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Robust Inference and Modeling of Mean and1

Dispersion for Generalized Linear Models2

Abstract3

Generalized Linear Models (GLMs) are a popular class of regression models when4

the responses follow a distribution in the exponential family. In real data the variability5

often deviates from the relation imposed by the exponential family distribution, which6

results in over- or underdispersion. Dispersion effects may even vary in the data. Such7

data sets do not follow the traditional GLM distributional assumptions, leading to8

unreliable inference. Therefore, the family of double exponential distributions has9

been proposed, which models both the mean and the dispersion as a function of10

covariates in the GLM framework. Since standard maximum likelihood inference is11

highly susceptible to the possible presence of outliers, we propose the robust double12

exponential (RDE) estimator. Asymptotic properties and robustness of the RDE13

estimator are discussed. A generalized robust quasi-deviance measure is introduced14

which constitutes the basis for a stable robust test. Simulations for binomial and15

Poisson models show the excellent performance of the RDE estimator and correspond-16

ing robust tests. Penalized versions of the RDE estimator are developed for sparse17

estimation with high-dimensional data and for flexible estimation via generalized18

additive models (GAMs). Real data applications illustrate the relevance of robust19

inference for dispersion effects in GLMs and GAMs.20

Keywords: Double exponential family, Likelihood ratio test, M-estimator, Influence function,21

Penalization22
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1 Introduction23

Generalized Linear Models (GLMs) form a unified way of modeling the mean response when24

the responses follow an exponential family distribution (see e.g. McCullagh and Nelder,25

1989). In practice, real data often display a larger or smaller variability than expected under26

a standard GLM. In these cases the data are said to be over- or underdispersed, respectively.27

Such data sets typically invalidate the standard GLM distributional assumptions. Moreover,28

dispersion effects may be different for subgroups in the data or depend on a set of covariates.29

It is critical to account for dispersion for several reasons. First, correct inference, e.g.30

confidence intervals for the mean response, depends on the dispersion (Smyth, 1989; Cai31

et al., 2008). Secondly, neglecting dispersion may result in a loss of efficiency and a bias in32

the estimation of the regression coefficients in the mean model (Smyth and Verbyla, 1999;33

Antoniadis et al., 2016). Thirdly, the dispersion model itself may be the main focus of34

interest (Lian et al., 2015).35

To model the dispersion in a GLM framework, Efron (1986) proposed the family of36

double exponential distributions. It generalizes the single parameter exponential family by37

including an additional parameter to model the dispersion. More formally, suppose that38

the variable Y follows a one-parameter exponential family with parameter µ and density39

eY (y;µ), denoted by Y ∼ EF(µ). The variance of Y , which may depend on the parameter40

µ, is denoted by V (µ). Then, the corresponding double exponential family with parameters41

µ and θ > 0 is defined as42

f(y;µ, θ) = c(µ, θ)θ1/2eY (y;µ)
θeY (y; y)

1−θ.43

A variable Y with a distribution belonging to the double exponential family is denoted44

by Y ∼ DEF(µ, θ). Efron (1986) showed that the normalizing constant c(µ, θ) which45

ensures that f(y;µ, θ) is a density, is approximately equal to 1. In practice, one may46

thus approximate f(y;µ, θ) by f(y;µ, θ) which is obtained by setting c(µ, θ) = 1. Efron47

(1986) also showed that E [Y ] ≈ µ and Var [Y ] ≈ V (µ)
θ

. Hence, the parameter θ represents48

underdispersion when θ > 1 and overdispersion when θ < 1. Note that when θ = 1, the49
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density f(y;µ, θ) reduces to eY (y;µ). Therefore, the single parameter exponential family is50

obtained as a special case.51

In a regression context, we assume that Y |x, z ∼ DEF(µ, θ). The parameters µ and θ52

thus depend on predictor variables x ∈ R
p1 and z ∈ R

p2 , respectively. This leads to the53

following combined regression model54

µ = h(xtβ) and θ = g(ztγ), (1)55

with h and g monotone functions and β and γ vectors of length p1 and p2, respectively.56

Note that we consider functions h and g that are invertible. Moreover, g should be positive57

since θ > 0. A natural choice for the link function h is to take the same choice as for the58

standard GLM in absence of dispersion. For the dispersion model such a natural choice for59

the link function is not available (Efron, 1986). A common choice for g is an exponential60

function. Other possibilities are the inverse g(t) = 1/(1 + t) (Lee and Nelder, 2000) or the61

logistic-like function g(t) = 1.25/(1 + exp(−t)) of Efron (1986).62

Based on a random sample of n observations (yi,xi, zi), the maximum likelihood63

estimates (MLE) for the parameters of the above model are obtained by solving the classical64

score equations:65

n∑

i=1

U (yi, µi, θi) =
n∑

i=1


Uβ (yi, µi, θi)

Uγ (yi, µi, θi)


 =

n∑

i=1


Uµi

µ′
i

Uθi θ
′
i


 = 0. (2)66

Here, µ′
i =

∂
∂β
µi, θ

′
i =

∂
∂γ
θi, and Uµi

= ∂
∂µi

L (yi, µi, θi), Uθi =
∂
∂θi

L (yi, µi, θi) with L (y, µ, θ)67

the log likelihood function corresponding to the double exponential generalized linear model68

in (1). Hence, U(y, µ, θ) is the score function corresponding to the MLE. However, it69

is well-known that the maximum likelihood estimator (CDE) and associated inference is70

extremely sensitive to model deviations and outliers in the data.71

Other approaches to model the mean response and the dispersion simultaneously have72

been proposed in the literature. Nelder and Pregibon (1987) proposed the extended quasi-73

likelihood framework where the deviance is modeled to account for the dispersion. Lee and74

Nelder (1998) proposed a restricted Extended Quasi-Likelihood estimator (CEQL) which75

3



uses adjusted deviances to reduce the bias when estimating the dispersion parameters with76

a relatively large number of mean parameters. Lee and Nelder (2000) showed that extended77

quasi-likelihood inference and maximum likelihood inference in double exponential models78

lead to identical results. Other proposals in the statistical literature are pseudo likelihood79

(Davidian and Carroll, 1987), double generalized linear models (Smyth, 1989) and dispersion80

models (Jørgensen, 1987; Jørgensen, 1997). Comparisons can be found in Nelder and Lee81

(1992) and Davidian and Carroll (1988).82

The non-robustness of maximum likelihood inference implies that outliers may bias83

the parameter estimates and confidence intervals and also hypothesis tests may become84

unreliable and/or uninformative. Therefore, various robust alternatives have been proposed85

in the context of GLMs, such as Cantoni and Ronchetti (2001), Bergesio and Yohai (2011),86

Valdora and Yohai (2014) and Ghosh and Basu (2016). Several contributions focus on87

a specific GLM. Robust logistic regression has been studied by Künsch et al. (1989),88

Morgenthaler (1992), Carroll and Pederson (1993), Bianco and Yohai (1996), Croux and89

Haesbroeck (2003), Bondell (2005, 2008) and Hosseinian and Morgenthaler (2011), whereas90

the negative binomial case has been studied by Aeberhard et al. (2014, 2017) and Amiguet91

et al. (2017). For the Gamma model, robust estimators were proposed by Bianco et al.92

(2005) and Cantoni and Ronchetti (2006). To our knowledge, only two robust GLM methods93

have focused on modeling the dispersion. Croux et al. (2012) and Neykov et al. (2012)94

proposed robustified versions of the extended quasi-likelihood approach. Croux et al. (2012)95

introduced robust M-estimators for Generalized Additive Models (GAMs), including GLMs96

as a special case. Neykov et al. (2012) exploited the idea of trimming to obtain robust97

estimators. However, robust inference for GLMs and robust dispersion tests have not been98

considered for these proposals.99

In this paper, we present a robust estimator for double exponential family GLMs and100

we develop associated tests for robust inference based on these flexible models. The robust101

inference allows in particular to test for the presence of dispersion. The proposed method102

allows to model both the mean µ and dispersion θ in (1) based on a (possibly different) set103
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of predictors x and z and is valid for any double exponential distribution.104

The remainder of this paper is structured as follows. Section 2 presents the robust double105

exponential estimator in general. We discuss the popular Poisson and binomial models as106

particular cases. In Section 3, we construct robust inference for double exponential GLMs107

based on robust likelihood ratio techniques. The finite-sample performance of the robust108

inference is investigated by means of simulations in Section 4. In Section 5 we illustrate109

the methodology on some real data examples. In Section 6 we develop penalized RDE110

estimators. We consider both penalties to obtain sparsity in high-dimensional settings and111

regularization penalties in the context of flexible smooth estimation via GAMs. Section 7112

concludes with a final discussion. Derivations of theoretical results are given in the Appendix113

and Supplementary Material which also contains additional results.114

2 The Robust Double Exponential (RDE) Estimator115

2.1 General double exponential GLMs116

The MLE for double exponential GLMs corresponding to the estimating equations (2) is117

very sensitive to outlier(s) in both the response and the explanatory variables. Therefore, we118

consider a general class of M-estimators of Mallows’ type as a robust alternative. Our robust119

double exponential (RDE) estimator is defined as the solution of the following estimating120

equations:121

n∑

i=1

Ψ(yi, µi, θi) =
n∑

i=1


Ψβ (yi, µi, θi)

Ψγ (yi, µi, θi)


 = 0, (3)122

where123

Ψβ (yi, µi, θi) = ν1(yi, µi, θi)w1(xi, zi)µ
′
i − a1, (4)124

Ψγ (yi, µi, θi) = ν2(yi, µi, θi)w2(xi, zi)θ
′
i − a2.125

The constants a1 and a2 make the estimator Fisher consistent and are given by126

a1 =
1

n

n∑

j=1

E [ν1(Yj, µj, θj)]w1(xj, zj)µ
′
j and a2 =

1

n

n∑

j=1

E [ν2(Yj, µj, θj)]w2(xj, zj)θ
′
j,127
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where the expectations are with respect to the conditional distributions Yj |x, z which128

follow the double exponential GLM in (1) with mean µj and dispersion parameter θj. The129

RDE estimates can be calculated by using Fisher scoring and alternating between the β̂130

and γ̂ updates as outlined in Appendix 8.2.131

The RDE estimator in (3) is an M-estimator with score function Ψ (y, µ, θ). An important132

measure of the robustness of the RDE estimator is its influence function (Huber, 1981;133

Hampel et al., 1986). Intuitively, the influence function measures the change in the estimator134

when the model is perturbed by an infinitesimal small amount of contamination at location135

(y,x, z). Estimators with an unbounded influence function are extremely sensitive to136

perturbations in the data because a small amount of contamination can already have an137

arbitrarily large effect on the estimator. Therefore, estimators with bounded influence138

function are preferred. We now derive the influence function of the RDE estimator and139

investigate under which assumptions boundedness is obtained.140

The influence function of an M-estimator is given by IF(y,Ψ, F ) =M(Ψ, F )−1Ψ(y, µ, θ),141

with M(Ψ, F ) = −E
[

∂
∂η
Ψ(Y, µ, θ)

]
where η = (βt,γt)

t
is the parameter vector containing142

all the model parameters. For the RDE estimator an expression for M(Ψ, F ) is derived in143

the supplementary material. Since the influence function of an M-estimator is proportional144

to its score function Ψ(y, µ, θ), choosing a bounded score function leads to a robust RDE145

estimator with bounded influence function. Note that the MLE in (2) is an M-estimator146

with score function Ψ(y, µ, θ) = U(y, µ, θ) which generally is unbounded, confirming the147

non-robustness of the MLE. To guarantee the boundedness of the score functions Ψβ and148

Ψγ , bounded functions ν1(y, µ, θ) and ν2(y, µ, θ) are needed to control large deviations in the149

response, while the weight functions w1(x, z) and w2(x, z) in (4) are needed to downweight150

the effect of leverage points in the x and/or z-space.151

An intuitively appealing choice for ν1(y, µ, θ) and ν2(y, µ, θ) is152

ν1(y, µ, θ) = v1(r)Uµ,153

ν2(y, µ, θ) = v2(r)Uθ, (5)154

with r = (y − µ)/
√
V (µ)/θ, the scaled Pearson residual of an observation. Here, v1(r) and155
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v2(r) are weight functions that should downweight the contribution of outlying responses156

to the standard score functions Uµ and Uθ in (2). As the form of the score functions Uµ157

and Uθ is determined by the likelihood of the specific double exponential model, these158

weight functions should be carefully chosen such that they are able to reduce the effect159

of potential outliers in the response sufficiently, resulting in an estimator with bounded160

influence function, see the examples in Section 2.2. A common choice for these weight161

functions is vj(r) = ψ(r)/r; j = 1, 2 where ψ(r) diminishes the effect of large residuals.162

A popular choice is the Huber function defined as ψH(r, c) = max(−c,min(c, r)) with c a163

tuning constant providing a trade-off between efficiency and robustness. Alternatively, the164

redescending Tukey bisquare function ψT(r, c) =
(
(r/c)2 − 1

)2
r I(|r|6 c) can be used. For165

more information, we refer the reader to Rousseeuw and Leroy (2005).166

The functions w1(x, z) and w2(x, z) are used to downweight potential leverage points and167

may be chosen to factor over the arguments. That is, w1(x, z) = wX(x)wZ(z) = w2(x, z) for168

example, where wX(x) and wZ(z) are often taken to be the inverse of a robustly estimated169

Mahalanobis distance. For a p-dimensional variable U this weight function is given by170

wU(u) = d(u, µ̂U , Σ̂U)
−1/2 with d(u, µ̂U , Σ̂U) = (u− µ̂U)

tΣ̂−1
U (u− µ̂U) where µ̂U and Σ̂U171

are robust location and scatter matrix estimates of U , respectively. These estimates can172

be obtained by high-breakdown estimators of location and scatter such as the minimum173

covariance determinant (MCD) estimator (Rousseeuw, 1984), S-estimators (Lopuhaä, 1989)174

or MM-estimators (Tatsuoka and Tyler, 2000), for instance. Alternatively, a hard cutoff rule175

may be used. In this case, all observations whose robustly estimated Mahalanobis distance176

exceeds a cutoff, e.g. χ2
p,0.975 which denotes the 97.5% quantile from a χ2

p-distribution,177

are given weight zero while the remaining observations receive weight 1, i.e. wU(u) =178

I(d(u, µ̂U , Σ̂U) ≤ χ2
p,0.975) with I(·) the indicator function.179

Note that by taking w1(x, z) = w2(x, z) = 1 and v1(r) = v2(r) = 1 in (5), we recover180

the standard MLE. Moreover, when there is no dispersion, i.e. all θi = 1, the RDE estimator181

simplifies to the robust estimator of Cantoni and Ronchetti (2001), hence our proposal can182

be seen as a generalization of their robust estimator for GLMs.183
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M-estimators are consistent and asymptotically normally distributed under suitable184

conditions. We assume conditions (A1)-(A9) stated in the supplementary material which185

correspond to those in Cantoni and Ronchetti (2001) and have previously been studied186

by Huber (1981), Clarke (1986) and Bednarski (1993) among others. Let Fη denote the187

model distribution corresponding to the double exponential GLM in (1) with parameter188

η = (βt,γt)
t
. Then, the asymptotic variance of M-estimators at Fη is given by189

Ω =M(Ψ, Fη)
−1Q(Ψ, Fη)M(Ψ, Fη)

−t,190

with Q(Ψ, Fη) = E [Ψ(Y, µ, θ)Ψ(Y, µ, θ)t]. For the RDE estimator an expression for the191

matrix Q(Ψ, Fη) is derived in the supplementary material.192

The ratio of the trace of the asymptotic variances of the RDE estimator and the MLE193

at the double exponential generalized linear model Fη yields the asymptotic mean squared194

error (AMSE) (Heritier et al., 2009) of the RDE estimator η̂195

AMSE(η̂, Fη) =
tr
(
E [U (Y, µ, θ)U (Y, µ, θ)t]

−1
)

tr (Ω)
. (6)196

This AMSE measures the loss of efficiency of the RDE estimator with respect to the MLE at197

the model distribution Fη. In practice, the AMSE can be estimated by replacing Fη by its198

empirical counterpart. The AMSE in (6) measures the relative efficiency for estimation of199

the complete parameter vector η. When the focus is mainly on inference for the mean model200

regression parameters β (given the vector γ), then its relative efficiency can be determined201

by replacing U and Ψ by Uβ and Ψβ, respectively, in (6). The AMSE can be used to tune202

the weight functions in the RDE estimator, i.e. to determine values of the tuning constants,203

such that a predetermined efficiency is obtained.204

2.2 The RDE estimator for Poisson and binomial models205

The double exponential version of two highly popular GLMs, the Poisson and binomial206

model, will now be discussed in more detail. Similar arguments hold for other double207

exponential GLMs.208
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We first consider the case where Y follows a double Poisson distribution, denoted as209

Y ∼ DEP(µ, θ). For the corresponding double Poisson GLM, i.e. Y |x, z ∼ DEP(µ, θ),210

the exponential function is chosen for both link functions h and g in (1). Note that the211

exponential function is the natural choice for h and it also fulfills the conditions on g. The212

score functions for the double Poisson GLM can now easily be derived and are given by213

Uµ =
y − µ

µ/θ
and Uθ =

1

2θ
− µ+ y ln

(
µ exp(1)

y

)
I(y > 0).214

As discussed in the previous section, the weight functions v1(r) and v2(r) in (5) should be215

chosen carefully to downweight the effect of outliers. As expected, the choice v1(r) = ψH(r)/r216

suffices to obtain a bounded function ν1(y, µ, θ) for the mean model. However, it can be217

seen that the same choice v2(r) = ψH(r)/r does not suffice to obtain a bounded function218

ν2(y, µ, θ) for the dispersion model. Therefore, it is needed to include a faster decreasing219

function to make ν2(y, µ, θ) bounded. We propose v2(r) = (ψH(r, c)/r)
2 and this weight220

function will be used in the remainder of the manuscript.221

Secondly, we focus on the double binomial distribution, denoted as Y ∼ DEB(µ, θ). The222

corresponding one parameter exponential family is Bin(m,µ)/m such that y is an element of223

{0, 1/m, 2/m, . . . , 1}. Note that for a sample yi, i ∈ {1, . . . , n}, from the double binomial224

distribution, it is possible for m to depend on i as well. However, to simplify notation we225

drop this dependence in the remainder of the paper without loss of generality. For the226

double binomial GLM, i.e. Y |x, z ∼ DEB(µ, θ) we take the natural logit function for the227

link function h, while we keep the exponential function for g. The score functions for this228

double binomial GLM then become229

Uµ =
(y − µ)

µ(1− µ)/(mθ)
and Uθ =

1

2θ
+my ln

(
µ

y

)
I(y 6= 0)+m(1−y) ln

(
1− µ

1− y

)
I(y 6= 1).230

Similarly as in the Poisson case, we need a fast decreasing function such as v2(r) =231

(ψH(r, c)/r)
2 to bound the function ν2(y, µ, θ) for the dispersion model.232
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3 Robust Inference233

The notion of deviance is a popular concept to perform inference and model selection in234

GLMs. To develop robust inference for double exponential GLMs, we introduce a robust235

generalized quasi-deviance to measure the quality of a fit. The generalized quasi-deviance is236

defined as237

DQM(y, µ̃, θ̃,µ,θ) = −2
n∑

i=1

QM(yi, µ̃i, θ̃i, µi, θi), (7)238

where QM(yi, µ̃i, θ̃i, µi, θi) is given by239

QM(yi, µ̃i, θ̃i, µi, θi) =

∫ µ̃i

s̃1i

ν1(yi, s, θi)w1(xi, zi) ds−
1

n

n∑

j=1

∫ µ̃j

s̃2j

E [ν1(Yj, s, θj)]w1(xj, zj) ds

+

∫ θ̃i

t̃1i

ν2(yi, µi, t)w2(xi, zi) dt−
1

n

n∑

j=1

∫ θ̃j

t̃2j

E [ν2(Yj, µj, t)]w2(xj, zj) dt.

(8)

240

Here, the values s̃1i, s̃2j, t̃1i and t̃2j are determined such that ν1(yi, s̃1i, θi) = 0, E [ν1(Yj, s̃2j, θj)] =241

0, ν2(yi, µi, t̃1i) = 0 and E
[
ν2(Yj, µj, t̃2j)

]
= 0, respectively. Hence, they are independent of242

µ̃ and θ̃. The robust generalized quasi-deviance in (7) takes the quality of the fit in both243

the mean and dispersion model into account. Indeed, the first two terms in (8) measure the244

goodness of fit of the regression model for the mean, i.e. µi = h(xt
iβ) while the last two245

terms measure the goodness of fit of the regression model for the dispersion, i.e. θi = g(zt
iγ).246

Note that in absence of dispersion, i.e. θ = 1, the last two terms in (8) become zero and247

the robust generalized quasi-deviance in (7) reduces to the robust quasi-deviance proposed248

by Cantoni and Ronchetti (2001).249

The generalized quasi-deviance provides a useful basis for robust inference and model250

selection. We focus on the comparison of two nested models Mp−q ⊂Mp with p− q and p251

parameters, respectively. In particular, let us partition the vector ηt = (ηt
1,η

t
2) into (p− q)252

components for ηt
1 and q components for ηt

2 , then we consider testing the null hypothesis253

H0 : η2 = 0 without loss of generality (after re-arranging the components of η if necessary).254

Let η̂ denote the RDE estimator of η in the full model, obtained by solving (3). Similarly,255
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η̂
(0)
1 is the RDE estimator of η1 in the reduced model under the null hypothesis. Let µ̂i, θ̂i256

and µ
(0)
i , θ

(0)
i denote the corresponding quantities in the full and reduced model, respectively.257

Based on the robust generalized quasi-deviance in (7), a natural measure for the discrepancy258

between the two nested models is given by259

ΛQM =DQM(y, µ̂(0), θ̂(0), µ̂, θ̂)−DQM(y, µ̂, θ̂, µ̂, θ̂)

=2
n∑

i=1

[
QM(yi, µ̂i, θ̂i, µ̂i, θ̂i)−QM(yi, µ̂

(0)
i , θ̂

(0)
i , µ̂i, θ̂i)

]
.

(9)260

Note that ΛQM is independent of s̃1i, s̃2j, t̃1i and t̃2j. The asymptotic distribution of the261

test statistic ΛQM is given by the following proposition which is proven in Appendix 8.1.262

Theorem 1. Assume conditions (A1)-(A9) (see the supplementary material) for distribution263

Fη under H0 : η2 = 0 and that M (Ψβ, Fη) and M (Ψγ , Fη) are symmetric positive definite.264

Let q1 and q2 respectively denote the number of components of β and γ assumed to be zero265

under the null hypothesis.266

1. Under H0, ΛQM is asymptotically distributed as
∑q1

i=1 λ
β
i N

2
i +

∑q2
j=1 λ

γ
jN

2
j , where267

the Ni and Nj are independent standard normal variables. The values λβ1 > λβ2 >268

. . . > λβq1 > 0 correspond to the q1 positive eigenvalues of the matrix Q
(
Ψβ, Fβ

)
·269 (

M−1
(
Ψβ, Fβ

)
− M̃∗+

(
Ψβ, Fβ

))
where M̃∗+ is such that M̃∗+

11 = M−1
(11), M̃

∗+
12 =270

M̃∗+
21 = M̃∗+

22 = 0, using the notation M1
(11) to denote the M -matrix of Ψβ restricted to271

the first p1−q1 components. Similarly the values λγ1 > λγ2 > . . . > λγq2 > 0 correspond to272

the q2 positive eigenvalues of the matrix Q (Ψγ , Fγ)
(
M−1 (Ψγ , Fγ)− M̃∗+ (Ψγ , Fγ)

)
.273

2. Consider the sequence of contiguous alternatives H1,n : η2 = n−1/2∆,η1 = η1 with274

∆ = (∆t
β,∆

t
γ)

t any vector in R
q such that

(
ηt
1, n

−1/2∆t
)t

still belongs to O (see the275

conditions in the supplementary material for the definition of O). Then, the statistic276

ΛQM has asymptotic distribution277

q1∑

i=1

(√
λβi Ni +

(
P t
β∆β

)
i

)2

+

q2∑

j=1

(√
λγjNj +

(
P t
γ∆γ

)
j

)2
278

=

q1∑

i=1

λβi χ
2
1

(
(P t

β
∆β)

i√
λβ
i

)
+

q2∑

j=1

λγj χ
2
1

(
(P t

γ∆γ)
j√

λγ
j

)
,279
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with χ2
1(·) a non-central χ2-distribution. Here, Pβ is a Choleski root ofMβ

22.1

(
Ψβ, Fβ0

)
=280

M(22)

(
Ψβ, Fβ0

)
−M t

(12)

(
Ψβ, Fβ0

)
M−1

(11)

(
Ψβ, Fβ0

)
M(12)

(
Ψβ, Fβ0

)
and281

P t
β

(
M−1

(
Ψβ, Fβ0

)
Q
(
Ψβ, Fβ0

)
M−1

(
Ψβ, Fβ0

))
(22)

Pβ = diag
(
λβ1 , . . . , λ

β
q1

)
, and sim-282

ilarly for Pγ.283

Note that the eigenvalues λβ1 , . . . , λ
β
q1

and λγ1 , . . . , λ
γ
q2

can be calculated by using the expres-284

sions for M(Ψ, F ) and Q(Ψ, F ) in the supplementary material. Part 1 of this proposition285

can then be used to obtain p-values for the test based on ΛQM , see Davies (1980, 1990).286

To investigate the robustness of the test, we study the influence of a small amount287

of contamination at a particular point on the asymptotic level of the test. We thus288

focus on the local stability of the test which is often the main concern at the inference289

stage. Following Heritier and Ronchetti (1994), define the sequence of ε-contaminations290

Fε,n =
(
1− ε√

n

)
Fη0 +

ε√
n
G, where G is an arbitrary distribution. The impact of such291

ε-contamination on likelihood ratio tests based on M-estimators was studied by Cantoni292

and Ronchetti (2001), generalizing the work of Heritier and Ronchetti (1994). They showed293

that a bounded influence function of the M -estimator of η̂(2) translates to a bound on the294

asymptotic level of the proposed test. Corollary 1, proven in the supplementary material,295

shows that this general result is also applicable to the RDE estimator. A similar result can296

be obtained for the power of the proposed likelihood ratio test using similar techniques.297

Corollary 1. Assume conditions (A1)-(A9) (see the supplementary material), then for298

any M-estimator η̂(2) with bounded influence function, the asymptotic level of the robust299

likelihood ratio test statistic ΛQM in (9) under point mass contamination is given by300

lim
n→∞

α(Fε,n) = α0 + ε2κtβdiag

(
Pβ IF

(
y; β̂(2), Fβ0

)
IF
(
y; β̂(2), Fβ0

)t
P t
β

)

+ ε2κtγdiag
(
Pγ IF

(
y; γ̂(2), Fγ0

)
IF
(
y; γ̂(2), Fγ0

)t
P t
γ

)
+ o(ε2),

(10)301

where Pβ is an orthogonal matrix such that P t
βDβPβ = Ωβ

22M
β
22.1, Ω

β is the asymptotic302

variance of β̂ and Dβ is the diagonal matrix with elements λβ1 , . . . , λ
β
q1

and similarly for Pγ.303

Corollary 1 shows that when a bounded influence estimator η̂(2) is used, then also304

the effect of contamination on the asymptotic level (and power) of the robust generalized305
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quasi-deviance test remains bounded. When model comparison or model selection is the306

main focus of an analysis, then the tuning constants in the RDE estimator can be chosen307

to control the maximal bias on the asymptotic level of the test in a neighborhood of the308

model according to (10), as explained in Ronchetti and Trojani (2001) and Cantoni and309

Ronchetti (2001).310

4 Finite-sample Performance311

Extensive simulation results showing the good estimation performance of the RDE estimator312

are provided in the supplementary material. Here, we investigate the performance of robust313

inference based on ΛQM . To investigate the level of the test, we consider a model without314

dispersion. To this end we generateN = 1000 samples with responses Y | (X,Z) ∼ DEP(µ, θ)315

where µ = exp(3 + 0X) and θ = exp(0), where X is uniformly distributed on the interval316

[−0.5, 0.5]. We consider the hypothesis test H0 : (β1, γ0) = (0, 0) vs H1 : (β1, γ0) 6= (0, 0).317

To investigate the influence of the sample size on the level of this test we compare318

the empirical rejection rate to the corresponding nominal level for samples of size n ∈319

{50, 100, 250, 500}. From the results in the left part of Table 1 it can be seen that for small320

samples (n = 50) the empirical rejection rates are already close to their nominal values.321

When the sample size increases, the empirical rejection rates approximate the asymptotic322

level even better and their is little difference between tests based on RDE using a Huber323

(HRDE) or Tukey bisquare (TRDE) weight function tuned for 90% efficiency. More details324

about the estimators are given in the supplementary material.325

To investigate the robustness of the level of the test, we fix the sample size at n = 50 and326

vary the contamination level. Vertical outliers are generated by multiplying the response327

with a factor 10 with the contamination fraction ε ranging from 0% to 25% in steps of 5%.328

From the results in the right part of Table 1 we can see that small to modest contamination329

levels (ǫ ≤ 10%) have little impact on the level of the test based on the HRDE estimator,330

but larger fractions of contamination affect the level more heavily. On the other hand,331

all levels of contamination have little effect on the level of the test based on the TRDE332

13



estimator.

sign.-

level
n ε

50 100 250 500 0% 5% 10% 15% 20% 25%

H
R
D
E

10% 12.20 12.20 11.90 10.00 12.20 11.90 12.60 25.50 42.60 70.60

5% 7.60 6.30 6.20 4.70 7.60 5.50 7.30 15.00 27.20 58.60

2.5% 4.30 4.00 3.30 2.80 4.30 3.10 3.60 9.10 18.00 47.10

1% 2.90 1.90 1.70 1.00 2.90 1.10 1.20 4.10 9.80 32.70

T
R
D
E

10% 12.30 12.10 11.30 9.90 12.30 12.40 10.10 11.60 12.10 9.70

5% 7.70 6.60 6.50 4.90 7.70 8.50 7.00 6.80 6.30 5.20

2.5% 4.60 4.60 3.60 2.70 4.60 4.40 4.30 3.70 3.50 2.90

1% 2.70 2.10 1.70 1.20 2.70 2.00 1.80 1.50 1.90 1.90

Table 1: Empirical rejection rates for different significance levels of the test (sign.-levels) for

a Poisson model without dispersion. On the left, results for uncontaminated samples of

different sizes. On the right, results for contaminated samples of size n = 50 for several

contamination levels.

333

To investigate the power of the test, we now consider a model with constant dispersion.334

To this end we generate N = 1000 samples of size n ∈ {50, 100, 250, 500} with responses335

Y | (X,Z) ∼ DEP(µ, θ) where µ = exp(2 −X), where X is uniformly distributed on the336

interval [−0.5, 0.5], and with constant dispersion θ which varies in the range [0.25, 3.5].337

Hence, we consider both underdispersion and overdispersion. We test for presence of338

dispersion, i.e. H0 : θ = 1 vs H1 : θ 6= 1. For the setting without dispersion (i.e. θ = 1) the339

results for the level of the test are similar as above and can be found in the supplementary340

material. The power curves in Figure 1 show that the power increases to 1 when the341

dispersion θ moves away from the null hypothesis. Clearly, the power increases faster when342

the sample size grows, as expected.343

To investigate the robustness of the power, we again consider samples of size n = 50344

with a varying fraction of vertical outliers, generated as before. The resulting power curves345

in Figure 2 clearly show that similarly as for the level, also the power of the test based346

on the HRDE estimator is affected more when the contamination level increases. On the347

other hand, the test based on the TRDE estimator again shows good behavior for all348

contamination levels. Overall we can conclude that robust inference based on the TRDE349
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estimator yields reliable results in terms of both level and power for all contamination levels350

considered.
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Figure 1: Power of the dispersion test for uncontaminated data with various sample sizes

from a Poisson model with constant dispersion.
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Figure 2: Power of the dispersion test for contaminated data from a Poisson model with

constant dispersion.

5 Data Examples352

In this section we illustrate our methodology on two real data examples. In the first example353

a double binomial model is used while a double Poisson model is used in the second example.354
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An additional example for the double binomial model can be found in the supplementary355

material. For these examples we apply the RDE estimators with 90% efficiency as before.356

5.1 Double binomial model: UCB admissions data357

We consider data of student admissions into UC Berkeley’s graduate school of the year358

1973 for the six largest departments (Bickel et al., 1975). These data, which are shown in359

Table 2, have been discussed by various authors as an illustration of Simpson’s paradox.360

We consider a (double) binomial GLM with admissions rate as the response. Gender and

Table 2: UC Berkeley admissions proportions into graduate school for the year 1973.

Gender Dept A Dept B Dept C Dept D Dept E Dept F

Male 512/825 353/560 120/325 138/417 53/191 22/373

Female 89/108 17/25 202/593 131/375 94/393 24/341

361

department are used as covariates for the mean model and we consider a constant dispersion362

model. The model is thus given by363

logit(µ) = β0+β1DeptB+β2DeptC+β3DeptD+β4DeptE+β5DeptF+β6Female, log(θ) = γ0364

The estimates and their corresponding p-values obtained by the CDE, CEQL, HRDE365

and TRDE estimator are shown in Table 3. From the results it can be seen that the366

gender effect is not significant. Moreover, the admission rates of department B do not differ367

significantly from those of department A (the baseline). We can also test the joint null368

hypothesis H0 : β1 = β6 = 0. For the test based on the TRDE estimator, the resulting369

p-value is 0.51, which confirms that there is no evidence for these effects.370

The main difference between the two robust estimators and the two non-robust estimators371

is obtained for the dispersion. Both the CDE and CEQL estimates indicate presence of372

overdispersion. On the other hand, both RDE estimates indicate underdispersion. For373

example, the TRDE estimate for θ is exp(1.29) = 3.63 corresponding to underdispersion.374
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Figure 3: Residuals for the RDE fit on the UCB admissions data. The department has been

indicated with a capital letter and the gender with a small letter.

The difference with the classical results can be explained by examining the residuals of the375

TRDE estimator in Figure 3. Observation 7, corresponding to the female admissions rate376

for department A, has a large positive residual. From the data in Table 2 it can indeed be377

seen that for department A the admissions percentage for female students is substantially378

higher than for male students. This deviating observation clearly influences the nonrobust379

estimates of dispersion while it has little effect on the RDE estimators. Indeed, when the380

data are refit without observation 7, also the nonrobust estimators indicate underdispersion381

which confirms the robustness of the results obtained by our methodology.382

Estimator β0 β1 β2 β3 β4 β5 β6 γ0

CDE 0.58 (0.00) -0.04 (0.76) -1.26 (0.00) -1.29 (0.00) -1.74 (0.00) -3.31 (0.00) 0.10 (0.34) -0.51 (0.20)

CEQL 0.58 (0.00) -0.04 (0.86) -1.26 (0.00) -1.29 (0.00) -1.74 (0.00) -3.31 (0.00) 0.10 (0.58) -1.59 (0.06)

HRDE 0.50 (0.00) 0.04 (0.56) -1.10 (0.00) -1.16 (0.00) -1.58 (0.00) -3.17 (0.00) -0.02 (0.73) 0.86 (0.05)

TRDE 0.49 (0.00) 0.05 (0.39) -1.09 (0.00) -1.14 (0.00) -1.57 (0.00) -3.15 (0.00) -0.03 (0.50) 1.29 (0.00)

Table 3: Parameter estimates for the UCB admissions data. P-values are shown between

brackets.
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Estimator β0 β1 β2 β3 β4 β5 β6 γ0 γ1

CDE 2.24 (0.00) -1.18 (0.05) -0.26 (0.60) -0.24 (0.12) -0.19 (0.24) 0.02 (0.00) -0.41 (0.21) -2.91 (0.00) 0.79 (0.17)

CEQL 2.31 (0.00) -0.88 (0.02) -0.32 (0.39) -0.19 (0.07) -0.14 (0.20) 0.02 (0.00) -0.46 (0.03) -2.39 (0.00) 0.38 (0.27)

HRDE 1.33 (0.00) -0.29 (0.38) -0.27 (0.53) 0.02 (0.85) -0.17 (0.14) 0.05 (0.00) -0.16 (0.44) -1.36 (0.00) 0.51 (0.23)

TRDE 1.28 (0.00) -0.30 (0.35) -0.25 (0.55) 0.05 (0.65) -0.15 (0.17) 0.05 (0.00) -0.10 (0.62) -1.21 (0.00) 0.36 (0.38)

Table 4: Parameter estimates for epilepsy data. P-values are shown between brackets.

5.2 Double Poisson model: epilepsy data383

As an illustration for the Poisson model, we consider data from a double blind drug study384

comparing a new anti-epileptic drug called topiramate with a placebo (Faught et al., 1996).385

Patients suffering from epilepsy were randomized over the two groups. During the course of386

sixteen weeks, the number of seizures per week was recorded for each patient. We consider387

the total number of seizures during weeks nine through twelve. Patients dropping out of388

the study before this time were discarded. The resulting data set contains 40 patients that389

received a placebo and 39 patients that received the drug.390

Next to the treatment (topiramate/placebo), 5 other predictor variables are available

for each patient: sex, race, weight, height and its baseline seizure rate (base). This baseline

consists of a 12-week period during which the number of seizures was measured before the

start of treatment-placebo study. We have robustly standardized both weight and height.

Since it is a priori unclear whether the drug could also have an impact on dispersion, we

have included treatment in the dispersion model. This leads to the following models for the

mean and dispersion:

log(µi) = β0 + β1sex + β2race + β3height + β4weight + β5base + β6trt,

log(θi) = γ0 + γ1trt.

Since there may be leverage points in the space of the three continuous predictors391

weight, height and base, we determine the weights wj(xi, zi) by applying the hard cutoff392

rule discussed in Section 2, where we use the MCD with tuning parameter α equal to 0.75393

to obtain the robust location and scatter estimates.394

The parameter estimates and corresponding p-values obtained by the CDE, CEQL and395
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RDE estimators are shown in Table 4. Note that the variable sex is found to be significant396

by the classical estimators, while it is not according to the robust estimators. We may use397

the robust inference to test the joint null hypothesis H0 : β1 = β2 = β3 = β4 = β6 = γ1 = 0.398

The test based on TRDE yields a p-value equal to 0.54, suggesting that these predictors399

may be excluded from the final model and thus there is no treatment effect, in particular.400

Note that according to the RDE estimate the constant dispersion parameter γ0 is clearly401

significant.402

The scaled Pearson residuals for the TRDE fit are shown in Figure 4. Clearly, there403

are two outliers with a large negative residual, which are the patients coded as 601731 and404

601909. Given their huge deviation from the robust fit, it can be expected that the impact of405

these observations on the classical estimator is severe. These patients have an exceptionally406

high baseline seizure rate of respectively 198.3 and 117.0, whereas the remaining observations407

have a baseline seizure rate between 4 and 64. As both observations were recognized as a408

leverage point, they were down-weighted in the robust analyses. Furthermore, there are409

three observations in the control group with a moderately large positive residual. Since410

these residuals are positive, the observed number of seizures is larger than expected under411

the model. This illustrates that a robust analysis may provide useful extra information. For412

instance, based on this result it may be decided that an intervention is needed for these413

cases, e.g. the need of medication due to health concerns.414

6 Penalized RDE Estimators415

In this section, we consider two extensions of the RDE estimator. First, we consider416

high-dimensional regression where the number of predictors is large and may even exceed417

the sample size. To obtain stable estimates in this setting, we add a sparsity penalty to the418

RDE estimator. In the second extension we allow for more flexible models by replacing the419

GLM for the mean and/or dispersion in (1) by a generalized additive model (GAM).420

Both extensions rely on the weighted least squares representation of the RDE estimator

in (3). Let X and Z denote the design matrices for the mean and dispersion model,
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Figure 4: Scaled Pearson residuals for the RDE fit of the double Poisson model for the

epilepsy data.

respectively. As shown in Appendix 8.2, β̂ and γ̂ jointly solve the weighted least squares

problems

min
β

(ỹβ −Xβ)tWβ(ỹβ −Xβ) (11)

min
γ

(ỹγ − Zγ)tWγ(ỹγ − Zγ), (12)

where the elements of the weight matricesWβ = diag(wβ,1, . . . , wβ,n),Wγ = diag(wγ,1, . . . , wγ,n)

and pseudo response vectors ỹβ = (ỹβ,1, . . . , ỹβ,n)
t, ỹγ = (ỹγ,1, . . . , ỹγ,n)

t are given by

wβ,i = E[ν1 (Yi, µi, θi)Uµi
]w1(xi, zi)h

′(xt
iβ)

2,

ỹβ,i = xtiβ +
ν1(yi, µi, θi)− E[ν1(y, µi, θi)]

E[ν1(y, µi, θi)Uµi
]h′(xt

iβ)
, (13)

wγ,i = E[ν2 (Yi, µi, θi)Uθi ]w2(xi, zi)g
′(zt

iγ)
2,

ỹγ,i = ztiγ +
ν2(yi, µi, θi)− E[ν2(y, µi, θi)]

E[ν2(y, µi, θi)Uθi ]h
′(zt

iγ)
. (14)

This weighted least squares formulation of the RDE estimator allows to calculate the421

estimator via iteratively reweighted least squares, alternating between β and γ. More422

importantly, this representation makes it possible to introduce penalized versions of the423

RDE estimator by iteratively calculating penalized least squares solutions as illustrated424

below.425
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6.1 Sparse RDE estimator426

A popular way to select the most important predictors and estimate the parameters in high-

dimensional regression problems is by adding a sparsity inducing penalty to the objective

function of an estimator (Hastie et al., 2015). Avella-Medina and Ronchetti (2018) proposed

a penalized version of the robust quasi-likelihood estimator of Cantoni and Ronchetti (2001).

A similar approach can be used in the double exponential framework by adding a sparsity

penalty in (11)-(12). For example, in case of a lasso penalty (Tibshirani, 1996), the sparse

RDE estimator jointly solves

min
β

{(ỹβ −Xβ)tWβ(ỹβ −Xβ) + λβ‖β‖1} (15)

min
γ

{(ỹγ − Zγ)tWγ(ỹγ − Zγ) + λγ‖γ‖1}, (16)

where λβ and λγ are the usual sparsity tuning parameters. For given values of these tuning427

parameters, the sparse estimator can be calculated iteratively by alternately solving the428

penalized weighted least squares problems (15)-(16). These penalized weighted least squares429

problems can be solved efficiently via coordinate descent (Fu, 1998; Friedman et al., 2010),430

resulting in the lasso estimates.431

Since lasso estimators tend to select more predictors than necessary (Meinshausen and

Bühlmann, 2006), we also consider adaptive lasso estimators (Zou, 2006) based on the initial

lasso estimates, as in Avella-Medina and Ronchetti (2018). Hence, in the second step the l1

norm ‖β‖1 in (15) is replaced by
∑p1

j=1 w̃(β̃j)|βj| with β̃ the initial lasso estimate of β and

where the weight function is given by

w̃(t) =





1/|t|, |t|> 0

∞, |t|= 0
.

Analogously, ‖γ‖1 in (16) is replaced by
∑p2

j=1 w̃(γ̃j)|γj| with γ̃ the initial lasso estimate of432

γ. In the supplementary material, consistency of robust lasso RDE estimators and oracle433

properties of the corresponding adaptive lasso RDE estimators are studied by exploiting434

the results of Avella-Medina and Ronchetti (2018).435
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Selection of the tuning parameters λβ and λγ is an important aspect of sparse estimation.

A common approach is to select the optimal values from a grid according to a selection

criterion. As selection criterion a computationally robust cross-validation (see Khan et al.,

2010) or a robust extended Bayesian information criterion (EBIC) (see e.g. Avella-Medina

and Ronchetti, 2018; Wang and Van Aelst, 2019) can be used. In particular, for any fixed

value λβ we determine the corresponding value of λγ that minimizes a robust extended BIC

criterion of the form

EBICγ(λ) = (ỹγλ
− Zγλ)

tWγλ
(ỹγλ

− Zγλ) + (log n+ τ log p2)
|γλ|
n
,

where |γ| is the number of nonzero coefficients in the vector γ and 0 ≤ τ ≤ 1 is a constant

which we set equal to 0.5 by default. Then, we consider a set of λβ values with corresponding

optimal λγ values and select the solution that minimizes

EBICβ(λ) = (ỹβλ
−Xβλ)

tWβλ
(ỹβλ

−Xβλ) + (log n+ τ log p1)
|βλ|
n
.

As usual, we consider a decreasing grid of λβ values and use the solution corresponding to436

the larger λβ value as initial values for the next λβ value. Such warm starts speed up the437

computations considerably.438

The supplementary material contains the results of two small simulation studies which439

show the good performance of this sparse adaptive lasso RDE estimator in sparse settings.440

To illustrate the sparse RDE estimator we apply it on the epilepsy data using EBIC to441

select the final model. In Section 5.2 we applied a robust test to conclude that baseline442

seizure rate was the only significant predictor for the mean model while the dispersion is443

constant. Fitting the adaptive lasso HRDE and TRDE estimators to these data yields444

the coefficient estimates in Table 5. It can be seen that both estimators yield very similar445

results and are able to select the most important predictors. Moreover, the adaptive lasso446

RDE estimates in Table 5 resemble the corresponding RDE estimates in Table 4 very well.447
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Estimator β0 β1 β2 β3 β4 β5 β6 γ0 γ1

HRDE 1.18 0.00 0.00 0.00 0.00 0.05 0.00 -1.08 0.00

TRDE 1.16 0.00 0.00 0.00 0.00 0.05 0.00 -1.06 0.00

Table 5: The sparse RDE parameter estimates for the epilepsy data.

6.2 RDE estimator for generalized additive models448

Sometimes the parametric assumption for the relation between the mean and/or dispersion

and their predictor variables in the GLM setting given by (1) is too stringent. A popular

way to make GLMs more flexible is by considering generalized additive models (GAMs)

instead. Robust estimation methods for GAMs have been proposed by Alimadad and

Salibian-Barrera (2011), Croux et al. (2012) and Wong et al. (2014). When both the mean

and dispersion are modeled via GAMs, the parametric models in (1) are replaced by the

more flexible relations

µi = h

(
p1∑

j=1

f1j(xij)

)
and θi = g

(
p2∑

j=1

f2j(zij)

)
,

with f11, . . . , f1p1 and f21, . . . , f2p2 unknown smooth functions of the predictor variables xi

and zi, respectively. These smooth functions can be estimated via penalized basis expansion

fitting. Similarly to Wong et al. (2014) we focus on the case p1 = p2 = 1 to ease notation

and denote f11 = f1, f21 = f2, x1i = xi and z1i = zi for all i. The extension to p1 > 1 and

p2 > 1 is straightforward. Consider two sets of prespecified basis functions d11(·), . . . , d1q1(·)
and d21(·), . . . , d2q2(·), and assume that the smooth functions f1 and f2 can be represented

as

f1(x;β) =

q1∑

j=1

d1j(x)βj and f2(z;γ) =

q2∑

j=1

d2j(z)γj,

where β = (β1, . . . , βq1)
t and γ = (γ1, . . . , γq2)

t are vectors of basis coefficients. To avoid

overfitting the data, regularization is used to estimate the basis coefficients β and γ. Let

Sβ and Sγ be prespecified penalty matrices and λβ and λγ two strictly positive smoothing
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parameters, then β and γ can be estimated by jointly solving

min
β

{(ỹβ −D1β)
tWβ(ỹβ −D1β) + λββ

TSββ} (17)

min
γ

{(ỹγ −D2γ)
tWγ(ỹγ −D2γ) + λγγ

TSγγ}, (18)

whereD1 andD2 are the design matrices corresponding to the two sets of basis functions. The

GAM RDE estimates can again be calculated iteratively by alternately solving problems (17)-

(18), which both are weighted additive model fits for which efficient algorithms are available.

The tuning parameters λβ and λγ can be selected via the same procedure as in the sparse

setting based on either robust cross-validation or robust BIC (see e.g. Wong et al., 2014).

In this setting, the robust BIC criteria to select λβ and λγ are given by

RBICβ(λ) = (ỹβλ
−D1βλ)

tWβλ
(ỹβλ

−D1βλ) + log n
tr(P−1

β Qβ)

n

RBICγ(λ) = (ỹγλ
−D2γλ)

tWγλ
(ỹγλ

−D2γλ) + log n
tr(P−1

γ Qγ)

n
,

where for given λ we have that Pβ = 1
n
(Dt

1WβD1 +2λSβ) and Qβ = 1
n
Dt

1AβD1 with similar

expressions for Pγ and Qγ . The matrix Aβ is a diagonal matrix with elements

ai = Var[ν1 (yi, µi, θi)]w1(xi, zi)
2h′(xt

iβ)
2,

on the diagonal.449

In the supplementary material we present the results of a small simulation study450

that confirms the robustness of this GAM RDE estimator. To illustrate the GAM RDE451

estimator, we consider a data set on Influenza-Like Illness (ILI) Visits in the United States452

(see Alimadad and Salibian-Barrera, 2011). The response variable contains weekly counts of453

ILI visits in the United States while the predictor is the considered week in the influenza454

season. This season starts from week 40 and runs until the end of week 20 of the next year,455

so it lasts 33 weeks. Data are available for the influenza seasons of 2006/2007, 2007/2008456

and 2008/2009 as shown in Figure 5. Note the 4 high counts at the end of season 2008-2009,457

which can be explained by the fact that the H1N1 flu started spreading. Moreover, also458

seasonal variation can be observed from Figure 5, so robust estimation of both mean and459

dispersion is advisable.460
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We compare the fits of four models. The first model assumes a GLM for both mean461

and dispersion. The second model assumes a GAM for the mean model and a GLM for the462

dispersion model. The third model reversely assumes a GLM for the mean model and a463

GAM for the dispersion model while the final model assumes a GAM for both mean and464

dispersion. All models are fitted via the penalized RDE estimator. For GAMs, we use cubic465

regression splines with 10 knots and the commonly used integrated square second derivative466

penalty. The resulting fits are shown in Figure 5. It is clear that a GLM for the mean is not467

flexible enough, leading to poor fits. On the other hand, much better fits are obtained when468

a GAM is used for the mean. There is little difference between the fit of model 2 which469

assumes a GLM for the dispersion and model 4 which assumes a GAM for the dispersion,470

so a GLM seems sufficiently flexible to model the dispersion in the data.
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Figure 5: ILI visits data set with four fits obtained by different combinations of GLMs and

GAMs estimated by (extended) RDE estimates.
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7 Discussion472

The double exponential family constitutes a powerful tool to model both mean and dispersion473

of the response in the context of generalized linear models. However, outliers in the data474

may heavily affect the classical estimates obtained by maximum likelihood. Therefore, we475

proposed the robust double exponential (RDE) estimator, which is less sensitive to outliers476

and allows to model simultaneously the mean and dispersion as a function of covariates.477

Moreover, we introduced a generalized quasi-deviance measure to develop robust inference478

which allows to test for the presence of dispersion among others.479

While there is a natural choice for the link function in the mean model, it is well-known480

that there is no natural choice for the link function in the dispersion model. We have used481

the exponential function, which is a common choice. While reasonable choices for the link482

function lead to similar fits in our experience, a formal procedure to compare models based483

on different link functions would be desirable. This is a topic for further research.484

The excellent performance of the RDE estimator and the corresponding robust tests485

was illustrated in an extensive simulation study. Especially the TRDE estimator based on486

the Tukey bisquare function combines a high level of robustness with a high accuracy of the487

inference. Real data applications illustrated that the proposed methodology can provide a488

better insight in the structure of the data and may lead to more reliable conclusions.489

The weighted least squares representation of the RDE is exploited to develop penalized490

versions of the estimator. Sparse RDE estimators have been proposed to handle high-491

dimensional regression models while GAM RDE estimators have been introduced to allow492

for more flexible models. An implementation of RDE estimator together with its extensions493

will be made publicly available as an R package on CRAN.494
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8 Appendix654

8.1 Proof of Theorem 1655

As before, let η̂ be the RDE estimator of η in the full model and η̂
(0)
1 the RDE estimator

of η1 in the reduced model under the null hypothesis. Denote by η̂(0) = ((η̂
(0)
1 )t, 0t)t the

corresponding estimate of η under H0. Let us define

Λβ
QM =2

n∑

i=1

[
Qβ

M(yi, µ̂i, θ̂i, µ̂i, θ̂i)−Qβ
M(yi, µ̂

(0)
i , θ̂

(0)
i , µ̂i, θ̂i)

]
,

Λγ
QM =2

n∑

i=1

[
Qγ

M(yi, µ̂i, θ̂i, µ̂i, θ̂i)−Qγ
M(yi, µ̂

(0)
i , θ̂

(0)
i , µ̂i, θ̂i)

]
,

with

Qβ
M(yi, µ̃i, θ̃i, µi, θi) =

∫ µ̃i

s̃1i

ν1(yi, s, θi)w1(xi, zi) ds−
1

n

n∑

j=1

∫ µ̃j

s̃2j

E [ν1(y, s, θj)]w1(xj, zj) ds,

Qγ
M(yi, µ̃i, θ̃i, µi, θi) =

∫ θ̃i

t̃1i

ν2(yi, µi, t)w2(xi, zi) dt−
1

n

n∑

j=1

∫ θ̃j

t̃2j

E [ν2(y, µj, t)]w2(xj, zj) dt.
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Hence, ΛQM = Λβ
QM + Λγ

QM . Next, consider Dn as defined in condition B1. A second order

Taylor expansion at any point of Dn leads to

QM(yi, µ̂
(0)
i , θ̂

(0)
i , µ̂i, θ̂i) =QM(yi, µ̂i, θ̂i, µ̂i, θ̂i) + (η̂(0) − η̂)t

∂

∂η̃

[
QM(yi, µ̃i, θ̃i, µ̂i, θ̂i)

]
η̂

+
1

2
(η̂(0) − η̂)t

∂2

∂η̃j∂η̃k

[
QM(yi, µ̃i, θ̃i, µ̂i, θ̂i)

]
η∗

(η̂(0) − η̂),

where η∗ is on the line joining η̂(0) and η̂. Using the Leibniz integral rule, one can show

that:

∂

∂η̃
QM(yi, µ̃i, θ̃i, µ̂i, θ̂i) =


Ψβ(yi, µ̃i, θ̂i)

Ψγ(yi, µ̂i, θ̃i)


 ,

which is zero when evaluated in η̂. By differentiating this expression once more, we can see

that ∂2

∂η̃j∂η̃k
QM(yi, µ̃i, θ̃i, µ̂i, θ̂i) is a block diagonal matrix:

∂2

∂η̃j∂η̃k
QM(yi, µ̃i, θ̃i, µ̂i, θ̂i) =




∂
∂β̃
Ψβ(yi, µ̃i, θ̂i) 0

0 ∂
∂γ̃
Ψγ(yi, µ̂i, θ̃i)


 .

Combining the latter results, we obtain:

Λβ
QM + Λγ

QM =−
n∑

i=1

(β̂(0) − β̂)t
[
∂

∂β̃
Ψβ(yi, µ̃i, θ̂i)

]

β∗

(β̂(0) − β̂)

−
n∑

i=1

(γ̂(0) − γ̂)t
[
∂

∂γ̃
Ψγ(yi, µ̂i, θ̃i)

]

γ∗

(γ̂(0) − γ̂).

Using this expression, we can employ a similar reasoning as in Cantoni and Ronchetti (2006)656

and Proposition 4.1 in Heritier (1993) for Λβ
QM and Λγ

QM separately to obtain the desired657

result.658

8.2 Fisher scoring and weighted least squares representation659

The two estimating equations (3) for the RDE estimator can easily be solved alternately660

via Fisher scoring (Small et al., 2003, p. 50-52). For β we obtain that661

β = β + (nMβ)
−1

n∑

i=1

Ψβ(yi,β,γ)662

= β + (X tB11X)−1

n∑

i=1

Ψβ(yi,β,γ), (19)663
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with B11 defined in the supplementary material. Similarly, γ satisfies664

γ = γ + (ZtB22Z)
−1

n∑

i=1

Ψγ(yi,β,γ), (20)665

with B22 defined in the supplementary material. These two equations can be solved666

alternately until convergence.667

The two equations (19)-(20) can be rewritten in weighted least squares form. If we668

multiply both sides of (19) by X tB11X, then its j-th component becomes669

[
X tB11Xβ

]
j

=
[
X tB11Xβ +

n∑

i=1

Ψβ(yi,β,γ)
]
j

670

=

p∑

l=1

n∑

i=1

xijb11,ixilβl +
n∑

i=1

(ν1(yi, µi, θi)w1(xi, zi)µ
′
i,j − a1,j)671

=

p∑

l=1

n∑

i=1

xijb11,ixilβl +
n∑

i=1

(ν1(yi, µi, θi)− E[ν1(y, µi, θi)])w1(xi, zi)µ
′
i,j672

=
n∑

i=1

(
xt
iβ +

1

b11,i
(ν1(yi, µi, θi)− E[ν1(y, µi, θi)])w1(xi, zi)h

′(xt
iβ)
)
b11,ixij673

=
n∑

i=1

(
xt
iβ +

ν1(yi, µi, θi)− E[ν1(y, µi, θi)]

E[ν1(y, µi, θi)Uµi
]h′(xt

iβ)

)
b11,ixij674

= [X tB11ỹβ]j,675

with ỹβ defined in (13). Hence, β is a solution of weighted least squares problem (11).676

Similarly, the fixed point solution for γ in (20) can be rewritten as

ZtB22Zγ = ZtB22ỹγ ,

which implies that γ solves the weighted least squares problem (12).677
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