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ABSTRACT
We report the synthesis and characterization of high-quality thin films of the topological semimetal (Bi2)5(Bi2Se3)7. Cryogenic magneto-
transport experiments reveal strong metallic character and spin–orbit coupling in the films. By studying the temperature dependence of the
electrical resistance of the topological semimetal, we observe a pronounced Kondo effect, which points toward the presence of magnetic
scatterers. With the aid of density functional theory calculations, we identify Bi vacancies as intrinsic magnetic scatterers in this topological
semimetal.
© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0167544

INTRODUCTION

Topological materials are exotic quantum materials with a non-
trival band topology. They could be promising building blocks for
future thin-film electronic devices with potential applications rang-
ing from energy efficient spin–orbit torque memories,1 to energy
harvesting devices,2,3 to neuromorphic computing devices,4 or to a
new generation of amplifier devices.5 Recently, a new model system
to study topological break-down and interlayer interactions has been
discovered, (Bi2)n(Bi2Se3)m, a natural hetero-structure of the model
3D topological insulator Bi2Se3 and the 2D topological insulator Bi2.
In bulk, it is a semimetal with Dirac-cone-like topological surface
states that depend on its termination.6,7 Furthermore, the compound
could be very valuable for future functional electronics since it pos-
sesses topological surface states even in the bi-layer limit, enabling
the fabrication of ultra-thin topological devices,8 and it could be
promising for energy harvesting applications thanks to its low ther-
mal conductivity.9 Here, we experimentally reveal the presence of

magnetic scatterers in thin films of (Bi2)5(Bi2Se3)7 by performing
low-temperature magnetotransport experiments combined with in-
depth physical analysis. Supporting first-principle simulations allow
us to identify Bi vacancies as magnetic scatterers in this topological
semimetal.

High-quality (Bi2)5(Bi2Se3)7 thin films were grown using a
plasma-assisted molecular beam epitaxy (PA-MBE) technique on
α-Al2O3(0 0 0 1) c axis sapphire substrates (see the supplementary
material). This hybrid approach has already been successfully used
for the synthesis of transition metal dichalcogenide monolayers.10,11

The exact composition of this hetero-structure has been deter-
mined by Rutherford backscattering spectrometry, Raman micro-
scopy, and high-resolution transmission electron microscopy (see
the supplementary material). After growth and in order to prevent
surface degradation,12 a thin (2 nm) capping layer of Al2O3 or CaF2

was deposited in situ. No influence of the type of the capping layer
on the electronic properties of the thin films was found.
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FIG. 1. (a) Optical micrograph of a typical device. A current I is applied between the
source and drain lead and the resulting voltages Vxx and Vxy are measured. Scale
bar: 40 μm. (b) Temperature dependent longitudinal resistivity ρxx . (c) Longitudinal
and (d) transverse resistivity as a function of magnetic field measured at T = 2 K.

The as-grown films were patterned into Hall bar shape using
standard optical lithography and dry etching/ion milling. An optical
micrograph of a typical Hall bar device with dimensions L = 100 μm
and W = 10 μm is shown in Fig. 1(a). The temperature and magnetic
field dependent longitudinal (Rxx) and transverse (Rxy) resistances
were obtained by applying a DC current of I = 1–10 μA to the source
and drain leads of the device and by measuring the resulting DC
voltage drops Vxx and Vxy [Fig. 1(a)].

We studied the magnetotransport behavior of ten devices fabri-
cated using thin (Bi2)5(Bi2Se3)7 films with a thickness of 12 nm from
multiple MBE runs under identical growth conditions. Figure 1(b)
shows the representative temperature dependent resistivity ρxx(T)
(sample B). ρxx decreases with decreasing temperature, which can
be attributed to a reduction of electron–phonon interaction and
which is a characteristic of metallic samples.13 At low temperatures
(T < 20 K), a resistance minimum can be observed [see Fig. 2(a)].
We attribute this to Kondo correlations14 present in the (Bi2)5
(Bi2Se3)7 films [see Fig. 2(a) and discussion below]. The metal-
lic behavior of the samples is further reflected by the high carrier
density of 6 ± 3 × 1021 cm−3 [carrier mobility 5 ± 3 cm2

(V s)−1]
obtained from measurements of ρxx(B) and ρxy(B) [see Figs. 1(c)
and 1(d) for such data on sample B]. The observed metallic behav-
ior is in agreement with recent angle-resolved photo electron
microscopy experiments, which found that natural heterostructures
of Bi-bilayers and Bi2Se3 quintuple layers are bulk semi-metals
that possess metallic, topological surface states.6,15 The magneto-
resistance is quadratic at high fields and shows a cusp due to weak-
antilocalization at low fields (see discussion in the supplementary
material).

We further note a non-linearity in ρxy(B) measurements
[Fig. 1(d)]. This could indicate transport via different electronic
bands or spatially separated parallel conducting channels with
different carrier mobilities and concentrations.16–18

Alternatively, as we will discuss below, this non-linearity in the
Hall effect can indicate an anomalous Hall contribution to ρxy(B)
induced by the presence of magnetic scatters inside our sample,
similar to previous findings in magnetically doped Bi2Se3.19

In the following, we investigate the non-monotonic tempera-
ture dependence of the electrical resistance of (Bi2)5(Bi2Se3)7 films,
which we attribute to the Kondo effect induced by local magnetic

FIG. 2. (a) Temperature-dependent longitudinal resistance of sample B (purple
open circles) and a fit using Eq. (1) (green line). A field of B = 1 T was applied.
(b) Normalized Kondo resistivity as a function of temperature (normalized by the
Kondo temperature) for samples A–C (open circles) together with the universal
functional predicted by NRG calculations (green line).

scatterers. Figure 2(a) shows the four-terminal resistance of sample
B as a function of temperature measured at B = 1 T. This mag-
netic field was applied to suppress contributions from localization
effects (WAL/WL)20 and is well below the critical field Bc necessary
to overcome the Kondo gap for a S = 1/2 system at T ≪ TK = 15 K
(see discussion below), where Bc = 0.5kBTK/(gμB) ≈ 6 T.21 We
observe a logarithmic increase of Rxx below a temperature of 10 K
followed by a saturation below 1 K. Such saturation disagrees with
(anti-)localization effects where ∂R/∂T ∝ −ln T for T → 0 and indi-
cates the absence of a disorder-induced metal to insulator transition
or the opening of a bandgap.20

In metallic systems containing magnetic impurities, the con-
duction electrons can couple anti-ferromagnetically to the local
magnetic moments of the impurities. This enables a new spin–flip
scattering process with an anomalous component of the resistance
RK(T/TK), which is approximately logarithmic in T when T ≈ TK.
Below this characteristic Kondo temperature TK, thermal fluctu-
ations become weaker than the exchange energy and a so-called
Kondo cloud is formed in which conduction electrons screen the
local magnetic impurities. This leads to a saturation of the resistance.
To this end, the temperature dependent resistance of the sample can
be modeled as

R(T) = R0 + qT2
+ pT5

+ RK(
T

TK
), (1)

where R0 is the residual resistance due to sample disorder
and the terms proportional to T2 and T5 describe contribu-
tions by electron–electron and electron–phonon interactions.22 The
contribution of the Kondo effect is described by the following
empirical formula:
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RK(
T

TK
) = RK(0)(

T′2K

T2
+ T′2K

)

s

, (2)

where T′K = TK/(21/s
− 1)1/2. Assuming magnetic impurities with

spin S = 1/2, the numerical factor becomes s = 0.225.
A fit to our experimental data using Eq. (1) is shown in Fig. 2(a)

and yields R0 = 2330 Ω, q = 2.4 × 10−2 Ω/K2, p = 1.6 × 10−6 Ω/K5,
RK(0) = 30.8 Ω, and TK = 16 K. These parameters can be used to
re-scale the experimental data of various samples and compare their
normalized Kondo resistivity RK(T)/RK(0) vs T/TK to the universal
Kondo behavior from numerical renormalization group calculations
(NRG).23 Such scaling is shown Fig. 2(b). We observe that all experi-
mental curves follow an universal functional and that this functional
can be well described by the NRG calculations for the Kondo
effect.

In order to find the origin of magnetic scatterers in our sam-
ple, we performed first-principles simulations, based on density
functional theory (DFT), of Bi2/(Bi2Se3)n stacks, including different
intrinsic point defects. The atomic configuration and energy band
structure of Bi2/Bi2Se3 are shown in Figs. 3(a) and 3(b), respec-
tively. The system is predicted to be semi-metallic, in agreement with
other DFT calculations reported in the literature.6,15 Various intrin-
sic point defects in 2D Bi2/Bi2Se3 stacks were first investigated using
(3 × 3) supercells. We considered Bi (VBi) and Se (VSe) vacancies
and Bi (BiSe) and Se (SeBi) antisites, present at different locations
in the Bi2/Bi2Se3 stack, as shown in Fig. S1 (see the supplementary
material). All these defects have relatively low formation energies,
lying typically between 0.5 and 2 eV (see Fig. S2), except for SeBi,
which has a negative formation energy, with this defect being spon-
taneously formed in the 2D material. Surprisingly, none of these
defects have a net magnetic moment; this can be attributed to the
charge transfer occurring between the Bi2 and Bi2Se3 layers. Indeed,
the Bi2 layer tends to give electrons (about 7.8 × 1013e/cm2) to the
Bi2Se3 layer,24 which leads to an empty (defect in Bi2) or fully
occupied (defect in Bi2Se3) defect level, the defect then being non-
magnetic. As shown in the supplementary material (see Fig. S3),
when the distance between the Bi2 and Bi2Se3 layers is artificially
increased, which results in a reduced charge transfer between these
layers, the magnetic moment of some defects “reappears.” We next
considered defects in a Bi2/(Bi2Se3)2 stack. The calculated charge

FIG. 3. (a) Top and side views of the atomic structure of Bi2/Bi2Se3. The green
and purple spheres correspond to the Se and Bi atoms, respectively. (b) Energy
band structure of Bi2/Bi2Se3. The reference (zero) energy level corresponds to the
Fermi level.

FIG. 4. (a) Atomic structure of a Bi2/(Bi2Se3)2 stack with a Bi vacancy in the bot-
tom Bi2Se3 layer. The band-decomposed charge densities in the energy range
between −0.02 and 0.03 eV are also shown in yellow. (b) Projected band struc-
tures of the system for spin-up and spin-down electrons. The red lines correspond
to the contributions from the 4p-Se orbitals around the Bi vacancy.

transfer to the bottom Bi2Se3 layer is reduced by about an order
of magnitude, as compared to the top Bi2Se3 layer. We studied
the same defects as discussed above, present at different possible
sites in the bottom Bi2Se3 layer, and identified only one defect with
a net magnetic moment of about 0.55 μB, namely, a Bi vacancy.
The atomic configuration of the corresponding defective structure
is shown in Fig. 4(a). The formation energy of this Bi vacancy
in the Bi2/(Bi2Se3)2 structure lies between about 0.5 and 1 eV, in
the Se-rich and Bi-rich limit, respectively. As shown in Fig. 4(b),
localized states, corresponding to the 4p-Se orbitals neighboring the
Bi vacancy site, are clearly observed in the electronic density of
states within an energy range between 0 and 0.5 eV from the Fermi
level EF. The spin-polarized energy band structure also indicates
the presence of localized spin-down states near EF, associated with
the 4p-Se orbitals. We thus tentatively assign the magnetic defects
responsible for the Kondo effect observed in our samples to these
Bi vacancies.

SUMMARY

To summarize, we present a hybrid epitaxy approach,
PA-MBE, suitable to grow high-quality thin films of the topolog-
ical semimetal (Bi2)5(Bi2Se3)7. Depth cryogenic magnetotransport
experiments combined with first-principle simulations allowed us
to reveal that Bi vacancies could act as intrinsic magnetic scatterers
in this material. These scatterers explain the observed pronounced
Kondo effect in the temperature dependent longitudinal resistance
of the devices. Therefore, our work highlights how intrinsic impuri-
ties can strongly impact topological properties, an important finding
when considering topological materials for future device integration.

SUPPLEMENTARY MATERIAL

The supplementary material contains experimental details
about crystal growth and characterization (Raman, TEM, RHEED,
XRD, RBS), atomic force microscopy, details about weak-
antilocalization and computational methods.
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