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A B S T R A C T

Neural networks running on low-power edge devices can help in achieving ubiquitous computing with limited
infrastructure. When such edge devices are deployed in conventional and extreme environments without
the necessary shielding, they must be fault tolerant for reliable operation. As a pilot study, we focused on
embedding fault tolerance into neural networks by proposing a novel selective multiply-accumulate zero-
optimization technique based on whether the value of an input provided to a neuron of a neural network
is zero. If the value is zero, then the corresponding multiply-accumulate operation is bypassed. We subjected
the operating system-based implementation of the optimization technique to radiation test campaigns using
approximately 14 MeV neutrons, and found the proposed optimization technique to improve the fault tolerance
of the tested neural network by approximately 44%.
1. Introduction

Machine learning (ML) algorithms for making decisions at the
edge [1] and reducing the data transferred between edge devices can al-
leviate the strain on networks and cloud infrastructure [2]. Thus, when
targeting ubiquitous computing [3], machine learning algorithms can
allow increasing the quantity of the raw data processed and edge de-
vices deployed even when limited by cloud infrastructure. Edge devices
are typically placed close to the data source [2], which could expose
them to cosmic rays, hazardous radiation levels, extreme temperatures,
unreliable power supplies, etc. [4] at ground level [5], in space, and
within nuclear facilities and other hard to reach environments [6].
This exposure can cause transient errors [7], typically manifested as
single bit-flips in the edge devices, with the potential to cause system
failures [8]. Such failures in mission-critical applications, such as civil
and military aviation [9], medical devices [10,11], autonomous vehi-
cles [8,12], UAVs [13], aerospace vehicles [14–16], and nuclear power
plants [17–19], can lead to critical consequences [8,20]. Hence, these
edge systems must be fault tolerant for reliable operation, which is
usually achieved using a combination of hardware [7,21] and software
techniques [22].
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We hypothesized that the fault tolerance of a neural network
(NN) can be increased by reducing the number of data transfers
and overall execution time. The latter can be achieved by replacing
longer-executing Multiply ACcumulate (MAC) operations with shorter-
executing zero comparisons, while the former involves reducing the
number of arithmetic floating point operations (FLOPs).

The number of FLOPs was reduced by leveraging the sparsity (ratio
between the number of non-significant values and the total number of
values) of the runtime input values [23] through all the layers of a
NN. If an input value to be multiplied with a network weight is zero,
then the corresponding MAC operation, which consists of FLOPs, is
bypassed. We termed this optimization Selective Multiply-Accumulate
zeRo-opTimization (SMART). A process flow diagram for SMART is
shown in Fig. 1(a).

The rationale behind the MAC bypass is that zero multiplied by
any real number is zero, and zero is also the additive identity for
real numbers. Hence, when an addition or multiplication is carried out
between two operands, the results can be directly deduced from the
operands if at least one operand is zero, without using an adder or
multiplier [24,25]. The number of zero comparators replacing FLOPs
is proportional to the input sparsity.
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Fig. 1. Overview of the SMART and NN architecture.

SMART can be implemented through software changes. We consider
MART to be novel as we could not identify a similar technique for
N fault tolerance among the current state-of-the-art techniques for the
perating system (OS) based computing platforms. The closest we could
ind was the exploration of the relationship between static sparsity
f weights and fault resiliency of NNs [26]. While SMART can be
chieved in hardware [24,25], it would require specialized processor
rchitectures, unlike our proposed software-based approach that can
e executed on commercial off-the-shelf processors.

. Related works

A number of techniques, such as N-Module Redundancy (NMR) [27,
8], Error Detection And Correction (EDAC) codes [29–31], Built-
n Current Sensor (BICS) [32,33], bit interleaving with single error
orrection (SEC) codes [34], Algorithm-Based Fault Tolerance (ABFT)
nd Result Checking (RC) [35,36] exists to make general purpose
omputing more reliable. While these techniques can be adopted to
mprove the NN fault tolerance against soft errors, SMART does not fit
nder any of the above techniques as it does not involve error detection
r correction. Rather, SMART focuses on error prevention by reducing
he probability of a soft error occurring in NNs.

For instance, the NMR technique uses multiple identical modules
or computation. The output from those computations is majority voted
o get the final output. That way, should an error occur in one of
hose computed outputs, it can be detected and masked through voting.
epending on the number of modules used, this technique has other
ames such as Dual Module Redundancy (DMR) [37–39], Triple Mod-
le Redundancy (TMR) [40–43], and 5MR. Depending on the mode
f computation, the NMR technique can be temporal (multiple com-
utations separated in time), spatial (multiple computations separated
n space, such as with multiple hardware) or a combination of both.
owever, NMR has a significant resource consumption overhead.

EDAC uses redundant bits for handling errors in the memory. BICS
onitors the SRAM power bus for detecting single-event upset-induced

bnormalities. The power bus checking is performed on the SRAM
olumns and it is combined with a single-parity bit per RAM word
o perform error correction. Bit interleaving uses the idea of spacing
he bits belonging to a word at an optimal interleaving distance to
2

educe the chances of multiple bit flips affecting a single word. The N
Table 1
Sparsity of input values to different layers in the NN.

Layer 0 Layer 1 Layer 2

Sparsity 80.7% 66.6% 47.3%

combination of bit interleaving and SEC codes can be used to protect
the memories from multiple upsets.

ABFT uses the knowledge of the algorithm to inject additional
calculations into the algorithm whose outcome is already known. Any
deviation in this known outcome signals that an error has occurred.
However, RC verifies the results of various mathematical functions
without the knowledge of the algorithm used to compute those func-
tions. One advantage that some ABFT algorithms have over RC is in
terms of fault localization and error correction [35].

Apart from general techniques, several other optimization tech-
niques for improving the fault tolerance of NNs have been proposed
[44]. One proposal uses the Feature-map and Inference Level Resilience
(FILR) [45] technique for statically protecting vulnerable parts of a
Convolutional Neural Network (CNN) by duplicating the corresponding
logical operations and rerunning vulnerable inferences by analyzing
their output. Another uses model compression techniques, such as
binary quantization, for improving the fault tolerance of a Deep Neu-
ral Network (DNN) [26]. Ranger [8] is another technique used to
improve the fault tolerance of a DNN by correcting transient faults
without re-computation. Compiler-based techniques such as Register
Allocation Technique (RAT) explicitly restrict the registers used by
certain functions to reduce the exposed area, thereby reducing the
CNN’s susceptibility to soft errors [46,47].

Others have evaluated the effects of neutron radiation and simulated
fault injections on machine learning algorithms like Support Vector Ma-
chines (SVMs) [48,49] and CNNs [50], and assessed the fault tolerance
of these algorithms.

Studies linking the reliability of CNNs on FPGAs to their parameters
and metrics, such as model accuracy, degree of parallelism, quantiza-
tion and reduced data precision, [16,51] have also been conducted.

The effect of instruction set architecture on the reliability of CNNs
has also been studied [52] on an ARM platform with simulated fault
injections. However, the study uses the Common Microcontroller Soft-
ware Interface Standard-NN (CMSIS-NN) [53] library for CNN ex-
ecution with low-precision fixed-point representation and does not
consider runtime input sparsity.

The following sections describe the NNs subjected to the radiation
test campaigns; the effects of SMART and temporal TMR techniques on
the NNs; the test setup and methodology; analysis of the radiation test
results; and, concluding observations and future work.

3. Case study algorithms

The architecture of the NN used during the radiation test campaign
is shown in Fig. 1(b). This NN was designed, trained and evaluated
using the TensorFlow [54] Python library, and 60 000 training images
and 10 000 testing images from the Modified National Institute of
Standards and Technology (MNIST) database. This NN is also known
as an MNIST digit classifier as the NN is used to classify the images
representing digits from 0 to 9. The input sparsity to the different
layers of the NN generated at runtime is shown in Table 1, which was
computed using all 10 000 test images from MNIST.

The parameters of the trained network are fed to a custom im-
plementation of the NN algorithm in C language, using a custom
framework to create four different versions of the NN. These are: (1) a
version of the NN without any of the proposed optimization (Simple),
2) NN with SMART (SMART), (3) an NN with TMR (TMR), and (4) an

N with TMR and SMART (TMR+SMART).
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Table 2
Analysis of results from February and July test campaigns.

NN version Avg. Neutron flux Irradiation Iterations Number of errors Neutron fluence Cross section
(

105 neutrons∕cm2) /s time (h) Tolerable Critical Total
(

1010 neutrons∕cm2) (

10−10 cm2)

Simple 4.27 12.0 1892 11 0 11 1.85 5.94

SMART 3.84 43.7 452 29 2 49 14.7 3.334.27 56.3 1195 17 1

TMR 4.27 11.9 1813 5 0 5 1.83 2.73

TMR+SMART 3.84 44.5 451 23 0 39 14.8 2.644.27 56.0 1181 13 3
Fig. 2. Flowchart of the TMR versions of NN.

3.1. NN(Simple) version

The Simple NN version of the case study algorithm contains the
implementation for the NN inferencing algorithm without any of the
proposed optimization. It is expected to provide a reference for lower
fault tolerance compared to the NN(SMART) version while executing
on OS-based systems.

3.2. NN(SMART) version

The SMART NN version of the case study algorithm contains the
implementation for the NN inferencing algorithm with the proposed
SMART technique. It is expected to provide higher fault tolerance to
NN inferencing algorithms compared to the NN(Simple) version while
executing on OS-based systems.

3.3. NN(TMR) version

The TMR NN version of the case study algorithm contains the
implementation for the NN inferencing algorithm protected with the
temporal TMR technique, where the entire NN(Simple) implementa-
tion is executed thrice successively and the majority output is voted,
as shown in Fig. 2. This implementation is similar to the one by
Czajkowski and colleagues [43]. However, all three instances of the
NN(Simple) implementation are executed without conditionally skip-
ping any of them. This version is expected to provide a reference for
higher fault tolerance than the NN(SMART) version for comparison
purposes.

3.4. NN(TMR+SMART) version

The TMR+SMART NN version is similar to the NN(TMR) ver-
sion. However, instead of executing the NN(Simple) implementation,
NN(SMART) implementation is executed thrice and the output of the
NN(TMR+SMART) version is the majority-voted output of those three
executions, as shown in Fig. 2. This version is expected to provide
higher fault tolerance to the NN algorithms compared to all the other
versions in the case study algorithm as both the TMR and SMART
techniques implemented in this hybrid version are expected to work
constructively in protecting the NN algorithms from radiation-induced
soft errors.
3

Fig. 3. Flow chart of the radiation test program.

Fig. 4. Radiation test setup inside the radiation test chamber with the system under
test (SUT).

4. Radiation test setup

Each of the four versions of the NN algorithm was packaged into
separate radiation test programs, whose flowchart is shown in Fig. 3,
to facilitate executing the case study algorithms on the radiation test
setup developed by Université Grenoble Alpes (UGA) [55]. The test
setup contains the system under test, which is exposed to neutron
radiation during the experiments as shown in Fig. 4, and the control
computer, which is placed outside the radiation test chamber to control
and communicate with the system under test.

The number of iterations of the test program is controlled by the
radiation test setup and each iteration corresponds to an execution of
the test program. To limit the size of a test program, 250 inputs were
randomly selected from the MNIST testing images, and inference results
for all of these images were computed in one iteration. To reduce the
variables in the experiments, a single input data set was used across
all campaigns. Each of the inputs contains a one-dimensional array
of size 784 in single-precision floating-point format (FP32), which is
obtained by normalizing and flattening the two-dimensional array of
28 × 28 pixels representing the resolution of an image in the MNIST
database. Each input is used to compute 120 inferences within one
iteration. This number was chosen to cause the total execution time
of one iteration to lie between 10 s to 20 s, for optimal scheduling
of the test programs during the radiation test campaigns. The various
loops within an iteration of the test program are shown in Fig. 5.
Each NN inference generates a one-dimensional array of size 10 in
FP32 as output, where each element in the output corresponds to the
probability of the input being an image of a digit from 0 to 9.
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Fig. 5. Loops within an iteration of the radiation test program.

5. Experiment and analysis

The radiation test programs were executed from February 17–18
and July 4–8 of 2022 at Laboratory of Subatomic Physics & Cosmol-
ogy (LPSC) in Grenoble, France. The radiation test setup utilizes two
Raspberry Pi 4B, with Raspberry Pi OS Lite version 11 and a superscalar
quadcore Cortex-A72 (ARM v8) 64-bit SoC, where one acts as the
system under test and another as the control computer. Once the results
were obtained from the experiments, the error analysis was done by
comparing the results with the golden reference, which was obtained by
running the radiation test program under normal operating conditions.

The analysis of the results from the radiation test campaigns is
shown in Table 2 and the corresponding dataset is publicly avail-
able [56]. The first column of this table represents the four versions
of the NN algorithm tested under radiation. The second column con-
tains the corresponding average neutron flux to which the various NN
versions were exposed. The third column represents the time spent
by each NN version, executing under various neutron flux levels, on
the setup’s multi-core CPU. The fourth column represents the number
of iterations of the radiation test program for each NN version under
various neutron flux levels. The fifth column represents the number
of errors that occurred during all the corresponding iterations of the
NN versions. This column is divided into three sub-columns which
represent the following error counts:

1. Tolerable error is incremented by one if single or multiple errors
occurred within an iteration but did not result in any classifica-
tion mismatch when compared with the golden reference.

2. Critical error is incremented by one if single or multiple errors oc-
curred within an iteration and includes classification mismatches
when compared with the golden reference.

3. Total error is the sum of tolerable and critical error counts for
all NN versions. This error count is used for cross section [57]
calculation.

The sixth column represents the neutron fluence associated with
ach NN version. This represents the total number of neutrons that
assed through a 1 cm2 area of the radiation setup while the corre-
ponding NN version was executing. The last column represents the
ross section calculated from the total error count for each of the
N versions. Note that the data explicitly pertaining to any program
rashes or hangs experienced by the system under test during the
xperiments are currently not available.

By design, a new set of result files is sent by the test program as
utput, along with its duplicate for each iteration. For each NN version,
he results and their duplicates were analyzed separately. This results in
wo values for metrics such as iterations and number of errors, which
hould be equal under normal conditions. However, under radiation,
f an error occurred outside the case study algorithm (such as during
4

Table 3
Errors associated with input and output of radiation test program.

NN version Skipped files Input error Output error

Simple 5 1 1
SMART 39 0 17
TMR 7 2 2
TMR+SMART 40 0 15

the output write process), these values could be different. Hence, as
a means to determine the commonality between these two sets of
results, the minimum count values between them are further analyzed,
as shown in Table 2.

6. Observation and discussion

The last column of Table 2 suggests that SMART has reduced the
cross section – i.e., the probability of either a tolerable or critical error
occurring for a given neutron radiation –, thus, increasing the overall
fault tolerance of NN(SMART) compared to NN(Simple). NN(TMR) has
superior fault tolerance compared to NN(SMART) but at an increased
computational cost. Finally, NN(TMR+SMART) outperforms NN(TMR)
by a small margin in terms of fault tolerance improvement. However,
more radiation tests are required to confirm this advantage as the ob-
served margin is small. Future radiation tests will ensure approximately
equal irradiation time for all tested algorithms.

The Record blocks shown in the flowchart of the test program (c.f.,
Fig. 3) are responsible for detecting an error in the input or output of
the case study algorithms, regardless of an error within the execution
of the case study algorithms, using DMR technique [37,39]. Sometimes
the result files, including the duplicates, sent by the test program
running on top of the OS in the system under test were found to be
either empty or, corrupted and unreadable, rendering them useless for
further analysis. Hence, those files were skipped from being subjected
to analysis. These skipped file counts along with the input and output
error count for each case study algorithm are shown in Table 3. Table 3
suggests that SMART versions experienced a higher number of file
skips compared to non-SMART versions during analysis. This is because
the SMART versions were irradiated for prolonged periods of time
compared to non-SMART versions, as evident from Table 2.

Table 4 shows various characteristics of the radiation test program
such as the execution time, memory consumption and failure in time
(FIT) [58]. The FIT was calculated for each of the test programs
by multiplying the approximate sea level neutron flux value of 0.13
cm−2 h−1 with 109 hours and cross section values shown in Table 2.
The FIT values are therefore proportional to the cross section values.
The approximate sea level neutron flux value of 0.13 cm−2 h−1 for
14 MeV neutrons, assuming 1 MeV energy bin/width, was calculated
by integrating the reference neutron differential flux function (c.f.,
Equation A.1 in [58]) between the 13.5 MeV lower limit and 14.5 MeV
upper limit, and multiplying the integration result by 3600 s h−1.

The size of the executable was measured using the GNU size util-
ty [59] with System V conventions. As evident from the size column
f Table 4, only the .text section which contains the program code [60]
eems to be varying due to changes in the instructions associated with
arious case study algorithms, while the rest of the executable remains
he same size, which is as expected by design.

The execution time for the radiation test programs was calculated
sing time stamps immediately obtained before and after the execution
f the test program.

The Send result block at the end of the test program flow (c.f.,
ig. 3) was disabled to mitigate the variable effects of the standard
utput process during the execution time measurement. The execution
ime measurement was carried out 100 times for each test program
ontaining a case study algorithm and the statistical average of those
easurements is shown in the execution time column of Table 4.
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Table 4
Characteristics of the radiation test program.

NN version Execution Size (bytes) FIT

time (s) .text Total

Simple 4.59 4216 1 130 066 0.077
SMART 17.89 4228 1 130 078 0.043
TMR 4.60 4720 1 130 570 0.036
TMR+SMART 17.88 4732 1 130 582 0.034

Fig. 6. Overview of MAC operation implementation in non-SMART versions.

One thing to note is that the radiation test program associated
with both the corresponding TMR and non-TMR versions takes almost
the same amount of time to execute, despite the redundancy. This is
because the total number of inferences was always kept at 120 (c.f.,
Fig. 5 and Section 4), i.e., while 120 inferences were carried out for
non-TMR versions for each input, only 40 inferences were carried out
for each input in the TMR versions, with each TMR inference requiring
3 corresponding non-TMR inferences.

6.1. Spatial and temporal footprints

Another observation from Table 4 is that the SMART versions have
a 12-byte memory overhead and about 4 times the execution time
overhead compared to the corresponding non-SMART versions. Further
analysis into the differences brought to the NN algorithms by the
SMART at the assembly level revealed the following:

• VMLA (floating-point multiply-accumulate) [61] instructions as-
sociated with MAC operations on the input values of the NN
algorithms were executed in the non-SMART versions uncondi-
tionally and does not block the CPU. An overview of the MAC
operation implementation in the non-SMART versions is shown
in Fig. 6.

• VMLA instructions associated with MAC operations on the input
values of the NN algorithms were executed in the SMART versions
conditionally. This conditional execution implementation adds
five more instructions per execution compared to the correspond-
ing non-SMART versions, where four of them are VFP (floating
point) instructions [61,62]. These additional instructions include
VCMP (floating-point compare) followed by VMRS (transfer the
contents of a VFP system register to an ARM register), which
stalls the processor until all the current VFP instructions such
as VLDR (extension register load), VMLA and VSTR (extension
register store) are executed [61]. An overview of the conditional
implementation is diagrammed in Fig. 7.

The above points explain the reason behind the significant increase
n the execution time for SMART versions. However, according to
ables 2 and 4, despite the overhead disadvantage, the cross section
nd FIT for SMART are lower compared to non-SMART versions. This
uggests that even though both SMART and non-SMART versions use
nd execute VFP instructions, executing the VMLA instruction in par-
icular (which carries out the MAC operation), significantly reduces
he fault tolerance of the NN algorithms. Thus, lowering the number
f VMLA instruction executions (which is the case with SMART ver-
ions) increases the fault tolerance of these algorithms. One plausible
eason behind the relationship between the VMLA instruction and the
ault tolerance against neutron-induced soft errors could be the overall
patial footprint of the data using this instruction, i.e., the chip area
5

Fig. 7. Overview of MAC operation implementation in SMART versions [61].

the data needs to travel increases with VMLA instruction, giving more
neutrons a chance to alter this data. If that is the case, then despite the
temporal footprint increase caused by the SMART (prolonged exposure
to the neutron beam, c.f., Table 4), the positive effect of the overall
spatial footprint decrease by SMART on NN fault tolerance is higher.
This is plausible since the cross section is a function of area (neutron
flux) and irradiation time. Thus, the chip area and execution time used
by the algorithms plays a critical role in the number of soft errors
faced by these algorithms. However, more beam time and targeted tests
are required to confirm and improve the statistical significance of this
observation.

Supporting this observation, a similar relationship between the
susceptibility to soft error and the associated (spatial) memory foot-
print was proposed by Geancarlo Abich and colleagues [12] for CNN’s
implemented with SIMD (single instruction, multiple data) instructions.
They established that the variation in spatial and temporal footprint
alters the NN’s susceptibility to soft errors and ‘‘while boosting the
performance, SIMD instructions supported by Arm Cortex-M4 and M7
processors increase the memory footprint and the CNN susceptibility to
soft errors’’ [12].

6.2. Error analysis granularity

As evident from Section 5, the error counts were incremented, at
maximum, by one per iteration of the radiation test program. This was
deliberate, even though the granularity of the error counts could be
theoretically increased to track the errors in the loops within each iter-
ation (c.f., Fig. 5). During the analysis of the results, we observed that
increasing the granularity also increased the complexity of the analysis,
as the files containing the results were sometimes corrupted. These file
corruptions also suggest that soft errors impacted the operations of the
OS running on the system under test.

Since the test program is executed from the start for each iteration,
by design, a new set of result files is created for each iteration (c.f.,
Section 5). The unreadable corrupted result files were easily identifiable
and skipped (c.f., Table 3). The readable result files, regardless of the
corruption, were processed as mentioned in Section 5 (especially the
last paragraph) to mitigate the effects of corruption. Assuming the
probability of multiple soft errors occurring within one iteration to be
negligible, we selected the error count granularity to be at the iteration
level.

7. Conclusion and future work

We proposed a novel optimization technique called SMART to im-
prove the fault tolerance of NN inferencing algorithms running on

OS-based computing systems.
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As described in Section 3, to understand the impact of SMART,
radiation test campaigns for evaluating the fault tolerance of the
four NN versions, namely NN(Simple), NN(SMART), NN(TMR) and
NN(TMR+SMART) were conducted. Analysis of the results (c.f., Ta-
ble 2 and Section 6) from these campaigns suggests that NN(SMART)
outperformed NN(Simple) by approximately 44% in terms of the re-
duction in the probability of a neutron-induced error occurring (fault
tolerance). However, the TMR NNs exhibited higher fault tolerance
compared to the non-TMR NNs, as expected. For instance, NN(TMR)
had approximately 18% fault tolerance improvement over NN(SMART),
but NN(TMR+SMART) marginally performed better than NN(TMR) by
pproximately 3.3% – whose statistical significance can be improved
ith more experiments.

For future work, we will evaluate the performance of SMART in
bare-metal system. Furthermore, the overhead of SMART could be

ignificantly reduced by replacing FP32 comparison with integer com-
arison. The relationship between input sparsity, different NN output
unctions [23], as well as different NN architectures and SMART will
lso be explored. To improve error analysis granularity, an alternative
ethodology also needs to be devised for observing and storing the

esults from the radiation test programs.
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