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Abstract: Thin-film photodiodes (TFPD) monolithically integrated on the Si Read-Out Integrated
Circuitry (ROIC) are promising imaging platforms when beyond-silicon optoelectronic properties are
required. Although TFPD device performance has improved significantly, the pixel development
has been limited in terms of noise characteristics compared to the Si-based image sensors. Here, a
thin-film-based pinned photodiode (TF-PPD) structure is presented, showing reduced kTC noise and
dark current, accompanied with a high conversion gain (CG). Indium-gallium-zinc oxide (IGZO)
thin-film transistors and quantum dot photodiodes are integrated sequentially on the Si ROIC in a
fully monolithic scheme with the introduction of photogate (PG) to achieve PPD operation. This PG
brings not only a low noise performance, but also a high full well capacity (FWC) coming from the
large capacitance of its metal-oxide-semiconductor (MOS). Hence, the FWC of the pixel is boosted up
to 1.37 Me- with a 5 µm pixel pitch, which is 8.3 times larger than the FWC that the TFPD junction
capacitor can store. This large FWC, along with the inherent low noise characteristics of the TF-PPD,
leads to the three-digit dynamic range (DR) of 100.2 dB. Unlike a Si-based PG pixel, dark current
contribution from the depleted semiconductor interfaces is limited, thanks to the wide energy band
gap of the IGZO channel material used in this work. We expect that this novel 4 T pixel architecture
can accelerate the deployment of monolithic TFPD imaging technology, as it has worked for CMOS
Image sensors (CIS).

Keywords: thin-film photodiode; large full well capacity; high dynamic range

1. Introduction

Monolithically processed thin-film photodiodes (TFPDs) on the Si ROIC (Read-Out Inte-
grated Circuitry) are attractive imaging platforms when beyond-silicon optoelectronic prop-
erties are required [1,2]. They can sense photons with energy smaller than the Si bandgap
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(1.12 eV) or can absorb light more efficiently leading to a much reduced active layer thick-
ness while enabling small form factor and higher resolution visible imaging [1,3–7]. Despite
these appealing features, the signal-to-noise ratio (SNR) of the TFPD imager pixel output is
limited by the kTC noise, high dark current, and low Conversion Gain (CG), compared to
the conventional Complementary Metal Oxide Semiconductor (CMOS) Image sensor (CIS).
For the Si-based image sensors, a pinned photodiode (PPD) pixel architecture was intro-
duced to address the issues above [8–10]. It was designed to single out the image lag and
the kTC noise by pinning the maximum potential of the integration node when it is reset.
The photoelectrons are collected in the photodiode during the integration time and these
signal charges are transferred to the floating diffusion (FD) to suppress the dark current and
elevate the CG. To implement the Si PPD operation, thin-film pinned photodiode (TF-PPD)
pixel architecture was demonstrated with the typical low-noise readout operation [11]. The
TF-PPD structure is realized by inserting a thin-film transistor (TFT) module based on an
oxide semiconductor (here, indium-gallium-zinc oxide: IGZO) between the Si ROIC and the
TFPD (Figure 1). The photogate (PG) pins the PD reset level, while the dark current from
the depleted surface is suppressed by the wide energy band gap semiconductor (IGZO,
Figure 2f). The transfer gate (TG) enables the charge integration and transfer operation.
In this way, proof-of-concept TF-PPD has been successfully implemented by mimicking
operation of the Si PPD [11]. In this paper, a large full well capacity (FWC) exceeding
1 Mega electrons of the proposed pixel (pitch 5 µm) is highlighted, relying on the fact that
PG is a MOS capacitor, which serves as an integration node (Figure 1). This feature could
not be well addressed in the previous report, due to the limited FD capacitance of the active
pixel [11]. It is found that the high-k material boosts its FWC as a gate dielectric. Dark
currents and their activation energies are compared between the PD test structure and
TF-PPD passive pixel, to figure out the leakage contribution from the depleted semicon-
ductor interface, inherent to the PG structure, that was not well covered in our previous
report [11].
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Figure 1. Pixel cross-section for the monolithic TFPD image sensor (a) 3 T and (b) 4 T (TF-PPD) 
structure (TCO: transparent conductive oxide, HTL: hole transport layer, PG: photogate, TG: trans-
fer gate, FD: floating diffusion). Electric potential and signal readout configuration for 3 T pixel (c) 
and for 4 T pixel (d). Pixel circuit diagram for 3 T pixel (e) and for the 4 T pixel (f). 
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Figure 1. Pixel cross-section for the monolithic TFPD image sensor (a) 3 T and (b) 4 T (TF-PPD)
structure (TCO: transparent conductive oxide, HTL: hole transport layer, PG: photogate, TG: transfer
gate, FD: floating diffusion). Electric potential and signal readout configuration for 3 T pixel (c) and
for 4 T pixel (d). Pixel circuit diagram for 3 T pixel (e) and for the 4 T pixel (f).
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2. Device Configuration and Measurements

The TF-PPD pixel is built in a fully monolithic scheme on a custom-made Si ROIC
(Figure 1b). First, the Si ROIC is fabricated with the 130 nm CMOS process exposing PG,
TG, and FD electrodes on the top surface. A 10 nm Al2O3 gate dielectric is deposited via
atomic layer deposition followed by sputtering of 12 nm thick IGZO. TG/PG electrodes,
Al2O3 and IGZO layers constitute a back-gated TFT structure, while the FD connects the
TFT to the Si ROIC. The colloidal quantum dot (CQD) light-absorbing layer, hole transport
layer, and the top transparent contact (ITO: indium tin oxide) are layered sequentially, with
the IGZO TFT channel simultaneously acting as an electron transport layer (ETL) at the
bottom. Details of device fabrication can be found in our previous report [11]. The dark
and photocurrent characteristics of the PD test structure are given in Figure 2a. The IGZO
is chosen due to its low leakage, high mobility, and compatibility with the CQD PD as an
ETL [11,12]. The fabricated IGZO TFT shows I-V characteristics with an on/off ratio larger
than 105 and a Vth of −2 V (Figure 2b).

Various designs of passive TF-PPD pixels, each with more than 500 parallel-connected
arrays, are fabricated as described above and then characterized with a custom-made
printed circuit board (PCB) probe card (Figure 2c,d). The PCB is integrated with an off-
the-shelf CTIA (Texas Instruments ACF2101) for the signal charge-to-voltage conversion
and the field-programmable gate array (Xilinx Artix-7) for generation of control signals.
The output of the CTIA is recorded using a DSOX3014 oscilloscope. The TF-PPD pixels are
illuminated using a ThorLabs M530L4 530 nm LED, which is modulated via a ThorLabs
DC2200 LED driver. Integration capacitance for the CTIA is increased by adding discrete
capacitors after the capacitances are measured using a HM8118 LCR bridge to handle the
large FWC of the TF-PPD pixels.

3. Simulation and Experimental Results
3.1. TCAD Simulations

Device simulations are performed using Silvaco TCAD to verify the single-pixel TF-
PPD operation. The physical structure of the TF-PPD is defined in the Athena process
simulator. The structure file is then introduced to the Silvaco TCAD Atlas numerical device
simulator to figure out electrical characteristics. Prior to the integration of the a-IGZO
transfer gate onto the pixel, experimental results of the TFT electrical characteristics are
reflected by adopting a sub bandgap density of states (cm−3 eV−1) model within the
reported bandgap [13]. The material properties of the TFT such as work function, electron
affinity, optical bandgap, and the properties of the photodiode are adopted from our
experimental results and Silvaco organic library, respectively. The electrostatic potential is
simulated for the a-IGZO layer all along the PG, TG, and FD as can be seen in Figure 3d.
The TFT channel exhibits a favorable potential profile for the full charge transfer as expected
for the TF-PPD pixel architecture (Figure 3b). The potential level of the integration node
(PG) is pinned higher than the TG on value, while that is lower than the TG off value.
Signal charge integration and charge transfer phase can be well distinguished by turning
on and off the TG, showing that the TF-PPD is realizable with the introduction of the
PG structure (Figure 3c,d). More rigorous simulation is our ongoing research work, to
understand TF-PPD pixel operation better.
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Figure 3. Silvaco TCAD simulation results; (a) simulated structure, (b) lateral potential profile along
the IGZO layer, and (c) potential profile when TG is turned off and (d) on.

3.2. Pixel Output Responses by the PG and TG Bias Sweep

By changing the PG or TG bias, the signal charge generation, and the transfer of it can
be controlled (Figure 4). First, with the fixed TG on a bias of −1 V, VPG is swept from −4 V
to −1 V, where the FD reset voltage is set to 0 V by CTIA, and the TG off value is −6.5 V.
When VPG is set to −4 V, which is the same bias as Vanode, meaning a limited reverse
bias of the PD, a suppressed signal output is found (Figure 4a). As the VPG increases,
implying a larger reverse bias within PD, more photocurrent conducts, which is expected
from Figures 2a and 4a. In other words, by controlling the VPG, the sensitivity of the PD
can be controlled.
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Signal curves with the fixed VTG (−1 V), varying VPG (−4~−1 V) (a), the same graphs for the fixed
VPG (−2 V), and different VTGs (−6.5~−1 V) (b).
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VTG sweep measurements are carried out with the fixed VPG of −2 V. The VTG is
scanned from −6.5 V to −1 V, showing the limited signal output when the VTG is −6.5 V
(Figure 4b). According to the TFT I-V curve given in Figure 2b, the TG begins to be turned
on after −2 V. As the VTG increases, more charge transfer becomes available, showing a
larger photocurrent for a higher VTG (Figure 4b). However, substantial charge transfer is
observed before VTG −2 V, which can be explained by the Vth nonuniformity within the
passive pixel array.

3.3. Full-Well Capacity (FWC)

The PPD concept offers inherent low noise, where the recent PPD-based CIS pixels
have a few electrons of read noise level [14,15]. In addition, the active area of the TF-PPD
pixel is defined by the PG, thus generated signal charges are collected at the MOS capacitor,
rather than the PD junction capacitor [16]. For the proposed pixel architecture, the FWC is
described by the capacitor equation of Q = CV, where C = εA/d (Q: charge stored at the
MOS capacitor; V: PD voltage swing; ε: dielectric permittivity; A: capacitor area; d: gate
dielectric thickness). By choosing high-k material as the gate dielectric and thinning the
layer, the FWC of the TF-PPD can be boosted. Thanks to this PG structure, the FWC is
estimated to be up to 1.1 Me- with the 5 µm pixel pitch and 81% fill factor, followed by
1.4 Me- of measured FWC (Table 1 and Figure 6b, 1.5 V of PD voltage swing assumed by
simulation, εr = 9 for AlOx [17,18]). This is more than eight times larger than the estimated
PD junction capacitance, with the same PD voltage swing and 100% fill factor to avoid
underestimation of it. As the pixel pitch increases from 5 µm to 10 µm, the elevation of
the FWC can be observed, reaching up to 4 Me- for a 10 µm pixel with the fill factor of
50%, while 5.6 Me- of the FWC is measured for the pi-shaped pixel (fill factor 81% (Table 1,
Figures 5b and 6b)). This observation implies that the generated signal charges are well
collected at the MOS capacitor of the TFT channel on the integration node (Figure 3). As
a result, a charge transfer happens along the IGZO channel, not through the PD, so the
charge transport mainly depends on TFT properties rather than TFPD, which usually has
lower mobility than Si.

Table 1. Estimated and measured FWC of TF-PPD pixels.

Pixel Pitch Fill Factor Estimated FWC Measured FWC

5 µm
46% 0.9 Me- 1.1 Me-

73% 1.4 Me- 1.4 Me-

7.5 µm
57% 2.4 Me- 2.0 Me-

88% 3.7 Me- 4.2 Me-

10 µm
50% 3.7 Me- 4.0 Me-

81% 6.1 Me- 5.6 Me-

In addition, the FWC increase due to the fill factor is studied, which also shows a
boosted FWC for a higher fill factor (Figure 6). This confirms that the FWC of the pixel
is well described by the MOSCAP of the IGZO channel, meaning that the PG is working
as expected.

Finally, the FWC is measured by changing the VPG (Figure 7). With the larger voltage
swing, a further increase in FWC is expected, accompanied by more photocurrent with a
higher PD reverse bias (Figure 7). Once again, an increase in the FWC can be found for the
VPG change, and in turn, the PD voltage swing (Figure 7b). Here, an IGZO potential that
is 0.5 V lower compared to the VPG is assumed for the FWC estimation, due to the work
function difference between the TiN electrode and the IGZO [11,19].
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3.4. Dark Current

One of the benefits of the PPD scheme is the surface passivation and the separation of
the depletion regions from the interface, while the photogate pixel does not guarantee these
configurations [16]. Here, since the channel is made with the IGZO, which has a wider
bandgap than Si (3.5 vs. 1.12 eV), the leakage current from the depleted interface is expected
to be smaller than in the Si case (Figure 2f). To confirm this, temperature-dependent dark
current measurements are carried out (Figure 8b) for the passive pixel and PD test structure.
The measured dark current showed similar values (Figures 2a and 8). From the Arrhenius
plot, activation energies are found close to each other, 0.40 eV for the QDPD test structure
(1420 nm peak absorption) and 0.39 eV for the passive pixel, implying that they would
share the same dark current source. For the PD test structure, the IGZO acts just as an ETL,
and the dark current contribution by the depletion of this layer is not considered major [20].
Extracted activation values are well aligned with the previous report, showing almost half
the energy of the full bandgap of QDs tuned for the same wavelength absorption, which
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can be interpreted that most of dark charges are generated from the PD or its interfaces,
rather than the depleted IGZO/Al2O3 interface of PG [21].
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4. Discussion

This beyond -1Me- FWC within a 5 µm pixel pitch shows one of the largest signal
storage capabilities, showing a high FWC density of 55 ke-/µm2 (Figure 9, Table 2). Though
this value is already high enough, it can be even further boosted by having higher-k materi-
als and by the thinning the gate dielectric. Pixels with higher FWC density per unit area can
be found from the literature; however, most of them have adopted additional capacitors
such as the lateral overflow integration trench capacitor [22], deep trench isolation with
hole collection [23].
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Table 2. FWC comparison for different pixels.

Ref. FWC (ke-) Pixel Pitch (µm) FWC Density
(ke-/µm2) Remarks

This work 1367 5 55 TF-PPD

[22] 24,300 16 95 LOFIT Trench cap

[23] 750 3.2 73 CDTI, hole
collection

[24] 103 6.5 2 -

[25] 12 1 12 -

[26] 20 2.8 3 -

[27] 10 0.6 28 -

[28] 8 2.4 1 -

[29] 120 2.8 15 -

[30] 20 0.64 49 -

[31] 76 5.5 3 -

[32] 13 1.5 6 -

[33] 55 2.8 7 -

[34] 10 2.74 1 -

[35] 88 5.6 3 -

[36] 30 3.6 2 -

[37] 12 2.3 2 -

[38] 40 3 4 -

[39] 60 2.9 7 -

[40] 1800 2.1 408 DRAM cap
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Table 2. Cont.

Ref. FWC (ke-) Pixel Pitch (µm) FWC Density
(ke-/µm2) Remarks

[41] 600 2.1 136 MIM cap

[42] 166 3 18 Dual PD

[5] 470 5 19 TFPD Junction cap

[43] 10 2.45 2 -

[44] 489 3 54 3D cap

[45] 8 3.75 1 -

[46] 600 6 17 TFPD Junction cap

DRAM capacitor [40], Metal–Insulator–Metal capacitor [41], or 3-dimensional capaci-
tor [42]. Assuming low readout noise as presented in our previous report [11], with the
high FWC presented in this work, a high linear dynamic range over 100 dB is estimated,
while the 3 T pixel shows 82 dB, presenting a significant increase in the dynamic range by
the introduction of the novel pixel architecture [11,21]. Realizing this large dynamic range
for the active pixel array is our ongoing research work.

Since the un-covered FD area is sensitive to the light, this provides the parasitic light
signal (Figure 1b). However, considering the typical operation of 4 T image sensors, where
the time interval between the sampling reset level and the signal level is less than a few
µs (with the integration time of ~ms), this parasitic effect would be limited, except for the
extremely high illumination conditions. Despite this, it would still be advantageous to
cover the FD by a light shielding structure and focus the light onto the integration node
(here, the PG area), e.g., using micro lenses.

5. Conclusions

In this work, a TF-PPD pixel is proposed with the full monolithic scheme from Si
ROIC to TFPD, with the insertion of a IGZO TFT module between them. The PPD scheme
inherently provides low noise, and by the introduction of the PG, the FWC is boosted up to
1.4 Me- with the 5 µm pixel pitch. This beyond-megaelectron FWC can be well modeled
by the MOS capacitor of the PG, demonstrating that generated signal charges at the PD
are subsequently collected at the TFT channel, and then transferred along this layer. From
these results, it is expected that the presented TF-PPD pixel will serve as a high SNR pixel
topology for the TFPD category of image sensors, which can properly complement imaging
applications that are not or poorly covered by the Si imagers.
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