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ABSTRACT Convolutional neural networks have been widely used to detect and classify various objects
and structures in computer vision and medical imaging. Access to large sets of annotated data is commonly
a prerequisite for achieving good performance. Before the deep learning era, systems based on handcrafted
features were employed, which typically required less annotated data but also reached inferior performance.
In this work, we investigate the benefit of combining deep learning using a convolutional neural network
(CNN), with handcrafted features for lung nodule detection from CT imaging. We investigate three fusion
strategies with increasing complexity, and evaluate their performance for varying amounts of training data.
Our results indicate that combining handcrafted features with a 3D CNN approach significantly improves
lung nodule detection performance in comparison to an independently trained CNN model, regardless of
the fusion strategy. Comparatively larger increases in performance were obtained when less training data
was available. The fusion strategy in which features are combined with a CNN using a single end-to-end
training scheme performed best overall, allowing to reduce training data by 33% to 43%, while maintaining
performance. Among the investigated handcrafted features, those that describe the relative position of the
candidate with respect to the lung wall and mediastinum, were found to be of most benefit.

INDEX TERMS 3D CNN, convolutional neural networks, deep learning, data augmentation, false positive
reduction, handcrafted features, lung cancer, pulmonary nodule detection.

I. INTRODUCTION
Deep learning models have shown tremendous progress in
image classification, object detection, and segmentation, both
in the domains of computer vision and medical imaging.
Considering the case of image classification, convolutional
neural networks (CNN) constitute the most widely used
type of network. The initial convolutional layers are able
to discover and extract discriminating feature maps, while
the later fully connected layers of the architecture handle
their classification and the output of the system. In general,
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a prerequisite for their success is large amounts of annotated
data for training and tuning the deep learning models.

In various fields, including medical image analysis, data
and in particular annotations are costly and time-consuming
to come by. Reducing the amount of needed annotated
samples for a deep learning model to reach a certain
performance is an active area of research, which has led
to various promising techniques currently receiving a high
amount of attention in the domain, including but not
limited to transfer learning, self-supervision, and weakly or
unsupervised methods.

Non-deep learningmachine learningmethods often require
comparatively less labelled data to reach their optimal
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accuracy, but their performance is often below that of a
deep learning system. In this case, so-called handcrafted
features are carefully selected to accurately represent the
available data, after which generic classifiers are employed
to categorize these representations. While such approaches
may require less annotated data, the achievable performance
is usually inferior to that of CNNs, explaining the popularity
of the latter approaches when sufficient data is available.

Combining handcrafted features and deep learning using
CNNs for image classification can potentially improve
performance, depending on the amount of available annotated
data. In this work, we aim to investigate the benefit of such
an approach for the case of automated lung nodule detection
from CT imaging. The task has been extensively studied,
achievable performance is well established, and a large public
dataset is available. For this purpose, we first compare
three approaches for combining handcrafted features and a
CNN classification network. Next, we assess the influence
of the amount of annotated data available for training on
the classification performance. Finally, we perform an initial
analysis on which handcrafted features have the largest
benefit to classification performance.

A. LUNG NODULE DETECTION AND THE LUNA16 DATASET
Lung nodule detection from CT thoracic imaging is a
challenging application in medical imaging. The task is of
high clinical importance because pulmonary lung nodules
may indicate early stages of lung cancer, and early detection is
the primary lever to improve patient survival [1]. Automated
approaches to lung nodule detection have been studied
extensively in the field of medical image analysis [2], [3],
benefiting from the availability of the high-quality, public
LIDC-ICRI dataset [4].

In 2016, the LUNA16 Challenge [5] was held, enabling
the scientific community to objectively compare approaches
to detect and classify lung nodules. The challenge featured
two tracks: one for full lung nodule detection systems, taking
as an input thoracic CT imaging; and a second track for false
positive reduction in which coordinate locations of candidate
nodules were given. The associated dataset was based
on 888 scans of the LIDC-ICRI dataset, and participants
were asked to submit their prediction for the full dataset
by performing 10-fold cross-validation over predefined
folds.

At the time of the LUNA16 challenge workshop
(April 2016), Dou et al. [6] presented the system that reached
the highest performance for false positive reduction track in
terms of the employed competition metric. Their approach
comprised three networks that were independently trained
with varying patch sizes, the outputs of which were fused by
calculating the weighted average of the predictions. LUNA16
initially continued to accept challenge submissions, and
numerous new studies further improved the classification
score. In January 2018, submissions to the online challenge
platform were no longer accepted by the organizers, as they

suspected authors overfitted through excessive use of cross-
validation, and newly reached performances were overly
optimistic.

B. PREVIOUS WORK ON COMBINING HANDCRAFTED
FEATURES WITH DEEP LEARNING
Our aim is to combine CNNs with handcrafted features
extracted from the same imaging source. There have been
numerous works in which CNNs have been combined with
other features, in a range of application domains. In the med-
ical field, such features often describe information obtained
from other, non-imaging sources such as demographic data
or blood analysis results. In general, they are referred to
as tabular or structured data. Terminology for referring to
different fusion approaches was found to be inconsistent
across domains and authors.

To facilitate the discussion of previous work in the field,
we chose to adopt the terms early, intermediate and late
fusion, as used in a recent review on combining multi-modal
data for precision healthcare [7]. Early fusion takes place
at the data input level, mapping multiple sources to the
same information space. Several authors have found it to be
unsuitable for combining imaging data with structured data,
as the preprocessing methods most suited for each type of
data are different [8].

Late fusion merges the final predictions or decisions
obtained for each single type of data, and can be seen as
a form of ensemble learning. This type of fusion is most
straightforward, and typically used when the features from
both sources have been optimized separately. Combining
corresponding models to make the final decision typically
offers better performance over individual models.

Intermediate fusion, also referred to as joint fusion, covers
a wide range of architectures in which fusion takes place at a
feature level. It is generally a multistep approach, involving
stages for feature extraction and selection from each source,
and fusion models which combine the features to reach
a final decision. Stages can be trained independently or
jointly depending on whether the combined features capture
different aspects of the image.

Considering previous work in the fields of video clas-
sification [9], human activity recognition [10], emotion
recognition [11] and medical imaging [7], a universal optimal
choice of fusion does not exist. The choice seems to be
dependent on the type of data and the considered task.

Approaches for combining deep learning with handcrafted
image features have been proposed in both computer vision
and medical imaging. For the application of lung nodule
detection, Li et al. [12] proposed a technique where a CNN
model was combined with a set of handcrafted features
using intermediate fusion. More specifically, the feature
values in the output layer of the CNN were combined
with 29 handcrafted features representing intensity, geometry
and texture characteristics. A feature selection method,
the sequential forward selection [13] method coupled with
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an SVM, was employed to choose the final feature set and
classification. Several CNN architectures were compared.
The proposed fusion was found to outperform all individual
CNN approaches. The authors hypothesized the fusion with
handcrafted features reduced the need for large sets of
training data, but this was not experimentally verified.

Considering other applications, notable approaches
include the following. Wang et al. [14], presented a cascaded
strategy consisting of a light CNN model and a system
based on handcrafted features describing morphology,
color, and texture. Two sub-systems individually performed
classification and a probability output was calculated by
taking a weighted average. For cases where the system was
uncertain, a second-stage classifier was employed, based
on the concatenation of the handcrafted and CNN-derived
features. The final decision was made by thresholding. This
approach was applied to detect mitosis in breast cancer
pathology images and it was found to be sufficiently accurate
and fast for clinical use. In this case, we observe that initially,
a late fusion was employed, and followed by an intermediate
one for specific cases.

Similarly, Hansley [15] employed a two-stage ear recogni-
tion framework, and handcrafted features improved a CNN-
based ear descriptor. In this framework, a scoring system
was implemented to combine the outputs of the two systems,
which were trained individually. Late fusion schemes such as
taking the sum, min, or max were investigated and eventually,
the sum rule was found to work the best.

Kashif et al. [16] concluded that tumor cells could be
more accurately detected when the input of a spatially
constrained CNN (SC-CNN) is combined with RAW image
data and handcrafted features. An early fusion methodology
was followed where texture and color characteristics were
combined with raw image intensities and forwarded as input
to the SC-CNN. They observe an improvement compared
to previously implemented CNN systems, which have only
automatically learned features as input.

Nanni et al. [17] performed an extensive analysis by
concatenating the output of a layer of the CNN with hand-
crafted features and then forwarding it to an SVM classifier.
More specifically, firstly, a CNN-based model was trained.
Afterwards, the last feature map before decision-making
was extracted and concatenated with a vector containing
handcrafted features. In the end, an SVM had to classify
the resulting vector. Their proposed framework outperformed
other state-of-the-art implementations after testing it on
various datasets, including images from computer vision
like paintings and pictures of smoke, but also medical and
sub-cellular images.

Georgescu et al. [18] presented an intermediate fusion
strategy to recognize facial expressions. CNN learned fea-
tures were merged with the handcrafted ones and they were
encoded by the bag-of-visual-words method. This way, the
information was presented by (words) representing clusters
of the initial data. The classification task was performed on

the visual words using a local SVM performing better than a
global one.

In previous work, we explored the benefit of fusing
the prediction of a CNN, with architecture inspired by
Dou et al. [6], with that of a system based on hand-crafted
features [19]. Several classifiers were compared to optimally
combine the predictions of the hand-crafted and CNN system
in a late fusion scheme. The fused prediction was found to
increase performance in all cases, with the random forest
classifier leading to the best results.

The previously mentioned works demonstrate the potential
of handcrafted features when combined with CNNs, despite
authors employing varying fusion strategies. Research on
the performance of different fusion strategies has not been
reported. To the best of our knowledge, the influence of the
amount of training data has not yet been investigated. In this
work, we aim to explore fusion strategies that combine a CNN
architecture with handcrafted features for varying amounts of
training samples.

II. METHODOLOGY
We make use of LUNA16 dataset and we explore various
late and intermediate fusion strategies to detect lung nodules
on CT images by combining CNN-learned features with
handcrafted ones. We aim to design the most effective
strategy to perform this fusion, keeping in mind that
high-performance rates on a limited amount of training
annotated data are highly appreciated. At the same time,
investigating which handcrafted features benefit more can be
helpful to our design decisions.

As a starting point, we use two previously presented
frameworks that classify suspicious CT areas as lung nodules
to perform false positive reduction. We used a light 3D CNN
model, previously proposed within our group, for which we
investigated extensive data augmentation methods to boost
its performance and obtain state-of-the-art performance [20].
Next, we adopted a lung nodule detection system based on
hand-crafted features [19], shown to perform well at the
LUNA16 Challenge [5].

For the experimental set-up, we chose to differentiate from
the LUNA16 competition guidelines and avoid performing
excessive 10-fold cross-validation. Instead, we split the
LUNA16 dataset into training, validation, and testing sets.
The training hyper-parameters are determined based on the
performance obtained on the validation set and the results are
reported by examining the fixed testing set.

We follow the second track of the LUNA16 Challenge.
Therefore, having a long list of candidate locations, we aim
to give a probability of being a nodule to each suspicious
area. This list consists of 551,065 candidates, computed based
on three existing candidate detection systems chosen by the
competition of which 1,120 represent lung nodules.

We tackle this binary classification task by building
various false positive reduction frameworks making use of
3D CNNs, handcrafted features, and combinations of them.
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FIGURE 1. The proposed light 3D CNN consists of two convolutional and
two max-pooling layers. A fully-connected layer realizes the
decision-making.

These approaches are described in detail in the following
sections.

A. FALSE POSITIVE REDUCTION USING A CNN
The employed architecture for CNN classification was
inspired from the work of Dou et al. [6], where three
individually trained networks were trained to classify a
single candidate. Each of these networks was trained on a
different 3D patch size, and their combination was found to
reach high classification rates. As a downside, the approach
involves a high computational effort, requiring three networks
of which especially the one for large patch sizes is very
computationally demanding.

We adapted and tuned the architecture with the aim to
simplify the network and facilitate training while retaining
its performance. To this end, we retained the best-performing
middle patch size by fine-tuning the hyperparameters of the
data augmentation and the network topology. A max-pooling
layer was introduced after each convolutional layer whereas
only one max-pool layer was present in the initial topology.
In return, we employed one less convolutional layer.

The adopted architecture can be seen in figure 1. The input
of this CNN is a 3D patch cropped from the original CT
image. Its center is calculated by the previously mentioned
candidate detector. To facilitate the convergence of the
network, we clip the pixel intensities to the interval (−1000,
400) Houndsfield Units (HU) and normalize them to the
range of (0,1). The new network consists of 1,1 million
trainable parameters, which is comparable but somewhat
lower than other well-known 3D networks. This makes it
easier and faster to be trained in various settings. This
network topology simplicity can lead to lower performance
but state-of-the-art results can be reached if a higher data
augmentation rate is chosen, as previously demonstrated in
previous work [20].

B. FALSE POSITIVE REDUCTION USING HANDCRAFTED
FEATURES
The second approach to performing the false positive reduc-
tion is a handcrafted feature (HC) system. The employed
set of features is inspired from the work Tan et al. [21].
This set of features has been carefully selected to be

TABLE 1. The set of 45 handcrafted features used by the HC system uses
to discriminate the lung nodules from false positive areas extracted by
the candidate detector.

invariant to orthogonal transformations such as translations
and rotations. To achieve this, some of them are computed in
a 3D gauge coordinates system. Classical geometric features
describing shape and location, and local grey-value and
texture descriptors complete the list of the employed features.

Table 1 summarises the 45 handcrafted features, which can
be divided into three categories: the geometric descriptors
which characterize the shape and location of the candidate
area(1-9), the gauge derivative invariant features (10-21)
and the regional descriptors (22-45) [21]. Classification is
obtained using a linear SVM classifier. The C parameter,
which controls the misclassification rate, is set to 50.

Features are extracted over the segmented region of the
potential nodule. The segmentation is performed by applying
three different procedures involving filtering, thresholding
and mathematical morphology operations to account for the
different characteristics of isolated, juxtavascular and juxta-
pleural nodules. Three partially overlapping segmentations
are obtained by applying the three procedures in parallel, and
the final segmentation is found by merging all three using
a logical OR operation. In case the segmentation does not
lead to a segmented volume, all feature values are set to zero.
We refer to the work of Tan et al. [21] for a more detailed
description of employed lung nodule segmentation.

C. FALSE POSITIVE REDUCTION COMBINING LEARNED
AND HANDCRAFTED FEATURES
The focus of this work is to fuse the 3D CNN network and
the handcrafted feature system and evaluate its performance
when trained with varying amounts of training data. We pro-
pose three different fusion strategies termed: S1 - Prediction
fusion, S2 - Fusion of independent features, and S3 - Joint
training fusion. Their main difference is the point where the
information is combined and the way training is performed.
S1 is inspired by our previous work on late fusion [19],

where preliminary results indicated a clear potential.
S2 and S3 describe two intermediate fusion techniques, one
with a multi-step training scheme and the other with one
joint, end-to-end training scheme. Early fusion, in which
the unstuctured image data is directly combined with
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FIGURE 2. Fusion S1: The prediction fusion. The handcrafted features are
led to an SVM and the 3D image patch to a light 3D CNN. Then the two
probabilities are fed to a random forest classifier.

structured hand-crafted features, was not explored in this
study. Preliminary experiments on such a fusion strategy
did not lead to improved performance, in line with results
reported by others [8].

1) S1: PREDICTION FUSION
The most straightforward approach to combine the CNN
and the handcrafted features is a late fusion in which we
train and run the systems independently and classify the
candidate samples using the combinations of the final output
predictions of both systems. We term this fusion strategy S1,
Prediction fusion.

On one hand, the HC system is employed making use of an
SVM classifier as described before. In parallel, the 3D CNN
is trained using patches of the same training set. The predicted
outputs of thesemodels are combined using a fusing classifier
for which we adopted a random forest (RF) (Figure 4), which
was found to perform best for this task among a number of
tested classifiers [19]. The maximum number of trees is set
to be 20 and the maximum depth 10.

We note that S1 consists of three independent training
stages: two for the independent systems and one for the
prediction fusing classifier, i.e. the RF.

2) S2: FUSION OF INDEPENDENT FEATURES
One could opt to fuse the two systems at an intermediate
point, meaning at the (latent) feature level rather than
combining the two final predictions. The first approach we
investigated was to concatenate the handcrafted features of
the HC system with the learned features obtained before the
first fully connected layer of the CNN system. Such a strategy
may benefit from additionally exploiting relations between
the two subsets of features.

To this end, we design a multilayer perceptron (MLP)
consisting of two fully connected layers to combine and fuse
the two feature sets. The first fully connected layer has a ReLu
activation function whereas the second one has a softmax
(Figure 3).
The strategy denoted S2 comprises only two training

stages: one for the CNN system and one for the fusion
classifier. The fusion takes place in an earlier stage than

FIGURE 3. Fusion S2: Fusion of independent features. A late image
feature map is concatenated with the 45 handcrafted features and are fed
to an MPL which consists of two fully connected layers.

S1 and the HC features are introduced to the system without
any preprocessing.

3) S3: SINGLE TRAINING FUSION
In the case of S2, the features of the CNN are derived from
the 3D image input without taking into account the presence
of the 45 handcrafted features. An alternative intermediate
fusion approach, denoted S3 investigates the benefit of
training the CNN while having access to the handcrafted
features via a connected branch. This can potentially trigger
the CNN to extract complementary information with respect
to that provided by the handcrafted features and result in a
unified network with improved performance.

This strategy was implemented as a single network
comprising of two input branches. The first branch is anMLP
designed to preprocess the 45 handcrafted features. ThisMLP
consists of two fully connected layers with Relu activation
functions introducing a non-linearity to the handcrafted
features before the concatenation with the feature maps of
the CNN. The second branch is a 3D CNN and accepts the
volumetric data i.e. the input candidate 30 × 30x10 patches.
This branch is identical to the previously employed 3D
CNN model. The resulting features of the two branches are
concatenated and further processed by one fully connected
layer. The entire network is trained in an end-to-end fashion
(Figure 4).

FIGURE 4. Fusion S3: Single training fusion. The two modalities are fed to
a single 3D CNN with two branches. The first branch receives the
45 handcrafted features and consists of two fully-connected layers and
the second one receives the 3D image data.
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D. FUSION WITH SELECTED FEATURES
In a final set of experiments, we explore which subset of
the 45 handcrafted features (see Table 1) leads to the largest
performance boost. The first set of experiments includes only
the features 8 and 9, which correspond to the distance of
the lung wall and the distance to the center of the centroid’s
holding slice. The second set includes all the geometric
descriptors (features 1-9) and lastly, the third set makes use
of all the remaining features (features 10-45). For each fusion
strategy, considering each set of features described above,
we evaluated the performance when using 40% of training
data. For the best-performing fusion strategy, we further
evaluated the performance for all amounts of training data.

The three new sets of experiments were designed based
on the hypothesis that the position of the suspicious area
regarding the closest lung wall and the centroid of the lung
is predictive and plays an important role in classifying a
candidate as a lung nodule or as a false positive sample.
In addition, such information is not extracted by processing
patches of the CT image using the proposed 3D CNN
architecture.

E. THE TRAINING AND TESTING PROCESS
Our training and testing procedure was aimed at ensuring
generalisability and reproducibility of the results. The
LUNA16 challenge was conducted by performing 10-fold
cross-validation and reporting the average performance
over the folds. Hyper-parameter tuning through excessive
cross-validation could lead to optimistic results. For this
reason, we decided to deviate from the LUNA16 training
scheme.

Instead, we split the LUNA16 set into a training, validation,
and testing set. The training parameters like dropout, learning
rate, and the number of training epochs were determined
based on the performance obtained on the validation set,
and for cases where the tuning procedure proved to be
challenging, a subset of the training set was rotated with the
validation set. The testing set was only used to report the final
performance and never for any tuning processes.

The LUNA16 dataset consists of 10 randomly divided
subsets. We reserved two specific subsets for testing (the
2nd and the 7th subset), judged to be sufficiently large and
representative. Then for each trained model, we randomly
select one subset to represent the validation set to tune any
hyper-parameters. Finally, the training set consists of the
remaining subsets and can have up to seven. These can not
be used for testing or validation purposes.

Extensive data augmentation was employed to augment the
amount of training samples, balance the highly imbalanced
dataset and improve performance.We previously investigated
the impact of data augmentation in detail [20] and adopted the
settings which were found to perform best for this work. This
included rotations of 90, 180 and 270 degrees, translations of
one and two voxels in all dimensions, and flipping along all
axes in 3D. Random combinations of these transformations

were used to create 500 unique samples from each positive
sample, i.e. a patch of the CT image containing a true lung
nodule. Because of the high amount of negative samples
found by the candidate detector, negative samples were not
augmented.

The layer weights of the CNNs were randomly initialized
using Xavier initialization, and an Adam optimizer was
employed. Each model’s training hyperparameters were
optimized independently based on the performance of the
validation set. To this end, we experimented with learning
rates ranging from 10−3 to 10−5, and batch sizes ranging
from 32 to 128, following powers of two. The dropout
rate was fixed at 10%. The amount of training epochs was
manually determined based on the observation of the training
and validation loss curves.

We investigated the performance when trained with
varying amounts of annotated data. From the full LUNA16
dataset containing 10 subsets, the maximum amount of
subsets that was used for training was 7, corresponding
to 70% of the full dataset. One subset was allocated for
validation and two for testing. For each fusion strategy, seven
different percentages of labelled data were considered (with
incremental steps of 10%). Five models were trained with
randomly initialized weights for each configuration and the
amount of annotated training data was considered.

F. COMPUTATIONAL DETAILS
The described frameworks were implemented using Keras
with the TensorFlow backend. As an indication of the model
and its computational complexity, we list the amount of
trainable parameters for each of the compared approaches
(Table 3) and give indicative measures of the training times.
On an NVIDIA 2080 RX card, one training epoch of the

3D CNN with batch size 32 using 70% of training data
takes 4 hours. In comparison, a 3D implementation of a
VGG16 [22] requires 20 hours for the same settings. On top
of this, we require two hours to fully train the RF classifier
for S1 fusion and 5 hours to train the MLP for S2 fusion.
Finally, one training epoch training the CNN for S3 fusion
takes approximately the same time as the 3D CNN.

The extraction of the handcrafted features is a compu-
tationally light process compared to training 3D CNNs.
Extracting the 45 handcrafted features for thewhole LUNA16
dataset takes two hours using a middle-range CPU, without
any GPU-accelerated algorithms. Training an SVM on these
hc features, like in the case of the S1, requires the same
amount of time.

G. VALIDATION METRICS
We adopted the Competition Performance Metric (CPM)
used for the LUNA16 Challenge to evaluate the detection
and classification rate. To calculate this, the Free-Response
Receiver Operating Characteristic (FROC) curve is drawn.
Each point of this curve is obtained by selecting those
candidates whose probability of being a lung nodule is above
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a threshold t , and we calculate the sensitivity and the average
number of false positives per scan. The process is repeated
for all t that produce a unique point on the FROC curve. The
CPM is obtained by averaging the sensitivity at seven false
positive rates(FPs): 1/8, 1/4, 1/2, 1, 2, 4, and 8 FPs per scan.
Note that the CPM can be seen as a rough approximation of
the AUC, in which more weight is given to low false positive
rates. We report the average CPM over the five repeated
experiments and its standard deviation.

Statistical analysis was performed using the non-
parametric Freidman’s test [23] since we have repeated
measurements following non-normal distribution. This way
we investigate if the results are significant and whether it is
safe and meaningful to extract any conclusions.

III. RESULTS
The FROC curves for the independent systems and the three
fusion strategies when trained with 40% of the data are shown
in Figure 5. Table 3 summarizes their performances for all
amounts of training data in terms of the CPM and sensitivity
for a mean of 0.5 false positives per scan. The performance
of the systems as a function of the amount of training data is
visualized in Figure 6.

FIGURE 5. Free-response receiver operating characteristic (FROC) curves
for models trained with 40% of the available labelled data.

A. PERFORMANCE OF THE INDEPENDENT SYSTEMS
The performance of the HCmodel is overall poor. Even when
considering the full amount of training data (70% of the
labelled data), this system would be impractical to use in a
clinical environment since the number of false positives is
high. Remarkably, its performance varies less than 5 percent
points in terms of the CPM when lowering the training data
from 50% to 10%.

As expected, the 3D CNN outperforms the HC system
for most tested sizes of the training set. When given enough
training data, i.e. 60% or more of the full dataset, it reaches
more than 90% in terms of CPM. Its performance decreases
rapidly with the amount of training data, losing 30 points in
terms of CPM when lowering the training data from 50% to
10%. When using only 10% of the labelled data, 3D CNN
scores lower than the HC model. At 60% of data used for

FIGURE 6. LUNA16 competition performance metric (CPM) as a function
of the amount of training data employed, expressed as a percentage of
total amount of labelled data, for the two independent systems, 3D CNN
and HC and three fusion strategies.

training, the performance of the 3D CNN was found to be
slightly lower than at 50%. We suspect this to be due to the
randomly selected folds for training and validation being less
representative of the test set.

For both models, we observed small differences in
performance between the five repetitions, which can be seen
from the variance reported in Table 3.
The performance of the trainedmodels using themaximum

amount of training data (70%) is compared to the state-of-
art in Table 2, where we list the official results of LUNA16
challenge1 alongwith our results. Note that direct comparison
is not possible due to the use of different training and testing
protocols. LUNA16 results were obtained after 10-fold cross-
validation, thereby each time training on 90% of the data and
testing on 10%. Our results were obtained by training on 70%
of the data, tuning hyperparameters on 10% and testing on a
fixed set of 20% of the data.

Despite these differences, it can be seen that the imple-
mented 3D CNN approach leads to comparable performance
with respect to the top-ranking frameworks of the competitive
challenge. It would rank fourth on the LUNA16 challenge,
achieving only 2.5 percentage points less in terms of CPM
than the top-performing algorithm. The result indicates
that the employed architecture, despite its simplicity, has
sufficient complexity to achieve state-of-the-art results on this
task when given sufficient training data.

B. PERFORMANCE OF THE COMBINED SYSTEMS
All fusion strategies were found to offer increased perfor-
mance over the 3D CNN, at any of the amounts of training
data tested, and the observed differences were found to be
significant in all cases (p<0.025). The performance increase
with respect to the 3D CNN was found to increase as the
amount of training data is reduced, going from 1-2 points
when using 70% of the data, to 10 points at 40% training data,

1https://luna16.grand-challenge.org/Results/
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TABLE 2. Comparing our approaches with the official Top10 LUNA16
results for the classification track1 (Track 2) updated until December 2017.
* CPM: LUNA16 Competition Performance Metric.
Results obtained by averaging those of a 10-fold cross-validation, each
time training on 90% of labelled data and using 10% for testing according
to the LUNA16 guidelines.
** Average over five repetitions, training on 70% of labelled data,
validation on 10% and testing on 20%, following the experimental set-up
followed in this work.

up to 15 percentage points in terms of CPM at 10% training
data.

Performance differences between the fusion strategies
were overall small, remaining within a few percent points
in terms of CPM, and varied depending on the amount
of training data used. When all available training samples
were employed, single training fusion (S3) performed best,
equalling the best result reported at the LUNA16 challenge
(Table 2), closely followed by feature fusion (S2). As the
training data reduced, the performance of all fusion models
decreased in a comparable fashion. The S2 model was most
affected by the reduced training, performing worse when
using 50% of the data or less for training. Simple prediction
fusion (S1) was found to be slightly less affected by the
decrease in data, performing comparable or best for models
trained on 30% of the data or less.

Variance between the five repetitions was low for all
approaches but tended to increase as the training data was
reduced.

C. FUSION OF SELECTED FEATURES
The performances in terms of CPM for the fusion models
using a subset of handcrafted features are summarized in
Figure 7 and Table 4. When comparing the different fusion
methods trained with 40% of the data, S3 performs best for
all sets of selected features (Table 4). As expected, the best
performance overall is obtained when using all handcrafted
features. Fusion with geometric features 1-9 was found to
lead to a larger increase in performance than fusion with
non-geometric features (features 10-45). In fact, fusion with

FIGURE 7. LUNA16 competition performance metric (CPM) as a function
of the amount of training data employed, for models trained using
S3 fusion strategy. Each model was trained in combination with a
different subset of handcrafted features to investigate which features
contribute to the performance gain with respect the indepenedent 3D
CNN system.

later features only leads to slight increases in performance
over the 82% in terms of CPM obtained for the 3D CNN.

When considering the performance of S3 fusion with the
selected features, for the different amounts of training data
(Figure 7), the same trend can be observed. Considering all
features performs best, closely followed by fusion with all
geometrical features. Non-geometric features perform worse
than geometric, and the difference in terms of CPMwas found
to be significant for all amounts of training data (p<0.025),
except when using 60% of the data for training (p > 0.179).

Considering only features 8 and 9, which describe the
distance of the candidate to the lung wall and the slice center,
respectively, leads to comparable increase in performance
to using all geometric features. When using 50% or
more, no significant differences in performance were found
(p > 0.179). When using 40% of the data for training or
less, difference in performance was found to be significantly
different (p < 0.025) but remained limited to three percent-
age points. These results indicate that features describing
candidate location capture the most predictive geometric
information, and are the main drivers of the performance
increase with respect to the 3D CNN.

We obtained comparable, low variances for the five
repeatedly trained models for each case.

IV. DISCUSSION
The employed 3D CNN achieved good performance when
trained on 70% of the full dataset, reaching 94.3% in terms
of the LUNA16 competition metric. Direct comparison to the
results obtained during the LUNA16 challenge is not possible
because of the differences in training and testing data. That
being said, the obtained results are comparable to those
reported by Setio et al. [5] and reported on the challenge
website (Table 2). Based on this, we consider 70% of the
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TABLE 3. The average of the LUNA16 competition performance metric (CPM) along with the standard deviation and the sensitivity calculated for
0.5 mean false positives per scan (Se) for the two independent systems, 3D CNN and HC, and the three fusion strategies in regard to the amount of
training annotated data employed.

TABLE 4. CPM (LUNA16 Competition Performance Metric) for each fusion
method when using 40% of training data, and considering a different
subset of features are included. In comparison, the 3D CNN without
fusion achieves 82% when using the same amount of training data.

training data sufficient to reach close to optimal results with
the used 3D CNN approach.

When fusing handcrafted features with the 3D CNN
approach, regardless of the fusion strategy, we observed
a performance increase, even when considering all data
available for training. The results are inline with litera-
ture [15], [16], [17], [18]. Two equivalent viewpoints can
be adopted to explain these outcomes. Handcrafted features
carry complementary, predictive information to the learned
features of the CNN. Alternatively, one could state that the
combination of the CNN andHC systems allows to reduce the
(stochastic and deterministic) errors made by the individual
systems.

When considering less training data, fusing the CNN
approach with handcrafted features leads to a compara-
tively higher increase in performance. We hypothesize that
for lower amounts of training data, the representations
learned by the deep learning approach are suboptimal
and generalize poorly. The HC system, characterized by
significantly lower complexity, also performs worse when
considering less training data, but is less affected. The
combination of both, regardless of the fusion strategy, offers
an important benefit when lower amounts of training data are
available.

This benefit becomes substantial when considering the
results obtained for S3 when using 40% of the available data
(CPM of 91.9%), which are competitive to the state-of-the-art
and comparable to that of the 3D CNN using 60% to 70% of
the data. Put differently, for the studied case of lung nodule
detection, enhancing a 3D CNN by intermediate fusion with

handcrafted features in a joint training scheme (S3), allows
for a reduction of 33% to 43% of the amount of training data,
while maintaining performance compared to a regular CNN
approach. This result encourages further research on this
approach for applications in which low amount of annotated
training data is available.

Overall, the differences in performance of the investigated
fusion strategies were small. The observed behaviour for
varying amount of training data does align with intuition
when considering the complexity of the approaches in terms
of the amount of parameters (Table 3). Single training
fusion (S3), the most complex approach, and employing
a single training scheme while taking into account the
handcrafted features, performs best when sufficient training
data is available. Prediction fusion (S1), the simplest of
the studied strategies, performs comparably or better when
few training data is available. For the studied case, feature
fusion (S2), in which learned and handcrafted features are
combined by a separately trained fusion model did not show
a benefit over S1 or S3, for any of the data availability
settings.

When further investigating which features led to the
largest benefit when combined with a 3D CNN, geometric
features were found to be of most value. In fact, including
non-geometrical features did not lead to notable performance
increases for any of the fusion strategies. Geometric features,
on the other hand, did improve results with respect to the 3D
CNN, and the improvement was considerably larger for S3.
We hypothesize that the joint training scheme is more suited
to exploit the complementary information given by geometric
features.

In particular, the features describing the distance of the
nodule candidate to the lung wall and the center of the slice
proved to be of importance. Such location information can not
be reliably extracted using the patch-based processing of the
employed 3D CNN architecture, potentially explaining the
improved performance when combining these features with
the CNN.

The location of nodule candidates has previously been
described as a relevant predictor in medical literature.
McWilliams et al. [24] reported a higher probability of lung
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nodules in upper lobes with respect to lower lobes. Our
results are inline with those reported by Song et al. [25],
who included a feature describing the location in terms
of closeness to vessels, pleural wall or isolated in the
parenchyma. More recently, inclusion of anatomical location
in a deep segmentation framework was found to improve
performance when applied to ascites in the pelvic region.
Our results indicate that the value of location encoding in
deep learning seems promising and merits further research
for lung nodule detection but also other tasks in medical
imaging.

V. CONCLUSION
In this work, we investigated the benefit of combining a
CNN-based classification network with handcrafted features
for the task of lung nodule detection. Different fusion
strategies were investigated and their performance was
evaluated when considering varying amounts of training data.
Combining handcrafted features with a 3D CNN approach
was found to improve detection performance, regardless
of the fusion approach. Comparatively larger increases in
performance were obtained when less training data was
available. Among the investigated handcrafted features, those
that describe the relative position of the candidate with
respect to lung wall and mediastinum, were found to be of
most benefit.
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