions exhibit broader divergence.
Additionally, the calculation of variance is seamlessly inte-
grated into the RSF framework, requiring no supplementary
computations. We sort the predictions in increasing order
according to the variance, and then we decide when to stop
adding any new instances based on the information in the
censoring time. In more detail, we know that the true event
time must exceed the censoring time. We, therefore, stop
the augmentation process whenever a censored instance is
encountered with a predicted time 7), that is lower than its
censoring time 7. If at the end of an iteration, no instances
can be augmented, the entire process is terminated. In order
to avoid premature termination (prediction variances can be
high, in which case adding or removing some trees from
the forest could result in a substantially different 7}, value
and therefore, a different condition outcome), we relax the
condition T, < T}, as follows.

We calculate a 95% tolerance interval around 7, and
require 7, to be smaller than or within the tolerance interval.
In other words, we allow T to be larger than T}, but only if it
is within its 95% tolerance interval (see Figure 2). In the case
of censored examples that meet the criteria for being added to
the training set, we set their status to observed with a survival
time equal to T),. Algorithm 2 describes this approach in
detail. Although the training sets in the self-training approach
do not contain censored data points, we still chose RSF as
the base learner in order to obtain a survival function as the
prediction. Moreover, RSF benefits from advantages inherent
in random forest techniques: high accuracy, efficient learning
times, parallelizable, feature importance scores, etc. In addi-
tion, in the result section, we compare our method to the
direct application of RSF (i.e., in a non-self-training set-up),
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FIGURE 1. Pipeline for the proposed approach, called STUART.

Algorithm 2 STUART

Require: Observed data (observed), Censored data
(censored)
Ensure: Prediction model for survival time
1: repeat

2:  Train a base model using observed

3:  Make a prediction for the survival time (7)) of each

instance in censored

Calculate the variance for each prediction

Sort the predictions based on minimum variance

Calculate a 95% tolerance interval for the predictions

Find the first instance i from the sorted predictions

whose censoring time (7¢) is greater than T),+20 (does

not meet the criterion)

8:  Remove all instances sorted before i (confident predic-
tions) from censored and add them to the training set
(observed)

9: until no confident predictions have been added to the

training set

Nk

which is currently one of the state-of-the-art methods in the
survival analysis domain, and as a result, a different base
learner would complicate the interpretation of the results.

IV. EXPERIMENTAL SET-UP

In this section, we first describe the datasets in detail in
Section IV-A, then we discuss the evaluation metrics in
Section IV-B, and we continue with an explanation of
the comparison methods and parameter instantiation in
Section I'V-C.

A. DATASET DESCRIPTION

During our evaluation of our proposed approach, real-life
datasets with various characteristics, including those from
/textit[survival] [39] in R as well as high-dimensional datasets
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Self-training approach

Predicted

the censored
observations

Prediction on test

Selection
criteria

Evaluate the model

with large numbers of observations from [40] and some from
R/Bioconductor, were used. Moreover, 10 high-dimensional
gene expression datasets were used (p > n) [41]. In these
datasets, thousands of genes are typically expressed across
a few samples (< 300), contributing information about
demographic characteristics, disease type, survival time, etc.
As it was computationally expensive to run all the competitor
methods on datasets with more than 10,000 gene expression
features, we reduced the number of features to the top ten
thousand features with the largest variance across all sam-
ples. Table 1 provides a description and characteristics of
the datasets used in this study. The predicted outcome for all
datasets is survival time (time until death).

B. PERFORMANCE EVALUATION

Harrell’s concordance index (C-index) [43] is the most com-
monly used metric for evaluating survival models and rep-
resents the generalization of the ROC curve over all data in
the survival analysis [44]. The C-index can be interpreted
as the proportion of all pairs of subjects whose predicted
survival times are correctly ordered among all subjects whose
survival times can be predicted. Another way of putting it
is that it is the probability that the predicted and observed
survival times will coincide. It is feasible to rank two subjects’
survival times if (1) both subjects are observed as well as (2)
either one’s observed survival time is smaller than the other’s
censored survival time [45]. Consider a set of observation
and prediction values for two different instances, (yi, y1)
and (y2, y2), where y; and J; represent the actual survival
time and the predicted value, respectively. The concordance
probability between these two instances can be computed as

c=Pr@1 > ynly1 > »).

C. COMPARISON METHODS AND PARAMETER
INSTANTIATION

STUART was compared with representative time-to-event
models: RSF [9], Lasso-Cox, and Cox-SP-AFT which was
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FIGURE 2. Tolerance interval corresponding to two times the standard deviation. Figures a, b, and c represent situations where the
condition T¢ < Tp+20 is fulfilled, where o is the standard deviation of the individual tree predictions, and hence, these situations

are accepted by our method. In Figure d, the condition is violated.

TABLE 1. Characteristics of the used clinical and high-dimensional datasets.

Name #Observations  #Features  Censoring rate
Veteran [39] 137 6 6%
Lung [39] 228 8 27%
PBC [39] 312 17 60%
DrAsGiven [41] 119 22122 42%
EMTAB386 [41] 129 10364 44%
GSE14764 [41] 80 13112 74%
GSE32062 [41] 260 20112 54%
Norway/Stanford Breast Cancer Data (NSBCD) [41] 115 549 67%
Sporadic lymph-node-negative patients (Veer) [41] 78 4751 56%
Dutch Breast Cancer Data (DBCD)[41] 295 4919 73%
Diffuse Large-B-Cell Lymphoma data (DLBCL) [41] 240 7399 42%
Lung adenocarcinomas (LungBeer) [41] 86 7129 72%
Acute myeloid leukemia (AML) [41] 79 54675 40%
Breast invasive carcinoma (BRCA) [42] 1080 117 86%
First National Health and Nutrition Examination Survey (NHANES I) [40] 9549 21 64%

explained at the end of Section I. As a baseline model,
we have reported the results of Cox regression with LASSO
regularization. Lasso-Cox introduces the L1 norm penalty in
the Cox log-likelihood function [24]. Since the majority of
our used datasets are high-dimensional (p >> n), we have
employed Lasso-Cox due to its capability of handling high-
dimensional datasets. For the purpose of estimating the gen-
eralization capacity of the models, 5-fold cross-validation
was performed on each dataset to determine test accuracy,
and this process was repeated ten times to obtain reliable
results. Throughout the ten iterations of the cross-validation
process, the C-index is calculated for each test fold, and the
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result is the average value across the five folds. In Lasso-
Cox, the optimal tuning parameter (1) is selected by nested
cross-validation, whereas no hyperparameter tuning has been
applied to the other approaches. For RSF and STUART, the
number of trees was set to 500, and the number of candidate
variables considered in each tree node was set to p/3, where
p is the number of variables.

V. RESULTS AND DISCUSSION
In this section, we first describe and compare the results of

Lasso-Cox, Cox-SP-AFT, RSF, and STUART on the bench-
mark datasets described in Table 1. Then, we take a closer
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TABLE 2. Performance in terms of concordance index (C-index).

Datasets Lasso-Cox Cox-SP-AFT RSF STUART
Veteran 70.1 +6.5 70.05£6.3 71.5+5.3 71.48 4+ 5.4
Lung 62.64 +5.3 60.82 + 5.6 61.75+ 5.1 62.01 5.2
PBC 83.15 £ 3.5 80.51 £ 3.5 83.5 3.1 82.22 +£4.5
DrAsGiven 52.53 £ 6.3 52.42 +£10.5 57.42 +4.7 57.74+£7.7
EMTAB386 51.43+6.2 55.42 + 8.9 50.14 £6.9 59.11 4+ 5.9
GSE14764 52.08 £ 8.5 54.63 £18.3 56.994+17.3 66.82+20.5
GSE32062 52.114+4.7 51.90 + 7.3 50.03 £ 5.6 56.124+6.4
NSBCD 66.28 £ 8.2 51.05 £13.1 71.75 £ 6.5 73.2+12.1
Veer 62.63 £10.1  53.07 & 10.2 67.44+10.2 71.71+11.6
DBCD 68.99 £ 7.6 63.13 £ 7.8 73.5+5.7 74.15+6.1
DLBCL 59.48 £ 6.4 55.74 £ 6.5 59.7+4.4 59.64 4+ 5.9
LungBeer 50.93 +£10.1 63.40+14.3 67.55+15.8 T72.34+11.3
AML 55.90 £ 9.5 60.37 + 8.9 60.02 4+ 10.3 64.99 £ 3.2
NHANEST 82.26 +£0.52 77.06 & 1.12 82.5+0.6 82.36 £ 0.6
BRCA 56.61 £ 6.3 56.22 £ 11.1 63.62 £ 5.2 62.35 £ 5.3

Average 61.81 60.39 65.16 67.75
} 06 $ 0.76
(a) NSBCD (b) Veteran (c) NHANES 1
FIGURE 3. Evaluation of the performance of the methods, for three datasets.
L CD ]
1 2 3 4
STUART Cox-SP-AFT
RSF Lasso-Cox

FIGURE 4. Results of the Friedman-Nemenyi test of methods ranking. The methods are compared in
terms of their ranking using the evaluation measure, CI.

look at the results obtained for the NSBCD, Veteran, and
NHANES 1 datasets as each represents a different type of
dataset in terms of the number of features or observations.
Table 2 shows the means and standard deviations of the
c-index on the datasets, as well as the average c-index
of each algorithm. Based on the results, we can conclude
that STUART is the winning approach, particularly in most
high-dimensional datasets (p > n). More precisely, it can be
concluded that on high dimensional datasets with a very small
number of samples (e.g., Veer, LungBeer, AML, NSBCD,
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and GSE14764, all of which contain fewer than 120 observa-
tions), STUART is performing the best. In addition, in several
datasets with a high percentage of censored instances where
very few labeled data are available (e.g., DBCD, GSE14764,
EMTAB, and LungBeer, all with a higher than 72% censoring
rate), STUART is a much better algorithm than RSF alone.
Nevertheless, in the datasets with high censoring rates com-
bined with a large number of observations (NHANES I and
BRCA), RSF outperforms STUART, although only by a small
margin.
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FIGURE 5. Learning curves of the STUART method for NSBCD (figure a) and Veteran (figure b) datasets.

Although STUART is the best algorithm for datasets with a
high censoring rate and a small number of observations, at the
other extreme, where the censoring rate is small (such as in
Veteran and Lung), it does not perform as well. This may be
the result of a lack of sufficient censored data to guide the
augmentation process.

In light of the different behavioral patterns seen in different
types of data, we selected three datasets that each represent
a different type of dataset in terms of having either a very
high number of features (NSBCD) or a very high number
of observations (NHANES 1) and a simple mid-size dataset
(Veteran). The results on these datasets are illustrated by box
plots in Figure 3. When comparing the range of C-indices
(interquartile range), Cox-SP-AFT varies more dramatically
and is the last algorithm in most experiments; but overall,
STUART acts robustly and behaves like RSF. This robust
behavior of STUART could be due to the fact that for cen-
sored instances, it compares the predicted survival time with
the censoring time, which results in having more confident
predictions. However, this should hold for Cox-SP-AFT as
well, since it also compares the predicted survival time with
the censoring time. However, the reliability and stability
of the Cox-SP-AFT model rely heavily on the accuracy of
the AFT model and the single AFT model always encoun-
ters robustness issues in semi-supervised learning scenarios
caused by heavy noise and even outliers [19], [20]. During the
experiments, we also noticed that many censored data points
always violate the constraint that losses should be smaller
than o, restricting the ability to fully exploit the censored
data. Therefore, the AFT model does not benefit from a large
number of instances in order to be properly trained.

In comparison with the main competitor (RSF), STUART,
although with a slight non-statistically significant mar-
gin, was ranked in a higher position according to the
Friedman-Nemenyi test' presented in Figure 4 [46].
STUART outperforms Lasso-Cox and Cox-SP-AFT and
manages to be statistically significantly better according to
the Friedman-Nemenyi test. As a second-best method, RSF

n a critical distance diagram, those algorithms that are not joined by
a line (i.e., their rankings differ more than a critical distance (CD)) can be
regarded as statistically significantly different [46].
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is statistically significantly superior to Cox-SP-AFT and has
a slight non-significant lead over Lasso-Cox.

Overfitting is a concern that may arise when self-training
approaches are used. Since our algorithms have no tunable
hyperparameters, they are not prone to the kind of over-
fitting that results from the hyperparameter tuning process
in other algorithms. Moreover, random forests overall are
known to be robust to overfitting due to the fact that by
increasing the number of trees, the variance of the error
gets reduced. Furthermore, we investigated the learning curve
of the STUART algorithm on two datasets with varying
censoring rates: NSBCD and Veteran. The train-validation
diagrams, illustrated in Figure 5, demonstrate the algorithm’s
robustness across different levels of censoring. NSBCD’s
higher censoring rate led to more iterations, while the Vet-
eran dataset’s lower censoring rate showed convergence over
fewer iterations. These insights reinforce our method’s adapt-
ability and underscore its resistance to overfitting, supporting
its credibility in time-to-event prediction.

Our findings demonstrate that the self-training technique
that uses the information in the censored data points to guide
the data augmentation process performs best, resulting in a
competitive algorithm compared to RSF.

VI. CONCLUSION

Predicting the time until an event of interest is a com-
mon problem encountered in medical applications, and it is
traditionally addressed using survival analysis techniques.
In this study, we have transformed the time-to-event pre-
diction problem into a semi-supervised regression problem.
In our approach, called STUART, censored observations
are introduced as partially labeled observations since their
(unknown) target values should exceed the censoring time.
This property is exploited in the augmentation process of a
self-training algorithm for time-to-event prediction. We have
evaluated and compared the proposed approach on fifteen
real-world survival analysis datasets, including clinical and
high-dimensional ones. Our results have shown that our
proposed approach especially in high-dimensional settings
outperforms the others due to its ability to integrate inte-
grating partial supervision provided by censored data into a
semi-supervised learning wrapper approach.
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Further research can be carried out in several directions,
of which we outline a few below. In this study, we used
STUART for survival analysis of right-censored data, but the
same approach can be applied easily to left-censored data
as well. The concept of the idea that we proposed could
be applied using other base learners and semi-supervised
learning strategies, but it remains to be investigated whether
the results carry over to other learners.
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