
Citation: Zaccardi, S.; Frantz, T.;

Beckwée, D.; Swinnen, E.; Jansen, B.

On-Device Execution of Deep

Learning Models on HoloLens2 for

Real-Time Augmented Reality

Medical Applications. Sensors 2023,

23, 8698. https://doi.org/10.3390/

s23218698

Academic Editor: Fabrizio Cutolo

Received: 10 September 2023

Revised: 18 October 2023

Accepted: 23 October 2023

Published: 25 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

On-Device Execution of Deep Learning Models on HoloLens2
for Real-Time Augmented Reality Medical Applications
Silvia Zaccardi 1,2,3,* , Taylor Frantz 1,3 , David Beckwée 2 , Eva Swinnen 2 and Bart Jansen 1,3

1 Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel, 1050 Brussel, Belgium;
taylor.frantz@vub.be (T.F.); bart.jansen@vub.be (B.J.)

2 Rehabilitation Research Group (RERE), Vrije Universiteit Brussel, 1090 Brussel, Belgium;
david.beckwee@vub.be (D.B.); eva.swinnen@vub.be (E.S.)

3 IMEC, 3001 Leuven, Belgium
* Correspondence: silvia.zaccardi@vub.be

Abstract: The integration of Deep Learning (DL) models with the HoloLens2 Augmented Reality (AR)
headset has enormous potential for real-time AR medical applications. Currently, most applications
execute the models on an external server that communicates with the headset via Wi-Fi. This client-
server architecture introduces undesirable delays and lacks reliability for real-time applications.
However, due to HoloLens2’s limited computation capabilities, running the DL model directly
on the device and achieving real-time performances is not trivial. Therefore, this study has two
primary objectives: (i) to systematically evaluate two popular frameworks to execute DL models on
HoloLens2—Unity Barracuda and Windows Machine Learning (WinML)—using the inference time
as the primary evaluation metric; (ii) to provide benchmark values for state-of-the-art DL models
that can be integrated in different medical applications (e.g., Yolo and Unet models). In this study,
we executed DL models with various complexities and analyzed inference times ranging from a few
milliseconds to seconds. Our results show that Unity Barracuda is significantly faster than WinML
(p-value < 0.005). With our findings, we sought to provide practical guidance and reference values
for future studies aiming to develop single, portable AR systems for real-time medical assistance.

Keywords: HoloLens2; deep learning; machine learning; augmented reality; mixed reality; Windows
Machine Learning; Unity Barracuda

1. Introduction

The integration of Artificial Intelligence (AI) in Augmented Reality (AR) systems is
beneficial for a wide range of industrial and clinical applications [1]. AR systems often
provide clinically relevant information to users about their surroundings, with information
being derived from onboard image-based sensors. Most computer vision tasks for AR
applications (e.g., image classification, object detection and pose estimation) benefit greatly
from state-of-the-art Deep Learning (DL) models, specifically Convolutional Neural Net-
works (CNNs), enhancing performance and user experience [2]. Deep learning techniques
commonly address tasks such as: object detection, frequently performed with real-time
CNN-based DL models such as Yolo [3]; 3D semantic segmentation, which enables en-
hanced spatial understanding of indoor environments using point cloud data [4,5]; and
hand gesture recognition [6,7], with promising implications in the field of touchless medical
equipment [8]. However, integrating complex DL models into AR systems with limited
computational capabilities can be challenging, particularly when real-time performance is
needed [9].

AR systems in the medical field, e.g., for surgical assistance, ideally encompass sev-
eral features [10]: (i) portability to accommodate various surgical and clinical settings,
(ii) user-friendliness, (iii) real-time performance to provide timely and relevant information,
and (iv) when feasible, voice-controlled functionality to leave the hands of the clinician

Sensors 2023, 23, 8698. https://doi.org/10.3390/s23218698 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23218698
https://doi.org/10.3390/s23218698
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-9133-7762
https://orcid.org/0000-0002-9450-0529
https://orcid.org/0000-0001-9951-9993
https://orcid.org/0000-0002-3771-9479
https://orcid.org/0000-0001-8042-6834
https://doi.org/10.3390/s23218698
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23218698?type=check_update&version=1

Sensors 2023, 23, 8698 2 of 15

free. AR Head-Mounted Displays (HMDs), or AR glasses, are currently being explored in
the medical field as they can meet all the above-mentioned requirements [11–13]. Current
studies focus on 3D visualization of pre/intra-operative imaging, such as blood vessels and
brain MRI, to enhance decision-making processes and provide real-time feedback during
complex surgical procedures (e.g., laparoscopy [14–16] and endoscopy [17,18]). Beyond the
operating room, AR HMDs also show promise in medical training and education, superim-
posing virtual anatomical models and interactive simulations for an immersive learning
experience [19–22]. Additionally, these devices are becoming pivotal in telemedicine,
enhancing remote patient consultations with enriched visual aids and data overlays [23].

Among the numerous AR—or Mixed Reality (MR)—HMDs available on the market,
HoloLens2 is well suited to the development of DL in AR applications due to its onboard
processing capabilities. Its integrated “Holographic Processing Unit” (HPU) and suite of
sensors enable complex functionalities, e.g., spatial mapping, hand and eye tracking, and
voice control [24]. In the forthcoming years, cheaper, power-optimized, and more efficient
processors are expected to become available on the market, further supporting the potential
for combining AI and AR in standalone wearable AR devices [9]. A striking example of
the rapid advancement in AR technology is the upcoming mixed-reality headset of Apple,
Apple’s Vision Pro [25], which is believed to revolutionize the AR HMD user experience.

Despite HoloLens2 having an integrated GPU, its computing capabilities remain
limited. Thus far, DL integration has mostly been performed by executing the DL models
on an external server, which receives the input data (RGB or depth images) and sends the
result back through a wireless connection. However, this architecture can be suboptimal
for real-time medical applications due to the latency, instability, and accessibility issues
associated with Wi-Fi connectivity. In particular, the reliance on external servers can be
problematic in off-grid areas or during emergency situations. Another drawback of wireless
connection is that it introduces additional radio frequency transmissions and requires
supplementary computing infrastructure. This can be problematic in environments that
are either sensitive or already limited in space, such as surgical rooms [26]. Therefore,
in medical contexts, a straightforward, single-device AR system that ensures real-time
performance can simplify the user experience and reduce potential technological pitfalls.
In light of these limitations, this study aims to:

• Provide an overview of applications, identified in the literature, in which deep learning
models are directly executed on the HoloLens2.

• Assess the feasibility of executing models with various complexity on HoloLens2.
• Compare two popular frameworks for neural network inference, Windows Machine

Learning (WinML) and Unity Barracuda, in terms of inference time (i.e., the time that
the model takes to make a prediction on a new image).

• Provide benchmark inference time values for state-of-the-art DL models for different
medical applications (e.g., Yolo and Unet models for surgical guidance).

Our research builds upon the work of Lazar [27], which concluded that Barracuda
was faster than WinML for a specific application using the Lenet5 model. In this study,
we conduct a systematic evaluation of a broader range of DL models, providing reference
values and relevant tests to quantify the performance of real-time medical applications on
HoloLens2. With our findings, we aim to provide valuable technical guidance on how to
integrate Machine Learning (ML) and DL models on HoloLens2.

2. Related Work

A review of academic works where ML/DL models are directly executed on HoloLens2
was performed. The review process involved a structured search on Web of Science, cross-
referencing, and a hand search. For the structured search on Web of Science, a search
string was used: “HoloLens” AND (“neural network” OR “deep learning” OR “machine
learning” OR “artificial intelligence” OR “AI” OR “A.I.”). This yielded a total of 79 articles.
After removing one duplicate, the following exclusion criteria were applied:

• Review papers (five papers excluded).

Sensors 2023, 23, 8698 3 of 15

• Papers presenting datasets (1 paper excluded).
• Papers focusing on ML/DL model optimization (three papers excluded).
• Papers in which HoloLens2 is not used (three papers excluded).
• Papers in which the developed AR application does not integrate ML/DL models

(25 papers excluded).
• Papers in which the integration of ML/DL models is performed by adopting a client-

server architecture (39 papers excluded).

The filtering process resulted in only two papers in which ML/DL models are directly
executed on HoloLens2 [28,29]. It also revealed that the majority of the works that integrate
AI in HoloLens applications adopt a client-server architecture (e.g., Refs. [30,31]). Through
cross-referencing and a hand search, we found six additional relevant ML/DL papers for
HoloLens2 [27,32–36].

Table 1 summarizes the studies found in the literature, reporting their application
context, the ML/DL model used and its task, the adopted framework (or Application Pro-
gramming Interfaces, API), and the speed of the model (i.e., the inference time). Except for
the study conducted by Lazar [27], all papers listed in Table 1 have opted for WinML as
framework to integrate ML/DL models into HoloLens2. To the best of our knowledge,
Lazar [27] is the only work in the literature where different approaches to run ML/DL
models in HoloLens2 are implemented and compared. Table 1 also shows that the majority
of the models are used to perform object detection [28,29,32–36]. These findings are in line
with the literature review performed by Bohné [37], which focuses on studies that propose
systems integrating machine learning and augmented reality. It is also worth mentioning
that Bohné [37] suggests Unity Barracuda as framework to integrate ML/DL models in
AR applications, being easy to implement and test. Von Atzigen [34], Doughty [29], and
Doughty [28] applied object detection in specialized tasks within the medical field. Ad-
vanced techniques have been employed for the detection and pose estimation of surgical
instruments [29], as well as for the prediction of surgery phases [28]. These specific use
cases highlight the potential of deep learning models in real-time AR medical applications.

Table 1. Overview of AR applications executing ML/DL models directly on Microsoft HoloLens2.

Paper Application Model Model Task API Speed

Zakaria [35]
Infrastructure

(Bridge
inspection)

Yolov5
Unet

Object detection
Semantic

segmentation
- -

Quin [32] Manufacturing
(Assembly)

Yolov5 Object detection WinML 370 ms

Zao [33] Manufacturing
(Assembly)

Yolov4-Tiny Object detection - 360 ms

Hamilton [36]
Medical

(Daily Reminder
system)

Yolov2-Tiny Object detection WinML 1773 ms

von Atzigen [34] Medical
(Surgical

navigation)
Yolov2-Tiny Object detection WinML 900 ms

Doughty [29] Medical
(Surgical

navigation)

HMD-EgoPose
(EfficientNetB0

backbone)
Pose estimation WinML ≈1 s

Doughty [28] Medical
(Surgical

navigation)

SurgeonAssist-Net
(EfficientNet-Lite-B0

backbone)

Action
recognition WinML 219 ms

Lazar [27] Benchmark
(APIs

performances)
LeNet5 Image

classification

WinML
TensorFlow.js

Barracuda

- 3428 ms 1

- 1035 ms 1

- 183 ms 1

1 Inference time for a batch of 10,000 images.

Sensors 2023, 23, 8698 4 of 15

3. Materials and Methods
3.1. Microsoft HoloLens2

HoloLens2 is the second generation of Microsoft mixed reality headsets. It offers
substantial improvements compared to its predecessor, HoloLens1: a custom-built Holo-
graphic Processing Unit (HPU), new sensors (an RGB camera, a depth camera, 4 visible
light cameras, and an Inertial Measurement Unit (IMU)), and additional functionalities
such as hand gestures and eye tracking. The user experience is further enhanced with a
larger field of view (52°), improved battery life (3 h), and reduced weight (566 g) [38,39].

The HPU is a custom-designed ARM-based co-processor, developed to handle tasks
related to data streams coming from all of HoloLens’ sensors. It is designed to offload work
from the main processor, providing more efficient processing for the complex workloads
involved in rendering holograms. The main processor, a Qualcomm Snapdragon 850
Compute Platform, has an ARM64 architecture and includes both a CPU and a GPU.
The CPU is responsible for executing most of the computing instructions, while the GPU
takes care of tasks related to rendering graphics [24]. An additional feature provided
for users and developers is that GPU or CPU usage can be monitored using the Device
Portal on the Windows platform, thus making it easier to manage and optimize application
performance [40].

Along with the hardware improvements, HoloLens2 introduces a new version of
the research mode, a C++ API that allows access to the raw streams of the sensors [41].
The research mode, coupled with the availability of benchmark data [42], further supports
the use of HoloLens2 for real-time medical applications. Hololens2 spatial mapping
(i.e., the ability to scan the surrounding environment in real-time and localize its position
within it) and depth sensing have been extensively validated [43]. Moreover, the head-
tracking capability has proven to provide accurate movement parameters for clinical gait
analysis [44]. The processing capabilities and available tools make it possible to integrate
deep learning models into real-time AR medical applications.

3.2. Deep Learning Integration on HoloLens2

Lazar [27] compares the performances of several frameworks (Windows Machine
Learning (WinML), TensorFlow.NET, TensorFlow.js, and Barracuda) to integrate ML/DL
models in HoloLens2. The study’s findings suggest that Barracuda is the optimal choice
due to its faster inference and ease of implementation. In this study, we systematically
assess the inference times of both WinML and Barracuda for a broader range of models.
Our aim is not only to compare the two frameworks but also to examine the relationship
between their performances and the complexities of different models.

To conduct our analysis, we developed two applications, one using WinML and one
using Unity Barracuda. Both execute DL models in Open Neural Network Exchange Model
(ONNX) format. Subsequently, the applications are deployed on HoloLens2, where the
inference times are acquired for later processing. The pipeline for integrating DL models
on HoloLens2 is depicted in Figure 1.

Sensors 2023, 23, 8698 5 of 15

Figure 1. Overview of the pipeline for integrating DL models on HoloLens2.

3.2.1. Open Neural Network Exchange Model

The Open Neural Network Exchange (ONNX) is an open-source standard for rep-
resenting machine learning models. It was introduced by Microsoft and Facebook with
the goal of promoting interoperability within the machine-learning ecosystem [45]. This
flexibility is achieved by defining a set of standardized operators—individual computations
that make up the layers of a neural network—and opsets, which represent specific versions
of these operators [46]. This standardization enables the same ONNX model to be run
across different hardware and software environments.

In fact, a ML/DL model trained with one machine learning framework may not
be compatible with another one (or may produce different results). By exporting the
pre-trained model to ONNX, the model can be used in different projects by using the
right execution tools. In this study, WinML and Barracuda represent the tools to execute
pre-trained ONNX models on HoloLens2.

Machine learning frameworks such as TensorFlow, PyTorch, and Keras have native
support for exporting to ONNX, and allow flexibility in the ONNX versioning. However,
the choice of the ONNX opset version strictly depends on the specific Windows build
targeted [47]. Moreover, not all versions of ONNX opset are compatible with all execution
tools (i.e., WinML and Barracuda) and some operators are not supported at all.

3.2.2. Unity Barracuda

Barracuda is a powerful machine learning inference library developed by Unity Tech-
nologies, designed for running DL models directly within Unity applications. Barracuda
functionalities can be used in Unity applications by simply downloading the package from
the Unity Package Manager [48]. To deploy the Unity application on HoloLens2, it must
first be built as ARM64 Universal Windows Platform (UWP) app. Then, as every UWP
application, it can be deployed using Visual Studio [49].

Although Barracuda is highly flexible and versatile, it currently does not support
all model architectures and ONNX operations. However, the library effectively supports
MobileNet v1/v2, Tiny YOLO v2, and U-Net models [50], which provide robust capabilities
for a broad range of applications.

Sensors 2023, 23, 8698 6 of 15

Barracuda can operate on a variety of device types, including CPU and GPU. In this
study, we employed the worker type ComputedPrecompiled to execute the DL model on
the HoloLens2 GPU. This worker precomputes certain tasks, which optimizes the model’s
performance and allows for efficient utilization of the GPU resources [51].

3.2.3. Windows Machine Learning

Windows Machine Learning (WinML) is a Microsoft API that enables developers
to run ML/DL models natively on Windows devices, including the HoloLens2 [52]. It
comes with the standard Windows 10 SDK, which can be installed in Visual Studio through
the Visual Studio Installer. In this study, the API was used in C# UWP applications,
which, once built for ARM64 platform, were deployed on HoloLens2 [53]. WinML is
well-known within a broad user community, supports many DL architectures and offers
comprehensive documentation.

Similarly to Barracuda, WinML can utilize different hardware resources for model
execution (CPU and GPU), as the API allows the selection of the device to evaluate the
model on. For this study, the DirectXHighPerformance device was selected for execution.
DirectXHighPerformance refers to the most powerful GPU available on the system. This
choice allowed us to maximize the high-performance HoloLens2 capabilities for inference
computations [54].

In this study, WinML was used in UWP applications, due to the straightforward
implementation. However, given Unity’s capability to support a multitude of platforms,
it is worth mentioning that the use of WinML in Unity applications is possible. Such
integration requires the use of Dynamic Link Libraries (DLLs), potentially decreasing the
ease of implementation and debugging.

3.2.4. Evaluation Metric: Inference Time

We chose the inference time as the metric to evaluate the performances of WinML
and Barracuda. Inference time refers to the duration between executing a model on a
single image, measured from the start to the end of the execution. In our experiments,
we simulate the typical use case scenario in which the model integrated into HoloLens2
processes real-time images captured by the HoloLens2 colored camera, one image at a time.

To measure the inference time, we utilize the C# Stopwatch class [55]. The stopwatch
is started immediately before the model execution and stopped right after its completion.
For WinML, the execution code is as follows:

output = await model . EvaluateAsync (image) ;

This code invokes the EvaluateAsync method, which internally calls the CreateFrom-
StreamAsync method, where the actual inference is performed [54].

For Barracuda, the inference time is calculated as the duration of executing the follow-
ing lines of code:

output = engine . worker . Execute (image) . PeekOutput () ;
engine . worker . FlushSchedule (t rue) ;

The FlushSchedule method with flag set to True is needed in order to block the main
thread until the execution is complete [51].

By measuring the inference time using these methods, we can accurately assess the
performance of WinML and Barracuda in terms of execution speed.

3.3. Experimental Design

The experimental study consists of two phases. In the first phase, we systematically
assess the performance of WinML and Barracuda in terms of inference time for CNN
models with increasing complexities. In the second phase, we evaluate the inference times
of both frameworks for State Of The Art (SOTA) DL models.

To measure the mean inference time for all models, we employ two template applica-
tions, one for each framework. These applications read 200 images stored in a local folder

Sensors 2023, 23, 8698 7 of 15

and perform model inference on each image using a for loop. After completing the loop,
the inference times are recorded in a .txt file. Each experiment is repeated 5 times, resulting
in 1000 samples of inference times for each framework and model.

3.3.1. Impact of Model Complexity on Inference Time

To investigate the performances of WinML and Barracuda, we created multiple DL
models with varying complexities. The architecture of the models is composed of stacked
convolutional layers; the input layer size is 256 × 256 × 3, and the consequent convolutional
layers have a kernel size of 3 × 3. By adjusting the number of layers, i.e., the depth of the
model, and the number of filters, we were able to create models with different architectures.
Each model was then exported to ONNX format. To evaluate the computational complexity
of the models, we determined the number of Multiply-Accumulates (MACs) and the
number of parameters. We created two distinct groups of CNN models:

• Group A. The models belonging to group A have similar complexity in terms of MACs
and parameters, but different depths and number of filters (see Table 2).

• Group B. The models belonging to group B have the same depth, but increasing MACs
and number of parameters (see Table 3).

By following this methodology, we aimed to provide a comprehensive analysis of
DL model variations in terms of size, computational complexity (MACs and parameters),
and architecture (depth and number of filters).

Table 2. Specifications of Group A ONNX models, listed by their unique identifier (ID), model size in
megabytes (Mb), total number of parameters (# params), Multiply-Accumulates (# MACs), number of
filters (# filters), and depth of the network (depth). The ID of each model indicates its depth, with AD1

representing a depth of 1, AD10 a depth of 10, and so on.

ID Model Size (Mb) # Params # MACs # Filters Depth

AD1 0.1 3024 212,860,928 112 1
AD10 0.2 5400 364,380,160 8 10
AD100 2.1 3618 263,323,648 8 100
AD500 1.7 4522 361,627,648 1 500

Table 3. Specifications of Group B ONNX models, listed by their unique identifier (ID), model size in
megabytes (Mb), total number of parameters (# params), Multiply-Accumulates (# MACs), number
of filters (# filters), and depth of the network (depth). The ID of each model indicates the logarithm
(base 10) of the order of magnitude of its number of parameters and MACs (e.g., BP2_M7 represents a
model with a number of parameters of the order of 102, and a number of MACs of the order of 107).

ID Model Size (Mb) # Params # MACs # Filters Depth

BP2_M7 0.04 102 107 1 10
BP3_M8 0.1 103 108 6 10
BP4_M9 0.7 104 109 16 10
BP5_M10 1.3 105 1010 64 10

3.3.2. Feasibility of SOTA Models Integration

The second phase of the experimental study aims to assess the performance of WinML
and Barracuda in executing state-of-the-art (SOTA) models on the HoloLens2 device.
To conduct this evaluation, we selected a subset of the models listed in Table 1:

• Lenet-5, from the work of Lazar [27]. The model was implemented using a public
GitHub repository [56] and trained on the MNIST dataset, a large database of hand-
written digits [57]. The model is trained to recognize digits between 0 and 9 from
grayscale images of 32 × 32 pixels.

• SurgeonAssist-Net [28]. The model infers the poses of a drill and of the surgeon’s
hand from RGB images of 224 × 224 pixels. The ONNX model, pre-trained on the
Colibrì dataset [58], is available in the official GitHub repository of the paper [28].
The model version “PyTorch_1.4” was used in this study.

Sensors 2023, 23, 8698 8 of 15

• HMD-EgoPose [29]. The model predicts the surgical phase from RGB images of
256 × 256 pixels. The ONNX model, pre-trained on the Cholec-80 dataset [59], is
available in the official GitHub repository of the paper [29].

• Yolov4-Tiny [34,36]. The model performs object detection in RGB images of 416 × 416
pixels. For our study, we utilized a pre-trained version of the model on the Pas-
cal Visual Object Classes (VOC) dataset [60], which is available in a public GitHub
repository [61]. The model was trained to detect 20 different classes.

In addition, we assessed the inference time of two models that were not found in our
literature review:

• Resnet50 model [62] for 2D Human Pose Estimation (HPE). The model estimates
the 2D poses of multiple people from RGB images with variable sizes (in this study,
the input of the model are images of 256 × 256 pixels). Mills [63] provides a pre-trained
ONNX model in a public GitHub repository.

• Unet model. The pre-trained ONNX model was obtained from a public GitHub reposi-
tory [64]. The model performs semantic segmentation of RGB images (256 × 256 pixels).
The model version “u2netp.onnx” was used in this study.

We maintained consistency by utilizing the same template applications and methodol-
ogy (5 repetitions of 200 images for each model) as in the first experimental phase. In order
to minimize additional factors that could contribute to the inference time and application
FPS (Frames Per Second), we minimized the image processing and post-processing steps,
and rendering was intentionally avoided.

3.3.3. Software and Library Versions

The HoloLens2 device used in our experiments was running on OS build 20348.1543.
The C# UWP apps that utilize WinML were developed using Visual Studio Community
2019, with Windows 10 build 19041 (Version 2004). WinML is part of the Windows 10 SDK
(MSVC v142). The Unity projects that employ Barracuda have an editor version of 2021.3,
and use Barracuda version 3.0. The CNNs models were created using a custom-made
Python script (Python version 3.9, TensorFlow library version 2.12, ONNX version 1.14).
The library “onnx_tools” (version 0.3) was used for ONNX model profiling. All ONNX
models have opset version 10, except for Lenet-5, SurgeonAssist-Net and Unet, which have
opset version 9, and Yolov4-Tiny model, which has opset version 8.

4. Results

This section presents the outcomes of the experiments outlined in Section 3.

4.1. Impact of Model Complexity on Inference Time: Results

Tables 4 and 5 present the average inference times for models in Group A and Group B,
respectively. The tables provide a comparison of each model’s performance, with inference
times and standard deviations indicated for both WinML and Barracuda. Figures 2 and 3
present the corresponding bar diagrams.

The Pearson correlation test was applied to evaluate the linear relationship between
model depth and inference time across the Group A models. For WinML, the Pearson cor-
relation coefficient was 0.72, with a statistically significant p-value (<0.005). For Barracuda,
the Pearson correlation coefficient was 0.99, with a statistically significant p-value (<0.005).

The Pearson correlation test was applied to evaluate the linear relationship between
model MACs and number of parameters, separately, and inference time across the Group
B models. For both WinML and Barracuda, the Pearson correlation coefficient between
MACs and inference time, as well as the correlation coefficient between the number of
parameters and inference time, were 0.99, with statistically significant p-values (<0.005).

Sensors 2023, 23, 8698 9 of 15

Table 4. WinML and Barracuda inference times for Group A models. All models have similar values
of MACs and number of parameters (see Table 2).

Model Specifications Inference Time (ms)

ID # Filters Depth WinML Barracuda

AD1 112 1 182 ± 12 79 ± 8
AD10 8 10 395 ± 9 192 ± 7
AD100 8 100 1624 ± 26 345 ± 11
AD500 1 500 1633 ± 60 1189 ± 18

Figure 2. Comparison of mean inference times for models of Group A. The bars represent the average
inference time across five repetitions of 200 images with each model. The values on top of each bar
indicate the mean inference time and the average standard deviation (in milliseconds) across the five
repetitions. The y-axis is in logarithmic scale.

Figure 3. Comparison of mean inference times for models of Group B. The bars represent the average
inference time across 5 repetitions of 200 images with each model. The values on top of each bar
indicate the mean inference time and the average standard deviation (in milliseconds) across the five
repetitions. The y-axis is in logarithmic scale.

Sensors 2023, 23, 8698 10 of 15

Table 5. WinML and Barracuda inference times for Group B models. All models have a depth of 10.

Model Specifications Inference Time (ms)

ID # Params # MACs # Filters WinML Barracuda

BP2_M7 102 107 1 52 ± 4 33 ± 4
BP3_M8 103 108 6 305 ± 14 153 ± 6
BP4_M9 104 109 16 651 ± 17 786 ± 9
BP5_M10 105 1010 64 9661 ± 426 2933 ± 52

4.2. Windows Machine Learning vs. Unity Barracuda

In this analysis, we compare the inference times of WinML and Barracuda for all the
models (Group A and Group B). For each model, we considered the five repetitions of the
two frameworks as two independent samples. Due to the non-normality of the data (the
normality check was performed with the function “normaltest” of scipy Python library [65],
which is based on D’Agostino and Pearson’s [66]) the non-parametric Mann–Whitney
U test was applied. In all cases, the test returned a p-value less than 0.005, revealing a
statistically significant difference between the inference times of WinML and Barracuda
across all models.

Following the statistical test, we computed the mean ratio of Barracuda’s inference
time to that of WinML for each model. Barracuda outperformed WinML for the majority
of the models. The mean ratio was less than 1 for 7 out of 8 models, implying a faster
inference time for Barracuda. Conversely, only one model (BP4_M9) exhibited a mean ratio
exceeding 1, implying a faster inference time for WinML in that instance.

4.3. Feasibility of SOTA Models Integration: Results

Table 6 reports the mean inference times recorded when executing the SOTA models
with both WinML and Barracuda. However, it was not possible to test the SurgeonAssist-
Net model with Barracuda, as the model includes Gated Recurrent Units (GRUs) which
are not supported. Our results can be compared with the inference times reported by the
original authors:

• SurgeonAssist-Net. Our results show higher inference times with WinML on GPU
than the original authors reported for WinML on CPU, which they reported as 219 ms
in the paper and estimated between 200 and 350 ms in their GitHub repository.

• HMD-EgoPose. We recorded inference times of around 1 s when using WinML on
GPU, similar to the inference times reported by the author in CPU. However, when
executed with Barracuda, the recorded inference times were notably shorter at 384 ms.

• Yolo-v2Tiny. We recorded inference times of 1.3 s using WinML on GPU, comparable
with the literature (the inference times reported by von Atzigen [34] and Hamilton [36]
are, respectively, 900 ms and 1.7 s). Using Barracuda, the inference times decrease to
630 ms.

Table 6. WinML and Barracuda inference time with SOTA models. The “Lit. WinML” column
presents the inference times as reported by the original authors.

Model Specifications Inference Time (ms)

ID Size (Mb) # Params # MACs Depth WinML Barracuda Lit. WinML

Lenet-5 [27] 0.25 105 106 5 5 ± 2 5 ± 8 -
SurgeonAssist-

Net [28] 15 106 108 50 465 ± 17 NA 219

EgoPose [29] 16 106 109 1194 1164 ± 43 384 ± 14 ≈1000
Yolov2-Tiny

[34,36] 62 107 109 25 1330 ± 56 630 ± 32 900 [34]
1773 ± 34 [36]

Resnet50 [63] 90 107 1010 98 1842 ± 64 701 ± 14 -
Unet [64] 4 106 1010 259 4707 ± 162 3023 ± 42 -

For Lenet-5, the authors reported inference times for a batch of 10,000 images, which is
not directly comparable with our individual inference times. Regarding Resnet50, we found

Sensors 2023, 23, 8698 11 of 15

no reference values as, to the best of our knowledge, no previous works have executed a
Resnet50 model directly on HoloLens2. Similarly, for the Unet model, we could not find
any reference values. The works we reviewed—the research paper by Zakaria [35] and a
GitHub repository [64]—did not provide such information.

5. Discussion

Our results indicate that both the complexity of deep learning models and the choice
of framework significantly influence inference time. We investigated the impact of model
complexity, and found a strong positive correlation between model depth, number of
parameters, MACs, and inference time. These findings align with theoretical expectations
and prior research: (more) complex models generally require more computational power
and thus, more time to infer. We also found that Barracuda consistently outperformed
WinML, except for one of the tested models (BP4_M9). This may be due to differences in the
framework implementations that are beyond the scope of this study.

Table 6 shows striking examples of performance improvement when opting for Bar-
racuda over WinML. In particular, the HMD-EgoPose model (originally deemed unsuitable
for real-time applications due to an inference time of 1 s with WinML) showed an im-
proved speed of 384 ms. During surgery, a lag or delay in recognizing the drill’s pose
can interfere with the precision of the incision. With Barracuda, the inference speed for
HMD-EgoPose nearly tripled compared to WinML, greatly enhancing its potential utility
in surgical procedures. Another compelling example is the inference time achieved with
Barracuda for the YoloV2-Tiny model. In our tests, Barracuda registered an inference
time of 630 ms, which is less than half of WinML’s 1330 ms. Notably, the inference of
Barracuda is considerably faster than that previously reported in the literature, with one
study [34] reporting 1 s, and another [36] reporting 1.7 s. Von Atzigen [34] successfully
employed YoloV2-Tiny for the detection of implanted pedicle screw heads during spinal
fusion surgery. However, the authors acknowledge that the low application frame rate is a
limitation of their study. As for HMD-EgoPose, adopting Barracuda could potentially help
translate von Atzigen’s [34] proof-of-concept application in clinical practice.

Our results, in line with the works of Lazar [27] and Bohné [37], strongly suggest ex-
ploring Barracuda as an inference framework. While WinML may support a broader range
of DL architectures, Barracuda allows for faster model inference and is easier to integrate in
Unity applications—a valuable feature given Unity’s support for the development of Apple
Vision Pro applications [67]. Our results suggest that, by adopting Barracuda to execute DL
models directly on HoloLens2: (i) high application frame rates (>30 fps) can be achieved
by models with MACs less than 107, such as Lenet5; (ii) more complex models, such as
EfficientNetB0, are likely to yield an application frame rate of only a few fps; (iii) models
with a number of MACs of the order of 1010, such as Resnet50 and Unet, will likely exhibit
inference times of the order of seconds.

Limitations and Future Research

Despite our results demonstrating the feasibility of integrating SOTA models into
HoloLens2, there are several study limitations. Firstly, it is limited to a specific set of
DL models and conditions. Besides model complexity and framework choice, software
versions can also greatly influence inference time. Table 6 reveals a discrepancy in the
inference times of SurgeonAssist-Net using WinML between our study and that of the
original authors. It is possible that the authors explored a range of builds and versions to
fine-tune performance, an approach we did not adopt in our analysis. Secondly, while the
inference time represents the execution speed of the models, the overall application frame
rate can be influenced by other factors (e.g., rendering and image processing).

It is also important to acknowledge that, although the execution of SOTA models is
faster with Barracuda, it is not yet adequate for all applications. A relevant example is
HPE; performing real-time (>30 fps) HPE on HoloLens2 could enable physiotherapists to
intuitively visualize the motion parameters of their patients, such as their range of motion,

Sensors 2023, 23, 8698 12 of 15

rather than relying solely on 2D screen displays. However, Resnet50 yielded an inference
time of 700 ms, corresponding to 1.4 fps (Table 6). Moreover, executing SOTA models
on-device may not be feasible for image-guided surgery AR applications requiring high
frame rate and real-time feedback. However, the performances of SOTA models can still be
adequate for surgical planning, needle insertion, and medical training.

Future studies should explore optimization techniques (e.g., post-training quantiza-
tion [68]) for faster inference, and quantify their impact on model accuracy. In addition,
newer DL architectures (e.g., Vision Transformers [69]) should be investigated. Executing
DL models in Unity applications using Barracuda can ease the transition from HoloLens2
to future AR HMDs—as the upcoming Apple Vision Pro—broadening the horizon for
real-time medical applications.

6. Conclusions

In conclusion, this study presents a systematic evaluation of the influence of model
complexity for deep learning models running directly on HoloLens2. Additionally, we
compared the performances of two popular inference frameworks—Windows Machine
Learning and Unity Barracuda. Our results showed that model complexity in terms of
depth, parameters, and MACs positively correlates with inference time. Furthermore, we
found significant differences in the performance of WinML and Barracuda frameworks,
with Barracuda generally yielding faster inference times. With our work, we sought to
provide technical guidance and reference values for future HoloLens2 applications that
aim to execute DL models directly on the device.

Author Contributions: Conceptualization, B.J. and S.Z.; methodology, S.Z. and T.F.; software, S.Z.
and T.F.; validation, S.Z., T.F. and B.J.; formal analysis, S.Z.; investigation, S.Z. and T.F.; resources,
B.J., D.B. and E.S.; data curation, S.Z.; writing—original draft preparation, S.Z.; writing—review and
editing, S.Z.; visualization, S.Z.; supervision, B.J., D.B. and E.S.; project administration, B.J., D.B. and
E.S.; funding acquisition, S.Z., B.J., D.B. and E.S. All authors have read and agreed to the published
version of the manuscript.

Funding: S.Z. is funded from Research Foundation Flanders (FWO) with project number FWOSB139.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: All authors acknowledge and thank the researchers whose previous publications
in the field have laid the groundwork for this study. Additionally, we appreciate the valuable
contributions made by the students involved in this research, Daniel Andre Asse’e Messi and
Sajjad Mahmoudi.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Moawad, G.N.; Elkhalil, J.; Klebanoff, J.S.; Rahman, S.; Habib, N.; Alkatout, I. Augmented realities, artificial intelligence, and

machine learning: Clinical implications and how technology is shaping the future of medicine. J. Clin. Med. 2020, 9, 3811.
[CrossRef]

2. Gumbs, A.A.; Grasso, V.; Bourdel, N.; Croner, R.; Spolverato, G.; Frigerio, I.; Illanes, A.; Abu Hilal, M.; Park, A.; Elyan, E. The
Advances in Computer Vision That Are Enabling More Autonomous Actions in Surgery: A Systematic Review of the Literature.
Sensors 2022, 22, 4918. [CrossRef]

3. Oufqir, Z.; Binan, L.; el Abderrahmani, A.; Satori, K. Deep Learning for the Improvement of Object Detection in Augmented
Reality. Int. J. Adv. Soft Comput. Its Appl. 2021, 13, 130–143. [CrossRef]

4. Mo, Y.; Wu, Y.; Yang, X.; Liu, F.; Liao, Y. Review the state-of-the-art technologies of semantic segmentation based on deep learning.
Neurocomputing 2022, 493, 626–646. [CrossRef]

5. Guo, Y.C.; Weng, T.H.; Fischer, R.; Fu, L.C. 3D semantic segmentation based on spatial-aware convolution and shape completion
for augmented reality applications. Comput. Vis. Image Underst. 2022, 224, 103550. [CrossRef]

http://doi.org/10.3390/jcm9123811
http://dx.doi.org/10.3390/s22134918
http://dx.doi.org/10.15849/IJASCA.211128.10
http://dx.doi.org/10.1016/j.neucom.2022.01.005
http://dx.doi.org/10.1016/j.cviu.2022.103550

Sensors 2023, 23, 8698 13 of 15

6. Khurshid, A.; Grunitzki, R.; Estrada Leyva, R.G.; Marinho, F.; Matthaus Maia Souto Orlando, B. Hand Gesture Recognition
for User Interaction in Augmented Reality (AR) Experience. In Virtual, Augmented and Mixed Reality: Design and Development;
Springer International Publishing: Cham, Switzerland, 2022; pp. 306–316. [CrossRef]

7. Jain, R.; Karsh, R.; Barbhuiya, A. Literature review of vision-based dynamic gesture recognition using deep learning techniques.
Concurr. Comput. Pract. Exp. 2022, 34, e7159. [CrossRef]

8. Zhou, H.; Huang, W.; Xiao, Z.; Zhang, S.; Li, W.; Hu, J.; Feng, T.; Wu, J.; Zhu, P.; Mao, Y. Deep-Learning-Assisted Noncontact
Gesture-Recognition System for Touchless Human-Machine Interfaces. Adv. Funct. Mater. 2022, 32, 2208271. [CrossRef]

9. Devagiri, J.S.; Paheding, S.; Niyaz, Q.; Yang, X.; Smith, S. Augmented Reality and Artificial Intelligence in industry: Trends, tools,
and future challenges. Expert Syst. Appl. 2022, 207, 118002. [CrossRef]

10. Seibold, M.; Spirig, J.M.; Esfandiari, H.; Farshad, M.; Fürnstahl, P. Translation of Medical AR Research into Clinical Practice. J.
Imaging 2023, 9, 44. [CrossRef]

11. Baashar, Y.; Alkawsi, G.; Wan Ahmad, W.N.; Alomari, M.A.; Alhussian, H.; Tiong, S.K. Towards Wearable Augmented Reality in
Healthcare: A Comparative Survey and Analysis of Head-Mounted Displays. Int. J. Environ. Res. Public Health 2023, 20, 3940.
[CrossRef]

12. Park, S.; Bokijonov, S.; Choi, Y. Review of Microsoft HoloLens Applications over the Past Five Years. Appl. Sci. 2021, 11, 7259.
[CrossRef]

13. Palumbo, A. Microsoft Hololens 2 in medical and healthcare context: State of the art and future prospects. Sensors 2022, 22, 7709.
[CrossRef] [PubMed]

14. Collins, T.; Pizarro, D.; Gasparini, S.; Bourdel, N.; Chauvet, P.; Canis, M.; Calvet, L.; Bartoli, A. Augmented Reality Guided
Laparoscopic Surgery of the Uterus. IEEE Trans. Med. Imaging 2021, 40, 371–380. [CrossRef]

15. Zorzal, E.R.; Campos Gomes, J.M.; Sousa, M.; Belchior, P.; da Silva, P.G.; Figueiredo, N.; Lopes, D.S.; Jorge, J. Laparoscopy with
augmented reality adaptations. J. Biomed. Inform. 2020, 107, 103463. [CrossRef]

16. Zhang, X.; Wang, J.; Wang, T.; Xuquan, J.; Shen, Y.; Sun, Z.; Zhang, X. A markerless automatic deformable registration framework
for augmented reality navigation of laparoscopy partial nephrectomy. Int. J. Comput. Assist. Radiol. Surg. 2019, 14, 1285–1294.
[CrossRef] [PubMed]

17. Jarmula, J.; de Andrade, E.J.; Kshettry, V.R.; Recinos, P.F. The Current State of Visualization Techniques in Endoscopic Skull Base
Surgery. Brain Sci. 2022, 12, 1337. [CrossRef] [PubMed]

18. Thavarajasingam, S.G.; Vardanyan, R.; Rad, A.A.; Thavarajasingam, A.; Khachikyan, A.; Mendoza, N.; Nair, R.; Vajkoczy, P. The
use of augmented reality in transsphenoidal surgery: A systematic review. Br. J. Neurosurg. 2022, 36, 457–471. [CrossRef]

19. Hale, A.; Fischer, M.; Schütz, L.; Fuchs, H.; Leuze, C. Remote Training for Medical Staff in Low-Resource Environments Using
Augmented Reality. J. Imaging 2022, 8, 319. [CrossRef]

20. Garg, R.; Aggarwal, K.; Arora, A. Applications of Augmented Reality in Medical Training. In Mathematical Modeling, Computational
Intelligence Techniques and Renewable Energy; Springer Nature: Singapore, 2023; pp. 215–228. [CrossRef]

21. Logeswaran, A.; Munsch, C.; Chong, Y.J.; Ralph, N.; McCrossnan, J. The role of extended reality technology in healthcare
education: Towards a learner-centred approach. Future Healthc. J. 2021, 8, 79–84. [CrossRef]

22. Birlo, M.; Edwards, P.J.E.; Yoo, S.; Dromey, B.; Vasconcelos, F.; Clarkson, M.J.; Stoyanov, D. CAL-Tutor: A HoloLens 2 Application
for Training in Obstetric Sonography and User Motion Data Recording. J. Imaging 2023, 9, 6. [CrossRef]

23. Dinh, A.; Yin, A.L.; Estrin, D.; Greenwald, P.; Fortenko, A. Augmented Reality in Real-time Telemedicine and Telementoring:
Scoping Review. JMIR Mhealth Uhealth 2023, 11, e45464. [CrossRef]

24. Microsoft. Microsoft HoloLens. 2023. Available online: https://learn.microsoft.com/en-us/hololens/hololens2-hardware
(accessed on 3 June 2023).

25. Apple. Apple Vision Pro. 2023. Available online: https://www.apple.com/apple-vision-pro (accessed on 17 October 2023).
26. Riurean, S.; Antipova, T.; Rocha, Á.; Leba, M.; Ionica, A. VLC, OCC, IR and LiFi Reliable Optical Wireless Technologies to be

Embedded in Medical Facilities and Medical Devices. J. Med. Syst. 2019, 43, 1–10. [CrossRef] [PubMed]
27. Lazar, L. Neural Networks on Microsoft HoloLens 2. Bachelor’s Thesis, University of Stuttgart, Stuttgart, Germany, 2021.
28. Doughty, M.; Singh, K.; Ghugre, N.R. Surgeon-assist-net: Towards context-aware head-mounted display-based augmented reality

for surgical guidance. In Proceedings of the Medical Image Computing and Computer Assisted Intervention—MICCAI 2021:
24th International Conference, Part IV 24, Strasbourg, France, 27 September–1 October 2021; Springer: Cham, Switzerland, 2021;
pp. 667–677. [CrossRef]

29. Doughty, M.; Ghugre, N.R. HMD-EgoPose: Head-mounted display-based egocentric marker-less tool and hand pose estimation
for augmented surgical guidance. Int. J. Comput. Assist. Radiol. Surg. 2022, 14, 2253–2262. [CrossRef]

30. Kim, A.; Kamalinejad, E.; Madal-Hellmuth, K.; Zhong, F. Deep Learning Based Face Recognition Application with Augmented
Reality Devices. In Advances in Information and Communication; Springer International Publishing: Cham, Switzerland, 2020;
Volume 21, pp. 836–841. [CrossRef]

31. Bahri, H.; Krčmařík, D.; Kočí, J. Accurate object detection system on hololens using yolo algorithm. In Proceedings of the 2019
International Conference on Control, Artificial Intelligence, Robotics & Optimization (ICCAIRO), Athens, Greece, 8–10 December
2019; pp. 219–224. [CrossRef]

http://dx.doi.org/10.1007/978-3-031-05939-1_20
http://dx.doi.org/10.1002/cpe.7159
http://dx.doi.org/10.1002/adfm.202208271
http://dx.doi.org/10.1016/j.eswa.2022.118002
http://dx.doi.org/10.3390/jimaging9020044
http://dx.doi.org/10.3390/ijerph20053940
http://dx.doi.org/10.3390/app11167259
http://dx.doi.org/10.3390/s22207709
http://www.ncbi.nlm.nih.gov/pubmed/36298059
http://dx.doi.org/10.1109/TMI.2020.3027442
http://dx.doi.org/10.1016/j.jbi.2020.103463
http://dx.doi.org/10.1007/s11548-019-01974-6
http://www.ncbi.nlm.nih.gov/pubmed/31016562
http://dx.doi.org/10.3390/brainsci12101337
http://www.ncbi.nlm.nih.gov/pubmed/36291271
http://dx.doi.org/10.1080/02688697.2022.2057435
http://dx.doi.org/10.3390/jimaging8120319
http://dx.doi.org/10.1007/978-981-19-9906-2_18
http://dx.doi.org/10.7861/fhj.2020-0112
http://dx.doi.org/10.3390/jimaging9010006
http://dx.doi.org/10.2196/45464
https://learn.microsoft.com/en-us/hololens/hololens2-hardware
https://www.apple.com/apple-vision-pro
http://dx.doi.org/10.1007/s10916-019-1434-y
http://www.ncbi.nlm.nih.gov/pubmed/31432270
http://dx.doi.org/10.1007/978-3-030-87202-1_64
http://dx.doi.org/10.1007/s11548-022-02688-y
http://dx.doi.org/10.1007/978-3-030-39442-4
http://dx.doi.org/10.1109/ICCAIRO47923.2019.00042

Sensors 2023, 23, 8698 14 of 15

32. Qin, Y.; Wang, S.; Zhang, Q.; Cheng, Y.; Huang, J.; He, W. Assembly training system on HoloLens using embedded algorithm. In
Proceedings of the Third International Symposium on Computer Engineering and Intelligent Communications (ISCEIC 2022),
Xi’an, China, 16–18 September 2023; Ben, X., Ed.; International Society for Optics and Photonics; SPIE: Bellingham, WA, USA,
2023; Volume 12462. [CrossRef]

33. Zhao, G.; Feng, P.; Zhang, J.; Yu, C.; Wang, J. Rapid offline detection and 3D annotation of assembly elements in the augmented
assembly. Expert Syst. Appl. 2023, 222, 119839. [CrossRef]

34. von Atzigen, M.; Liebmann, F.; Hoch, A.; Bauer, D.E.; Snedeker, J.G.; Farshad, M.; Fürnstahl, P. HoloYolo: A proof-of-concept
study for marker-less surgical navigation of spinal rod implants with augmented reality and on-device machine learning. Int. J.
Med Robot. Comput. Assist. Surg. 2021, 17, 1–10. [CrossRef]

35. Zakaria, M.; Karaaslan, E.; Catbas, F.N. Advanced bridge visual inspection using real-time machine learning in edge devices.
Adv. Bridge Eng. 2022, 3, 1–18. [CrossRef]

36. Hamilton, M.A.; Beug, A.P.; Hamilton, H.J.; Norton, W.J. Augmented Reality Technology for People Living with Dementia and
their Care Partners. In Proceedings of the ICVARS 2021: The 5th International Conference on Virtual and Augmented Reality
Simulations, Melbourne, Australia, 20–22 March 2021; pp. 21–30. [CrossRef]

37. Bohné, T.; Brokop, L.T.; Engel, J.N.; Pumplun, L. Subjective Decisions in Developing Augmented Intelligence. In Judgment in
Predictive Analytics; Seifert, M., Ed.; Springer International Publishing: Cham, Switzerland, 2023; pp. 27–52. [CrossRef]

38. Microsoft. Microsoft HoloLens vs Microsoft HoloLens 2. 2023. Available online: https://versus.com/en/microsoft-hololens-vs-
microsoft-hololens-2#group_features (accessed on 3 June 2023).

39. Pose-Díez-de-la Lastra, A.; Moreta-Martinez, R.; García-Sevilla, M.; García-Mato, D.; Calvo-Haro, J.A.; Mediavilla-Santos, L.;
Pérez-Mañanes, R.; von Haxthausen, F.; Pascau, J. HoloLens 1 vs. HoloLens 2: Improvements in the New Model for Orthopedic
Oncological Interventions. Sensors 2022, 22, 4915. [CrossRef]

40. Microsoft. Windows Device Portal Overview. 2023. Available online: https://learn.microsoft.com/en-us/windows/uwp/
debug-test-perf/device-portal (accessed on 3 June 2023).

41. Ungureanu, D.; Bogo, F.; Galliani, S.; Sama, P.; Duan, X.; Meekhof, C.; Stühmer, J.; Cashman, T.J.; Tekina, B.; Schönberger, J.L.; et al.
Hololens 2 research mode as a tool for computer vision research. arXiv 2020, arXiv:2008.11239.

42. Guo, H.J.; Prabhakaran, B. HoloLens 2 Technical Evaluation as Mixed Reality Guide. arXiv 2022, arXiv:2207.09554.
43. Hübner, P.; Clintworth, K.; Liu, Q.; Weinmann, M.; Wursthorn, S. Evaluation of HoloLens tracking and depth sensing for indoor

mapping applications. Sensors 2020, 20, 1021. [CrossRef] [PubMed]
44. Koop, M.M.; Rosenfeldt, A.B.; Owen, K.; Penko, A.L.; Streicher, M.C.; Albright, A.; Alberts, J.L. The Microsoft HoloLens 2

Provides Accurate Measures of Gait, Turning, and Functional Mobility in Healthy Adults. Sensors 2022, 22, 2009. [CrossRef]
[PubMed]

45. Linux. Onnx. 2019. Available online: https://lfaidata.foundation/projects/onnx/ (accessed on 3 July 2023).
46. Microsoft. ONNX Concepts. Available online: https://onnx.ai/onnx/intro/concepts.html (accessed on 3 June 2023).
47. Microsoft. ONNX Versions and Windows Builds. 2022. Available online: https://learn.microsoft.com/en-us/windows/ai/

windows-ml/onnx-versions (accessed on 3 June 2023).
48. Unity. Introduction to Barracuda. Available online: https://docs.unity3d.com/Packages/com.unity.barracuda@1.0/manual/

index.html (accessed on 3 June 2023).
49. Unity. Build and Deploy to the HoloLens. Available online: https://learn.microsoft.com/en-us/windows/mixed-reality/

develop/unity/build-and-deploy-to-hololens (accessed on 3 June 2023).
50. Unity. Supported Neural Architectures and Models. Available online: https://docs.unity.cn/Packages/com.unity.barracuda@1.

3/manual/SupportedArchitectures.html (accessed on 3 June 2023).
51. Unity. IWorker Interface: Core of the Engine. Available online: https://docs.unity3d.com/Packages/com.unity.barracuda@1.0/

manual/Worker.html (accessed on 3 June 2023).
52. Microsoft. Tutorial: Create a Windows Machine Learning UWP Application (C#). 2021. Available online: https://learn.microsoft.

com/en-us/windows/ai/windows-ml/get-started-uwp (accessed on 3 June 2023).
53. Microsoft. Using Visual Studio to Deploy and Debug. 2022. Available online: https://learn.microsoft.com/en-us/windows/

mixed-reality/develop/advanced-concepts/using-visual-studio? (accessed on 3 June 2023).
54. Microsoft. Select an Execution Device. 2021. Available online: https://learn.microsoft.com/en-us/windows/ai/windows-ml/

tutorials/advanced-tutorial-execution-device (accessed on 3 June 2023).
55. Microsoft. Stopwatch Class. Available online: https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.stopwatch?

view=net-7.0 (accessed on 6 June 2023).
56. Kapoor, S. LeNet-5. 2020. Available online: https://github.com/activatedgeek/LeNet-5 (accessed on 3 June 2023).
57. Deng, L. The mnist database of handwritten digit images for machine learning research. IEEE Signal Process. Mag. 2012,

29, 141–142. [CrossRef]
58. Tong, H.; Papadimitriou, S.; Sun, J.; Yu, P.S.; Faloutsos, C. Colibri: Fast Mining of Large Static and Dynamic Graphs. In

Proceedings of the KDD ’08: 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Las Vegas,
NV, USA, 24–27 August 2008; pp. 686–694. [CrossRef]

59. Twinanda, A.P.; Shehata, S.; Mutter, D.; Marescaux, J.; de Mathelin, M.; Padoy, N. EndoNet: A Deep Architecture for Recognition
Tasks on Laparoscopic Videos. IEEE Trans. Med. Imaging 2017, 36, 86–97. [CrossRef] [PubMed]

http://dx.doi.org/10.1117/12.2660940
http://dx.doi.org/10.1016/j.eswa.2023.119839
http://dx.doi.org/10.1002/rcs.2184
http://dx.doi.org/10.1186/s43251-022-00073-y
http://dx.doi.org/10.1145/3463914.3463918
http://dx.doi.org/10.1007/978-3-031-30085-1_2
https://versus.com/en/microsoft-hololens-vs-microsoft-hololens-2#group_features
https://versus.com/en/microsoft-hololens-vs-microsoft-hololens-2#group_features
http://dx.doi.org/10.3390/s22134915
https://learn.microsoft.com/en-us/windows/uwp/debug-test-perf/device-portal
https://learn.microsoft.com/en-us/windows/uwp/debug-test-perf/device-portal
http://dx.doi.org/10.3390/s20041021
http://www.ncbi.nlm.nih.gov/pubmed/32074980
http://dx.doi.org/10.3390/s22052009
http://www.ncbi.nlm.nih.gov/pubmed/35271156
https://lfaidata.foundation/projects/onnx/
https://onnx.ai/onnx/intro/concepts.html
https://learn.microsoft.com/en-us/windows/ai/windows-ml/onnx-versions
https://learn.microsoft.com/en-us/windows/ai/windows-ml/onnx-versions
https://docs.unity3d.com/Packages/com.unity.barracuda@1.0/manual/index.html
https://docs.unity3d.com/Packages/com.unity.barracuda@1.0/manual/index.html
https://learn.microsoft.com/en-us/windows/mixed-reality/develop/unity/build-and-deploy-to-hololens
https://learn.microsoft.com/en-us/windows/mixed-reality/develop/unity/build-and-deploy-to-hololens
https://docs.unity.cn/Packages/com.unity.barracuda@1.3/manual/SupportedArchitectures.html
https://docs.unity.cn/Packages/com.unity.barracuda@1.3/manual/SupportedArchitectures.html
https://docs.unity3d.com/Packages/com.unity.barracuda@1.0/manual/Worker.html
https://docs.unity3d.com/Packages/com.unity.barracuda@1.0/manual/Worker.html
https://learn.microsoft.com/en-us/windows/ai/windows-ml/get-started-uwp
https://learn.microsoft.com/en-us/windows/ai/windows-ml/get-started-uwp
https://learn.microsoft.com/en-us/windows/mixed-reality/develop/advanced-concepts/using-visual-studio?
https://learn.microsoft.com/en-us/windows/mixed-reality/develop/advanced-concepts/using-visual-studio?
https://learn.microsoft.com/en-us/windows/ai/windows-ml/tutorials/advanced-tutorial-execution-device
https://learn.microsoft.com/en-us/windows/ai/windows-ml/tutorials/advanced-tutorial-execution-device
https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.stopwatch?view=net-7.0
https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.stopwatch?view=net-7.0
https://github.com/activatedgeek/LeNet-5
http://dx.doi.org/10.1109/MSP.2012.2211477
http://dx.doi.org/10.1145/1401890.1401973
http://dx.doi.org/10.1109/TMI.2016.2593957
http://www.ncbi.nlm.nih.gov/pubmed/27455522

Sensors 2023, 23, 8698 15 of 15

60. Everingham, M.; Gool, L.; Williams, C.K.; Winn, J.; Zisserman, A. The Pascal Visual Object Classes (VOC) Challenge. Int. J.
Comput. Vis. 2010, 88, 303–338. [CrossRef]

61. Chen, C.W. Tiny YOLOv2. 2021. Available online: https://github.com/onnx/models/tree/main/vision/object_detection_
segmentation/tiny-yolov2 (accessed on 3 June 2023).

62. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. arXiv 2015, arXiv:1512.03385.
63. Mills, C.J. Barracuda PoseNet Tutorial 2nd Edition. 2023. Available online: https://github.com/cj-mills/Barracuda-PoseNet-

Tutorial (accessed on 3 June 2023).
64. Ribard, A. Barracuda-U-2-NetTest. 2021. Available online: https://github.com/AlexRibard/Barracuda-U-2-NetTest (accessed

on 3 June 2023).
65. Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.;

Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. [CrossRef]
66. D’Agostino, R.B. An omnibus test of normality for moderate and large sample sizes. Biometrika 1971, 58, 1–348. [CrossRef]
67. Unity. Unity’s Beta Program for Creating Spatial Experiences. 2023. Available online: https://create.unity.com/spatial (accessed

on 10 October 2023).
68. ONNX Runtime Developers. Quantize ONNX Models. 2021. Available online: https://onnxruntime.ai/docs/performance/

model-optimizations/quantization.html (accessed on 10 October 2023).
69. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;

Gelly, S.; et al. An Image is Worth 16 × 16 Words: Transformers for Image Recognition at Scale. arXiv 2021, arXiv:2010.11929.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s11263-009-0275-4
https://github.com/onnx/models/tree/main/vision/object_detection_segmentation/tiny-yolov2
https://github.com/onnx/models/tree/main/vision/object_detection_segmentation/tiny-yolov2
https://github.com/cj-mills/Barracuda-PoseNet-Tutorial
https://github.com/cj-mills/Barracuda-PoseNet-Tutorial
https://github.com/AlexRibard/Barracuda-U-2-NetTest
http://dx.doi.org/10.1038/s41592-019-0686-2
http://dx.doi.org/10.1093/biomet/58.2.341
https://create.unity.com/spatial
https://onnxruntime.ai/docs/performance/model-optimizations/quantization.html
https://onnxruntime.ai/docs/performance/model-optimizations/quantization.html

	Introduction
	Related Work
	Materials and Methods
	Microsoft HoloLens2
	Deep Learning Integration on HoloLens2
	Open Neural Network Exchange Model
	Unity Barracuda
	Windows Machine Learning
	Evaluation Metric: Inference Time

	Experimental Design
	Impact of Model Complexity on Inference Time
	Feasibility of SOTA Models Integration
	Software and Library Versions

	Results
	Impact of Model Complexity on Inference Time: Results
	Windows Machine Learning vs. Unity Barracuda
	Feasibility of SOTA Models Integration: Results

	Discussion
	Conclusions
	References

