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ABSTRACT Indoor communication and positioning are significant fields of applications for indoor
Internet of Things (IoT) given the rapid growth of IoT in smart cities, smart grids, and smart industries.
Visible light positioning (VLP) has become more and more attractive for researchers to provide indoor
location-aware IoT services. Additionally, artificial intelligence (AI) has attracted considerable research
effort to address the challenges in visible-light communication (VLC) systems. This is an emerging
technology in next-generation wireless networks. However, despite the rapid progress, the use of AI
in localization, navigation, and position estimation is still underexplored in VLC systems, and various
research challenges are still open. This methodological review summarizes the research efforts regarding
the use of AI in the field of VLP, to improve the position estimation accuracy in both two-dimensional
(2D) and three-dimensional (3D) indoor IoT applications. This treatise also presents open issues and
potential future directions for motivating further research in the field. Various databases were utilized in
this paper: Scopus, Google Scholar, and IEEE Xplore; obtained 88 papers from 2017 to early 2023. Most
(68%) of the AI articles in VLP systems are machine learning (ML) methods applied for localization
and position estimation in VLC systems, while the other 32% of the research articles focussed on
evolutionary algorithms. ML and evolutionary models may present limitations in terms of complexity and
time-consuming nature but offer highly accurate, robust, reliable, and cost-effective results in terms of
position estimation over conventional approaches.

INDEX TERMS Artificial intelligence, indoor localization, machine learning, evolutionary algorithms,
visible light communication, visible light positioning.
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I. INTRODUCTION

THE INTERNET of Things (IoT) has emerged as a
vision for future networks through the realization of

smart manufacturing, smart grid, and smart city [1], [2], [3].
However, with the advancement of wireless communication,
an increasing number of smart devices are incorporated into
the IoT, resulting in a shortage of radio frequency (RF)
spectrum. In addition, certain indoor IoT devices require
precise positioning, but multipath reflections and shadowing
reduce the accuracy and dependability of indoor RF-based
localization systems [4], [5].
Indoor location-based services (LBSs) have attracted con-

siderable research effort, thanks to the plethora of possible
use case scenarios; from smart home applications and service
robots to large facility mapping and patient tracking in
hospitals [6]. The rapid progress of IoT provides access to a
large number of sensors and devices, opening great research
opportunities for indoor positioning systems (IPSs) [7].
The need for accurate indoor localization technologies

arises from the fact that the most prominent, for outdoor
navigation and localization scenarios, global positioning
system (GPS) technology is heavily degraded in indoor
scenarios. GPS estimation accuracy drops significantly in
such environments due to weak received signal strength
(RSS), multi-path effects, and the inability to penetrate the
building walls thoroughly [8].
Several competing technologies have been developed for

the various use cases, as the complexity of indoor scenarios
and LBSs makes it rather hard to find a single prevalent and
robust technology for localization and positioning. Although
wireless local area networks (WLANs), ultra-wideband
(UWB), Zigbee, and Bluetooth have been frequently utilized,
they are not only susceptible to electromagnetic signal
interference generated by other RF wireless devices, but
also require additional infrastructure. In addition, their
deployment is rather complex and expensive [9].

Visible light communication (VLC), also known as optical
wireless communication, emerges as a promising technology
for accurate indoor position estimation in forthcoming
wireless networks [10]. Visible light positioning (VLP) is a
VLC-based technology that has gained a lot of attention as
a promising solution, as it provides higher accuracy results
for IPSs, compared to other technologies [11]. A comparison
among the techniques for indoor localization [12], [13] can
be summarized in Table 1.

VLP systems provide simultaneous communication and
illuminance services, with high-speed data packets being
transmitted using the visible light spectrum. In such config-
urations, light emitting diodes (LEDs) are the transmitters,
and photo-detectors (PDs) are the receivers [14]. LEDs are
power-efficient, cost-effective, have high bandwidth, and
have a long lifespan [15]. VLP technology is immune
to electromagnetic interference and can benefit from the
free and unrestricted visible light portion of the spectrum,
but the line-of-sight (LOS) is a mandatory condition [16].
Fig. 1 summarizes the major advantages and limitations of

TABLE 1. Comparison of wireless indoor localization techniques.

FIGURE 1. Advantages and limitations of VLP systems.

the VLP systems. Conventional VLP methods can provide
accurate positioning in indoor environments, but still suffer
from various types of noise (i.e., dark, shot, and thermal
noise), and disturbance of the signal wave in the physical
environment [17]. Artificial intelligence (AI) and machine
learning (ML) approaches can learn the underlying physical
model by observing a training dataset, and provide highly
accurate position estimation, with respect to the computation
time, thus greatly enhancing the performance of IPSs. As
conventional methods struggle to provide accurate localiza-
tion and position estimation, with respect to the computation
time, AI algorithms can improve the performance and
computational complexity of IPSs.

A. RELATED WORK
AI methodologies have made substantial progress in recent
years. The need to develop accurate VLP systems has
sparked interest in the application of AI methods in VLP
for indoor IoT networks. Additionally, ML and evolutionary
positioning approaches have been established in the VLC
community. VLP technology has received much attention,
and as a result, there have been several reviews on the topic
in a wider context of describing the structure of VLP models
and common positioning methods.
In [18] authors present a thorough investigation of

LED-based IPSs on positioning techniques, channel model
information, and receiver design. The work presented in [19]
examines the essential features of positioning systems based
on VLC LED technology, with a particular emphasis on eval-
uating the precision of the experimental location estimation.
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The survey in [7], thoroughly examines positioning systems
that use non-RF solutions, such as those based on visible
light localization, to develop unobtrusive passive systems.
Reference [20] provides an overview of VLP and infrared
light positioning (IRLP) systems, along with a comparison
with conventional optical positioning systems. In [12],
authors present some common processes and application sce-
narios in VLP systems, together with a detailed comparison
with other wireless positioning systems. The study in [13]
contains description requirements, specifications, advantages,
and limitations for various indoor localization techniques,
including VLP and wireless technologies. However, none
of the previous review articles examines ML and meta-
heuristic-empowered VLP approaches for indoor positioning
estimation. Only in [21], does Tran and Ha summarize
and evaluate the ML techniques that have been applied in
VLP systems but do not take into account the evolutionary
approach. Furthermore, the literature discussion needs an
update, since the presented works in [21] range in the 2016-
2020 period.
To the best of our knowledge, this is the first survey in the

academic and industrial literature that explores and evaluates
the influence of both ML and evolutionary methods in the
field of localization and position estimation in VLC IPSs.

B. MOTIVATION AND CONTRIBUTIONS
The oncoming IoT networks require highly accurate, robust,
and cost-effective IPSs. Therefore, their design presents an
important challenge for the research community. Despite
the existence of various VLP systems and the substantial
progress of AI, no work explores their combination in detail.
AI techniques have the potential to enhance the efficiency
and computational intricacy of localization in VLC systems
compared to conventional methods. The purpose of this
study is to highlight the scope of ML and evolutionary
methodology in VLP systems, as well as to summarize
open challenges and offer future directions in the field.
The current study is more inclusive in the breadth of AI-
empowered solutions in the localization of VLC IPSs. The
main contributions of this work are as follows.
1) The main challenges of localization and positioning in

indoor VLC systems are presented.
2) A thorough review of AI-empowered methods in VLP

systems is discussed. In particular, the different state-
of-the-art (SOTA) ML and evolutionary methodologies
that are utilized in VLC IPSs, are presented and
analyzed.

3) Open challenges and potential future trends are dis-
cussed to motivate academia and industry to explore
the field.

NOMENCLATURE
1D One dimensional
2D Two dimensional
3D Three dimensional
AC Actor-Critic

ACO Ant colony optimization
Ada-XCoR Co-training regression and adaptive boosting
AEs Auto-encoders
AFSA Artificial fish swarm algorithm
AI Artificial intelligence
ANN Artificial neural networks
ANs Artificial Neurons
AoA Angle of arrival
AP-PSO Adaptive parameter PSO
AP-PSO-M Adaptive mutation parameter PSO
BA Bat algorithm
BP Back-propagation
BR-DNN Bayesian regularization deep neural network
CNNs Convolutional neural networks
CPSO Chaotic PSO
CSAE Convolutional stacked auto-encoder
DBSCAN Density-based spatial clustering of applica-

tions with noise
DE Differential evolution
DL Deep learning
DLSTM Deep learning long short-term memory
DTs Decision Trees
EAs Evolutionary algorithms
ELM Extreme learning machine
FNNs Fully connected feed-forward neural

networks
GA Genetic algorithm
GANs Generative adversarial networks
GD-LS Grid-dependent least square
GGD Generalized Gaussian distribution
GP Gaussian process
GPS Global positioning system
GRU Gated recurrent unit
GWO Grey wolf optimization
IHBA Improved hybrid bat algorithm
IACS Improved adaptive cuckoo search algorithm
IGA Improved genetic algorithm
IHBA Improved hybrid bat algorithm
IPSO Improved PSO
IIPSO Improved Immune PSO
IoT Internet of Things
IPSO Improved PSO
IPSs Indoor positioning systems
IPWRL Iterative point-wise reinforcement learning
IRLP Infrared light positioning
IWOA Improved whale optimization algorithm
kNN k-nearest neighbor
LBSs Location-based services
LED Light-emitting diode
LoS Line-of-sight
LR Linear regression
LSE Least square estimator
LSTM Long Short-term Memory network
M-ANN Memory-artificial neural network
MEX Method of exhaustion
MFOA Modified fruit fly optimization algorithm
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MGA Modified genetic algorithm
MIMO Multiple-input-multiple-output
ML Machine learning
MLP Multilayer perceptron
MMBP Modified momentum back-propagation
MRR Maximum received recognition
MTL Multi-task learning
N/A Not available
NSGA-III Non-sorting genetic algorithm III
okNN Optimum k-nearest neighbors
PASS Particle-assisted stochastic search
PD Photo-detector
PE-DNN Position-estimation deep neural network
PG Policy gradient
PSD Position-sensitive detector
PSO Particle swarm optimization
ReLU Rectified linear unit
ResNet Residual neural network
RaF Random forest
RF Radio frequency
RL Reinforcement learning
RNNs Recurrent neural networks
RR Ridge regression
RSS Received signal strength
SAE Stacked auto-encoder
SA-PSO Simulated annealing PSO
SIAs Swarm intelligence algorithms
SL Supervised learning
SNR Signal-to-noise-ration
SOTA State-of-the-art
SPAO Simultaneous positioning and orientating
STBC Space-time block coding
SVM Support vector machine
SVR Support vector regressor
TDoA Time difference of arrival
TLFN Two layer-fusion network
ToA Time of arrival
TS Tabu search
TSNN Two-stage neural network
UL Unsupervised learning
UWB Ultra wide-band
VLC Visible light communication
VLP Visible light positioning
wCkNN Weight coefficients K-nearest neighbors
wkNN Weighted K-nearest neighbors
WLANs Wireless area networks
WokNN Weighted optimum K-nearest neighbors
The remainder of this paper is organized as follows.

The research methodology is presented in Section II, while
Section III analyzes the conventional VLP approaches and
their challenges. In Section IV the AI-based results are
presented and discussed. Finally, Section V highlights open
challenges and future directions in the field, along with some
conclusions.
Notation: In this work, we use lowercase Latin let-

ters for scalars, while matrices are denoted with capital

FIGURE 2. Strategy of paper inclusion procedure.

FIGURE 3. Distribution of journal articles and conference papers.

bold letters, i.e., H, and vectors with lowercase bold
vectors, i.e., x.

II. METHODOLOGY
This treatise adopted a methodological review approach to
process the literature on ML and metaheuristic enabled VLC
systems for position and localization estimation, from 2017
to early 2023. The selection of relevant studies and the
inclusion stages in this methodological review was conducted
through a comprehensive literature search of the Scopus,
GoogleScholar, and IEEE Xplore databases.
Fig. 2 illustrates the search strategy of the study. Fig. 3

demonstrates the distribution of journal articles and confer-
ence papers that were included in this review.
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FIGURE 4. Visible light positioning system model.

III. CONVENTIONAL VLP METHODS AND CHALLENGES
In this Section, the conventional VLP techniques and their
limitations are discussed.

A. VLP METHODS
LED-based VLP technology can offer a vast number
of indoor localization and navigation services in IoT
applications, such as health centers, manufacturing robots,
etc. Several VLC signal features have been developed to
accurately estimate the indoor position coordinates, such
as angle of arrival (AoA), time of arrival (ToA), time
difference of arrival (TDoA), and RSS. AoA can provide
highly accurate estimations but is rather complex, as the
orientation of the receiver is important. ToA necessitates
precise synchronization between transmitting and receiving
devices, resulting in higher cost [16].
TDoA requires strict synchronization between the LEDs

only [16], [22]. Moreover, distance estimation in indoor
scenarios is usually limited [16].
Based on these signal features, various techniques have

been developed for localization and position estimation of the
receiver’s coordinates in VLC systems, such as triangulation,
lateration, proximity- and fingerprint-based methods. At least
one of these approaches should be applied to a VLC system
to accurately estimate the receiver’s position.
A typical LED-based VLP formulation is depicted in

Fig. 4. T1-T4 represent the LED sources, with the photodi-
ode receiver recording the received light intensity waveform.
Thanks to LEDs T1-T4 typically being modulated at specific
frequencies (e.g., Pulse Width Modulation), it is possible
at the receiver to demultiplex the contributions of each of
the LEDs, allowing to combine the LEDs’ RSSs, AoAs,
or signal travel times to infer a position, depending on the
used localization approach. In RSS-based VLP, the observed
light intensity from each LED is converted to an estimated
distance, based on an assumed light propagation model. In
the case of AoA, usually, a multi-PD receiver structure is

FIGURE 5. Trilateration operation diagram.

used, allowing to estimate the angle of incidence on the PD
structure, from each of the LEDs. Timing-based approaches
require a form of synchronization between the LEDs or
between the LED and the receiver. The most prominently
used techniques in VLP are described in more detail in the
following sections.

1) MULTILATERATION-TRILATERATION

Multilateration is a positioning method in which the target
location is determined by measuring the distance from three
or more reference transmitters. Should three transmitters
be used to estimate the position of the receiver, then it is
regarded as the trilateration method. Increasing the number
of transmitters can enhance the precision of the positioning
system, at the cost of complexity. To determine the receiver’s
location, intersecting circles are used in a multilateration
system, with the radius of the circles corresponding to
the distance between the transmitters and the receiver.
The intersecting point corresponds to the position of the
receiver [12].
For the trilateration approach, in a 3D environment

considering the distances between the transmitters and the
receiver can be found using RSS values or the distance
differences utilizing TDOA, the position of the receiver
can be found by solving the following equations for the
transmitters T1, T2, and T3 [23]:

(x− xi)2 + (y− yi)2 + (z− zi)2 = s2i i ∈ 1, 2, 3 (1)

[xi, yi, zi] being the coordinates of the three LEDs, si the
distances between the LEDs and the receiver, and (x, y, z) the
position of the receiver. Fig. 5 demonstrates a typical system
design utilizing the trilateration principles, to estimate the
position of the receiver based on three transmitters T1, T2,
and T3.

2) TRIANGULATION

Triangulation is a localization technique that utilizes the
geometrical properties of triangles to estimate the distance
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FIGURE 6. Triangulation operation diagram.

of the target. Considering that the measurement points are
fixed and known, the position of the receiver can be inferred
from the distance or received angle by taking into account
the geometric features of triangles. A representation of the
triangulation technique for a 2D environment is illustrated
in Fig. 6.

3) PROXIMITY

The proximity-based method can provide semantic location
information of the target, with a simple implementation;
When the target receives signals from known transmitter
positions, it is deemed to be in close proximity to them. It is
assumed that the transmitter from which the most powerful
signal is received is the one located closest to the target,
and its position is considered an approximate estimation of
the target’s position. If the signal intensity is the same from
multiple transmitters, the target is assumed to be situated in
the center of these transmitters. The proximity-based method
is not very accurate since it is based on the density of the
signal distribution [24].

4) FINGERPRINTS

The location of the target is estimated in the fingerprint-
based method by calculating real-time measurements and
comparing them with offline fingerprints. RSS fingerprint
method has gained a lot of momentum as a promising can-
didate in VLP systems, due to its simplicity, high accuracy,
and affordability. In an RSS-based VLP system, a PD is
used to detect RSS values from various LEDs. The distance
between the transmitter and the receiver can be obtained by
analyzing the received signal amplitudes or powers. When
the distance between transmitters and receivers increases, the
received measured power decreases. Therefore, RSS-based
VLP can accurately estimate the desired distance. The RSS
measurements are given with unknown distances and heights

based on the channel modeling, making direct distance
estimation rather hard [25]. Based on the Lambertian model,
in a LoS environment, the received optical power Pr can be
expressed as [20]:

Pr = Pt
d2
Ro(α)Aeff (θ)Tf (θ)g(θ) (2)

Pt is the mean transmitted optical power, d is the distance
between transmitter and receiver, α and θ are radiation and
incidence angles Tf is the gain of the optical filter and g
is the concentrator gain. Ro(α) is the transmitter radiant
intensity and Aeff (θ) the effective signal collection area. This
approach saves power and time, due to the reduced time of
fingerprint matching compared with other approaches, such
as triangulation. On the other hand, the pre-calibration of
the fingerprints is a mandatory step, as they are affected by
the system settings [26].

B. CHALLENGES IN VLP SYSTEMS
Although VLP methods can provide higher accuracy and
performance results for IPSs, than other indoor localization
approaches, there are still many open challenges in this field
that need to be addressed.

1) MULTI-PATH EFFECTS

The multi-path effect occurs due to the transmitted signals
arriving in different paths than the LoS path. The inaccu-
racies in the received signal can be caused by multi-path
reflection on obstacles and walls in the room. These effects
greatly impact key parameters such as the RSS, the AoA,
and the ToA. Multi-path reflection is higher in the outer
areas (corners, edges, etc.) compared to the center of the
room. Applying a calibration technique could reduce the
percentage error that derives from the multi-path effect [27].

2) INTER-CELL INTERFERENCE

In most VLP systems, there is more than one LED
transmitting the location information, at the same frequency
band. This may cause signal interference from different
LEDs, resulting in a distorted or wrong received signal [20].

3) ORIENTATION OF THE RECEIVER

Most conventional VLP methods require that to determine
the receiver’s location, its orientation should be known. The
majority of proposed solutions assume a constant orientation
of the receiver and a certain known height from the ground,
resulting in the non-realistic implementation of the VLP
systems for real-life situations [20].

While the receiver’s orientation challenge is still an area
with increased research interest, there have been various
research works that try to solve the non-trivial positioning
and orientation problem. Authors in [28] propose a novel
method to determine both the location and the orientation of
the PD array sensors using AoA method. They address the
challenge of receiver orientation uncertainty and incorporate
it into the ML estimator to improve position and orientation
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estimation, achieving an average positioning error of 1.83 cm
and an orientation estimation error of 0.04 rad. In [29], the
authors develop a novel framework using AoA to locate
the tilted receiver, which is either an image sensor or
a PD array. Two positioning techniques are studied; one
relies on the method of exhaustion (MEX), while the other
utilizes the least squares method, without demanding the
receivers be placed towards a certain angle, and no additional
sensors such as gyroscopes are required. Experimental results
indicate that the MEX approach can achieve an average
3D error of 3.20 cm, and the least squares method an
average error of 14.66 cm, with the time costs being
0.36 s and 0.001 s respectively. Simultaneous position and
orientation estimation is conducted in [30] utilizing RSS
values for a VLP system that comprises several LED
transmitters and multiple PDs as receivers. Two algorithms
are developed, to estimate both the rotation matrix and
the location, by leveraging the optimization principle on
manifolds to mitigate the constraints imposed by rotation
matrix restrictions, thereby enhancing robustness. As proper
initialization is required to converge the iterative methods, a
coarse estimator employing the direct linear transformation
method is suggested. Considering the performance of the
estimator as determined by the Cramer-Rao bound, it is
deduced that the optimal receiver configuration involves PDs
tilted at an angle exceeding 60◦ relative to the receiver’s
normal. Shen et al. [31] develop an algorithm for estimating
position and orientation in an RSS-based system, employing
the hybrid maximum likelihood and maximum a posteriori
principle, specifically tailored for a system with multiple
LEDs and multiple PD receivers. This algorithm should con-
sider possibly unreliable prior information on the orientation
of the receiver. The proposed method closely approximates
the theoretical bound when the signal-to-noise ratio (SNR)
and the number of LEDs are sufficiently high. Furthermore,
it excels in estimating orientation across the entire spectrum
of orientation uncertainties due to its effective utilization of
prior information, which distinguishes it from other SOTA
estimators.

4) NOISE

Noise is a key parameter in any scenario that contains
electronic systems. In a VLP use case, the noise can cause
major deviations in the position estimation. The noise in a
VLP system can be defined as thermal, shot, and dark noise,
with the total root mean square noise current magnitude
under white Gaussian assumptions expressed as:

σPD =
√

σ 2
s + σ 2

th + σ 2
dark (3)

σPD is the noise current magnitude, σs is the shot/ Poisson
noise, σth is the total thermal noise, and σdark. Dark noise
σdark is created by variations in the PD dark current IPD
caused by the thermal excitation of electrons within the
silicon chip in the absence of incident photons. The SNR
amounts to I2PD/σ 2

PD [32], [33]. An effective method to

counter the high noise levels is to apply some filtering
algorithm, with the most prevalent being, Kalman and
particle filter [20].

5) DATABASE CONSTRUCTION

VLP systems can provide high-accuracy positioning services
for indoor environments, by exploiting beacon LEDs and
PDs. While most of the research on VLP systems has
primarily concentrated on pinpointing the location of a
PD/PD array target using multiple beacon LEDs with
predetermined positions, there are notable challenges in the
database construction. The estimated coordinates of LEDs
may exhibit fluctuations over time due to environmental
factors, as well as the natural aging of the equipment.
Furthermore, the process of manually aligning the laser
beams with an LED to obtain distance information introduces
a degree of inaccuracy in the measurements. This manual
alignment process is not only prone to errors but also
becomes increasingly burdensome as the number of LEDs
in the system grows, necessitating repetitive and time-
consuming measurements [34].
To address the database construction challenge, authors

in [35] develop a novel system, namely LedMapper, to
create precise 3D maps of modulated LEDs in a workspace,
efficiently and accurately, with significantly less human
effort than traditional manual surveys. This is achieved
through the use of a handheld mapping device equipped with
visual-inertial sensors, which collects data from the entire
workspace. Using the gathered sensor data and reference
points, a precise LED map aligned with the workspace
is developed. This LED map is designed by formulating
a comprehensive simultaneous localization and mapping
problem using a factor graph. LedMapper, in contrast to
heuristic methods, leveraged input data more effectively
due to its well-structured, probabilistic state estimation
design. In [34], a beacon LED localization system is
introduced for constructing a VLP system’s coordinates
database. This system utilizes two AOA estimators, each
comprising four PDs oriented in different directions to
determine the incident light direction. To minimize errors in
the LED coordinates database, the AOA estimators should
be symmetrically positioned relative to the room center,
as demonstrated in simulation results. Theoretical analysis,
accounting for thermal and shot noise, predicts centimeter-
level accuracy and millisecond-level estimation times in
indoor environments.
In [36], a mobile robot serves as a calibration tool for VLP

systems. The robot simultaneously performs localization and
mapping using a 2D laser scanner to create an environmental
map. It also employs a ceiling-facing camera to detect
nearby light sources and their frequencies. This combined
approach creates an environment map that includes the
locations and distinctive identifiers of the light sources. By
leveraging the robot’s trajectory and the camera’s relative
position to the robot’s center, it becomes possible to
translate the motion of each unique light source from the
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TABLE 2. Comparison of ML approaches of papers.

image frame to the map frame. This approach allows for
accurate estimation of light source modulation frequencies,
enabling their unique identification. Moreover, the inter-LED
distances are determined with an average accuracy of less
than 10 cm compared to the actual distances, yielding a
highly precise automated calibration system.

6) MINIMIZE CALCULATION TIME

Estimating the position of the receiver can be rather complex
and time-consuming as certain procedures are needed, such
as data collection, applying positioning algorithms, and
optimizing them to reduce positioning errors. So, designing
a system model, which can offer real-time positioning and
navigation services poses a significant challenge when more
than one LED is transmitting the location information.

IV. RESULTS AND DISCUSSION
This section provides the findings and statistics extracted
from the research methodology described in Section II. Also,
a brief presentation of the AI methodologies, along with a
detailed discussion of the ML and evolutionary algorithms
(EAs) in the included papers, is conducted.

A. PAPER STATISTICS
The majority (60/88) of the research papers that are included
in this methodological review use ML approaches to enhance
the accuracy and performance of VLP systems, whereas
the rest 28/88 utilize evolutionary methods to optimize the
position estimation in VLC systems. The ML approaches can
be distinguished into three major categories: ML, deep learn-
ing (DL), and reinforcement learning (RL) methodologies.
27/60 of the papers use ML approaches, 26/60 utilize DL
methods, whereas RL is applied only in 3/60 of the reviewed
papers. Finally, in 4/60 of the included papers both ML and
DL methodologies are combined to estimate the position
and location of the receiver in VLC systems. 49/88 studies
are conducted for 2D estimation of the receiver’s position
and the rest (39/88) estimate the 3D position of the PD
receiver. Also, 52/88 conduct an experimental study in the
estimation, whereas 36/88 of the papers describe simulated
environments and results. The paper statistics are shown in
Table 2, Table 3, and Table 4 for each of the above described
category.

B. AI METHODOLOGIES
AI and ML offer promising avenues to enhance the intelli-
gence of communication nodes. This makes them valuable
for tackling intricate challenges that often demand extensive

TABLE 3. Comparison of estimation environment in papers.

TABLE 4. Simulation/experiment-based taxonomy in included papers.

iterations with conventional methods or scenarios without
straightforward solutions. In the realm of wireless commu-
nication, ML has evolved to a level where it empowers
wireless systems to engage in data-driven interactions for
understanding and extracting information [119]. Through
these data-driver interactions, AI can offer various solu-
tions to the challenges of IoT networks, which employ
a massive amount of data generated from smart devices.
ML algorithms possess a key characteristic: they don’t
require prior knowledge of the physical model; instead,
this information is ingrained within the training set. For
instance, in scenarios relying on RSS, precise details such
as the receiver or transmitter orientation and radiation
pattern angles are vital for accurate localization through
analytical methods. In addition, traditional physical models
struggle with issues like noise, unfamiliar radiation patterns,
obstructed views, and dust. Data-driven approaches can offer
solutions to address these problems and challenges [6].
In VLP systems, environmental factors significantly impact
performance; for example, inter-cell interference can make
RSS data inaccurate, leading to positioning errors. AI can
enhance accuracy and simplify calculations for VLP systems
by considering inter-cell interference during training, thereby
sidestepping complex model computations [59], [82].
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AI methods can utilize these data to provide accurate
and robust indoor services, including localization, position
estimation, optimal resource allocation, and activity recog-
nition [120].

The high-precision positioning problem in VLC systems
can be addressed as a multi-parameter optimization problem,
while ML and evolutionary methods can offer robust and
accurate results.

1) ML

ML is a subclass of AI that involves learning discriminative
features about a system using computational methods.
These approaches utilize available data and information to
make accurate predictions in tasks such as classification,
regression, and interactions between an intelligent agent and
an environment [121]. Recently, ML has been widely applied
in wireless communication scenarios. ML is a data-driven
approach, providing accurate and robust results regarding
the positioning accuracy of the receiver. Also, there is no
need to quantify every parameter of the VLP model or
describe the underlying physical model, thus reducing the
complexity [6]. Deep learning (DL) is a highly promising
sub-field of ML that has facilitated the development of
numerous advanced technologies. DL algorithms have the
ability to learn automatically from basic to intricate features
as they progress from shallow to deeper layers of artificial
neurons, using the stochastic gradient descent algorithm to
train the model. DL models pose as accurate and robust
approaches in various fields and applications [122]. ML
can be distinguished into three main techniques: supervised
learning (SL), unsupervised learning (UL), and reinforce-
ment learning (RL).

• Supervised learning: SL includes learning models that
are built based on labeled data. The data include
known input features or independent variables x =
(x1, x2, . . . xn) and a known output target or dependent
variable y. SL models try to predict the function h such
as y = h(x), through the learning process. The process
stops when the estimation performance of the model is
considered satisfactory, and then the trained model can
determine an unknown output target, given new values
of input features. Mathematically, the SL process may
be formulated as follows: Given a set of M examples
(xi, yi) and defining a proper loss function L : Y×Y →
R
d, the goal is to minimize the objective function

C = 1

M

M∑
i=1

L (yi, h(xi)) (4)

SL algorithms can be used for both regression and clas-
sification problems. In regression tasks, the estimated
output y of the model is a continuous variable, whereas,
in classification problems, discrete values are consid-
ered [123]. Commonly used SL techniques include
linear regression (LR), ridge regression (RR), Gaussian

process (GP), k-nearest neighbors (kNN), support vec-
tor machine (SVM), and decision trees (DTs). Also,
fully connected feed-forward neural networks (FNNs),
convolutional neural networks (CNNs), recurrent neural
networks (RNNs), artificial neural networks (ANNs),
and long short-term memory (LSTM) networks can be
regarded as supervised algorithms [121].

• Unsupervised learning: ML algorithms that utilize unla-
beled input data x to extract and learn patterns for
the unknown output target y can be categorized as
unsupervised. UL approaches group data into clusters
based on the similarities between the data samples.
The samples that are closest to a defined center cluster
are grouped in the same cluster and the process is
repeated. The clustering procedure ends when the
function

g = argmin D (5)

is minimized. D is the distance metric, with Euclidean,
Manhattan, Minkowski, and cosine index distance being
widely used [123]. Some typical UL methods include
k-mean clustering, density-based spatial clustering of
applications with noise (DBSCAN), as well as auto-
encoders (AEs) [121].

• Reinforcement learning: RL is an algorithmic process
in which an intelligent agent learns based on a sequence
of interactions enabled by a feedback loop with the
environment. The agent updates its state and selects
the next action by trial and error, based on whether
the taken action resulted in a reward or penalty. The
objectives of the agent are defined based on the
maximization of the rewards over a set of actions
with the interacting environment to learn the best
policy [123]. RL algorithms can be distinguished into
value-based (Q-learning) and policy-based algorithms
(policy gradient (PG), actor-critic (AC)) [124].

2) EVOLUTIONARY ALGORITHMS

EAs have been demonstrated as effective tools for parameter
optimization and are widely used to tackle various chal-
lenges in wireless systems in an acceptable computational
time [125]. In this work, only EAs that belong to AI
methodologies are considered. This class of EAs is inspired
by the organized collective behavior of social insects/
animals, biological evolution, and the rules that govern
natural phenomena. Based on these inspiration mechanisms,
EAs can be distinguished into three categories: swarm
intelligence algorithms (SIAs), genetic programming (GPR),
and differential evolution (DE)-based algorithms respec-
tively [126], [127]. To overcome the recent challenges in
indoor positioning applications, research utilizes evolutionary
approaches to enhance the performance of localization
estimation in VLP systems. The EAs taxonomy along with
the most commonly used EAs in VLP systems is depicted in
Fig. 7. The ML and evolutionary methods will be analyzed
in Section IV-C.
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FIGURE 7. Evolutionary algorithms taxonomy.

C. DISCUSSION
In this review, ML and meta-heuristic approaches for
positioning in VLC systems are analyzed to determine
the impact and possible enhancement of robustness and
performance. This study aims to provide a detailed analysis
of the AI methodologies, techniques, and algorithms utilized
in VLP systems for indoor IoT applications.

1) ML METHODS

Among the included research papers, ML is the most widely
used. Various conventional ML methods are utilized in VLP
systems, including kNN, k-means, DBSCAN, LR, DTs, RR,
GPs, support vector regressor (SVR), and extreme learning
machines (ELMs).
The classic kNN algorithm is one of the most fundamental

and simple supervised ML algorithms. It is a non-parametric
method utilizing a local approximation, which is mostly
used for classification problems but also performs well
with a small amount of data in regression problems. In
the regression problem, the estimated values are taken as
the mean value of its k nearest neighbors. KNN might be
efficient and robust, but it also presents various drawbacks:
it is a distance-based approach, the central core of the kNN
is distance-dependent, and its simple Euclidean distance
metric is not suitable for high-dimensional data. Variations
of the kNN approach have been developed to address these
challenges, with weighted kNN (wkNN) being widely used
in VLP scenarios. wkNN is a robust extension of the kNN
method that uses the distance between neighbors, calculating
the mean of the k nearest data points as the estimation
output [128].

The authors in [40] apply a wkNN to estimate the 2D
position of a PD receiver, using the RSS fingerprinting
technique. To enhance the accuracy of the wkNN, fabricated
RSS data are generated based on the Lambertian optical

propagation model, to create a dense fingerprint map.
The square chord distance produces the best localization
accuracy of 2.7 cm, using only a small number of off-line
measurements, and the wKNN model can easily be trained
and calibrated. The work presented in [52] is a combination
of optimal kNN (okNN) and wkNN, namely weighted
optimum kNN (WokNN), to estimate the 2D location of a
PD receiver based on RSS measurements.
OkNN automatically determines the optimal number of

k-nearest neighbors for each position, and wkNN is utilized
to minimize the possible error from averaging the Euclidean
distance in each position. As this process is computationally
expensive, a maximum received signal strength recognition
(MRR) technique is applied to decrease the computational
cost. The implemented approach achieves a very low mean
positioning error of 0.8 cm, while the computational time
is reduced, through the MRR, by 42% − 52% for each
area of interest. Reference [54] proposes a novel wkNN,
namely Watchers on the Wall, to estimate the 2D location
of a mobile target, based on the deviations in the RSS
measurements recorded on a wall-integrated light sensor
array. The weights of the model are computed based on the
Manhattan or Canberra distance and the mean positioning
accuracy of the approach is 12 cm for a mobile receiver
along multiple routes. While the proposed method may
produce precise results, it requires significant computation
time, since creating the fingerprint database is an extremely
time-consuming procedure.
In [16] a wkNN approach is studied that estimates the

2D location of a PD receiver, utilizing sparse fingerprints.
The model is trained to utilize an artificial dataset that is
constructedbasedon amodified path-lossmodel. Thepath-loss
exponent is considered tobevariableand theoptimumpath-loss
exponent calibration is achieved via bicubic interpolation. The
wkNN approach can achieve an average positioning accuracy
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of 1.92 cm when utilizing fabricated RSS fingerprints. Abu
Bakar et al. [55] present a wkNNmodel for the 2D localization
of a custom-made tag PD receiver. A dense RSS fingerprint
dataset is constructed to reduce computation time, and the
Manhattan distance metric provided better accuracy results
than the Euclidean and Matusita distance metrics. The wkNN
approach achieves a median positioning error of 4.62 mm
when using four luminaires, and 9.87 mm can be achieved
with two luminaires.
In [49] a novel positioning method, based on weight

coefficients k-nearest neighbor (WCkNN) and multitask
learning (MTL), is utilized to estimate the 2D location of
a PD receiver, employing Wi-Fi, Bluetooth, and magnetic
field fingerprints. The MTL fuses and finds the correlation
between the features of the fingerprints, whereas the WCkNN
estimates another location in a certain class based on the
obtained position. The receiver’s position is estimated by
combining the projected locations, via a weight-averaging
procedure, where the weights correspond to the positioning
errors, obtaining an average positioning error of 195 cm.
DNN-based positioning error prediction models generate
positioning errors by computing the discrepancies between
each projected position coordinate and the actual position
coordinate. Tran and Ha in [42] combine kNN and random
forest (RaF) to estimate the 2D coordinates of a PD receiver,
under the effect of multipath reflections. kNN expands
the number of RSS features, and the most prominent are
utilized as inputs to the RaF to reduce the complexity and
computation cost. The proposed method achieves an average
positioning accuracy of 2 cm, five times better than other
popular kNN approaches. The authors achieve exceptional
positioning accuracy beyond the center of the room, where
the highest multipath reflections occur, taking into account
factors such as ambient light, thermal noise, and shot noise,
in addition to the highest reflection rate.
RaF is an ensemble learning technique that combines

various DTs. Each DT in the model is trained and constructed
consequently without being pruned on a bootstrap training
set, and the excluded (in the training) samples are called
out-of-bag. The DT chooses the split with which the highest
homogeneity is acquired, while the candidate features for
each split are randomly selected. If there can be no split (i.e.,
maximum depth or minimum leaf size is reached), then the
node (leaf) is regarded as terminal. The number of possible
features of each split greatly impacts the diversity of the DT
and low bias can be acquired based on the minimum terminal
leaf size, thus controlling the complexity of the approach.
The robustness and stability of the RaF method are greatly
affected by the number of DTs included. The predictions are
more stable and robust, as the forest is expanding. RaF is a
very popular ML approach in regression problems because
it can acquire great performance and avoid overfitting in a
wide spectrum of applications [129].

In [41] authors propose a DT model, an enhanced J48
tree algorithm, to estimate the 3D indoor and underwater
location of a PD receiver, by using RSS samples. The

estimation is based on optical signal information received at
the PD, which is converted into an electrical signal, to reach
a microcontroller, directing the information to the receiver
computer. The model is trained in a simulated underwater
environment and tested in a 3D simulation room, thus is
viable for both air and underwater systems, obtaining an
average positioning error of 11 cm. Authors in [62] various
ML methods (i.e., DT, SVM, and NNs) are presented and
compared for 3D indoor localization of PD receiver, based
on RSS fingerprints and the angles of a steerable laser. All
the ML models acquire the RSS values, angles of the laser,
and the related position through predetermined reference
points to determine the receiver’s position. Using the laser’s
angles as inputs to the ML models reduces the localization
error, with the DT outperforming the rest, with an average
positioning accuracy of 3.8 cm.
The k-means algorithm is one of the most popular

unsupervised learning methods applied to the well-known
clustering problem. Assume a dataset A = [a1, a2, . . . , an]
in a d-dimensional space and C = [c1, c2, . . . , cn] the m
centers of the cluster. Let y = |yik|nxc with yik a binary
variable that determines whether each sample ai is within a
k-th cluster, k = 1, . . . ,m. The Euclidean distance between
each data sample ai and cluster center cl can be defined as
r = ||ai − ck||2. The k-means algorithm iterates and tries to
minimize the objective function F(y,C) = ∑n

j=1
∑m

i=k ryij
while updating the cluster centers and data points in each
iteration. The major drawback in real k-means clustering
approaches is to give an unknown number of clusters a priori.
Moreover, each initialization and iteration greatly impact the
algorithm [130].
In [46] a k-means clustering method is applied to estimate

the 2D position of a PD receiver, with an average positioning
accuracy of 31 cm and a standard deviation of 21 cm.
The RSS values are calculated at the receiver end, and
a sparse grid is defined based on the light intensity at
different location points. The ML model is trained based on
a dense grid of readings, by utilizing a bilinear interpolation,
and offers accurate localization results based on only two
transmitters. k-means clustering in conjunction with linear
regression is applied in [39], to estimate the 3D position
of a PD receiver. The experimental setup consists of RSS
values from multiple LED transmitters that formulate a cube,
generating a fingerprint map. The positioning accuracy of
the regression approach on the clustered data is significantly
improved from 70 cm to 40 cm in the 3D environment. A
fusion of k-means clustering and RaF is applied in [44]
to determine the 3D coordinates of a PD sensor, based on
RSS values. The clustering method enhances the positioning
accuracy by dividing the RSS dataset into k groups with
high similarity, and the RaF approach achieves a positioning
accuracy of 10 cm, as it is less susceptible to multi-path
propagation compared with other methods. In addition, as the
RaF conducts the location estimation in each data cluster, the
execution time of the estimation process can be significantly
reduced.
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DBSCAN is one of the most important density-based
clustering algorithms. It can identify outliers and cluster
arbitrary shape distribution in the data. It depends on two
parameters, the scanning radius and the density threshold,
to define whether a data point is regarded as a core point
or not. DBSCAN has strong adaptability, but is used mainly
for high-dimension data points, as it suffers from the curse
of dimensionality [131].
In [60] authors develop a hybrid algorithm based on the

ELM and the DBSCAN to estimate the 2D position of a
PD target, using only a single LED. The PD is rotatable
and measures the angles in relation to the LED projection
point together with the RSS values. First, the RaF method
is applied to classify two parts in the area of interest;
the corners zone and the interior zone. For the latter, the
horizontal distance from the PD and angles can be utilized
to infer position. For the corner zone, the hybrid approach
is applied, where the ELM roughly estimates the position of
the target, and as the rotatable PD is moved the coordinates
are re-estimated. DBSCAN finds the largest cluster and its
weight corresponding to the location of the target, enhancing
the mean positioning accuracy at 1.74 cm. The authors
in [47] propose a DBSCAN approach combined with an
outlier removal strategy to estimate the 2D coordinates of
a positioning sensor, consisting of several PDs placed into
a predetermined number of meridians and parallels in a
hemispherical area. Three emitter combinations are utilized
to generate position estimates for the outlier removal, which
are then filtered using the DBSCAN method and fine-
tuned using LR. The suggested method improves positioning
precision, by a mean 35% of than conventional trilateration,
with an average positioning error of 3.5 cm, but with a
moderate increase in algorithm complexity.
LR aims to find the correlation between an independent

variable x and the dependent variable y. The equation
describing the linear regression is y = ax+b, where a is the
slope of a regression line and b is the intercept. If a > 0 the
correlation between the variables is considered positive and
if a < 0, negative. If a = 0, there is no correlation between
X and Y variables [132].
To reduce the data collection workload, the authors in [56]

apply LR in a simulated and experimental use case scenario
to design an indoor VLP system, and accurately estimate
the 2D location of a PD receiver. The DIALux software is
utilized to formulate the simulation environment, obtaining
results close to the experimental setup, with the mean
positioning error of 11.1 cm and 10.5 cm, respectively.
By utilizing the least square method in the model, it
becomes non-iterative, which diminishes both training time
and complexity. The results indicate that DIALux can
generate suitable data when the room’s size and the LED
luminary’s specifications are known, thereby easing the task
of collecting training data in VLP systems.
RR is an ML technique that introduces a hyper-parameter

in multiple LR methods, to achieve optimization through the
regularization of data. RR attempts to minimize the sum of

squared residuals by finding a linear function, represented
by f (x) = ∑n

i=1 xiwi, that best fits a dataset of N points
(xi, yi) using the fitting parameters w = (w1, ..,wN). In order
to accomplish this, RR employs a regularization factor that
helps to minimize the distance between f (xi) and yi while
simultaneously minimizing the sum of squared residuals for
the w parameters:

w = argmin
w

n∑
i=1

|f (xi − yi)|2 + a|w|2 (6)

The data samples are clustered along the same center, while
the subspace is considered to be null [133].

The authors in [50] demonstrate an AoA-based VLP
localization system based on third-order RR and quadrant-
solar-cells (QSCs). The RR is utilized to obtain the weight
vector w, thus greatly enhancing the accuracy of the AoA
method, as the average positioning error is reduced from
7.2 cm to 3 cm, showing an improvement of 57% in terms of
positioning accuracy, for the camera-based receiver. In [11] a
sigmoid function data preprocessing method is applied to LR
and RR models, to estimate the 2D location of a PD target.
The RR outperforms the LR with a mean positioning error
of 2.06 cm and greatly improves the positioning accuracy
by a mean of 42.6% for the horizontal and vertical axes.
GP is a popular nonparametric ML approach in various

regression applications, in which the regression form is
specified by a mean vector a and a covariance matrix
R. Let (xi, yi) be a given dataset of m points and a
Gaussian distribution N ((a,T), then the target values can
be expressed as:

y(xn) ∼ N (m(xn), σ
2) (7)

where m(xn) is the mean measurement for a point xn and σ 2

corresponds to the noise variance. The mean measurement
m(xn) can be expressed by the Gaussian distribution m(x) ∼
N (0, kφ), with kφ parameterized by the φ kernel for the
measurements [134].

SVR is a robust end-effective supervised extension of
SVMs when dealing with regression problems. Considering
a dataset of m inputs and corresponding target values xi, yi
and the implicit function g, the SVR methods try to minimize
the ε-insensitive loss function L:

L(y, f (x, g)) =
{

0, |y− f (x, g)| < ε

|y− f (x, g)| − ε, otherwise
(8)

Unless the kernel function f (x) is linear, the training data
will be transformed into a high-dimensional space by means
of the function g. There are some drawbacks in the SVR
approach, such as difficulty in parameter tuning and choosing
the proper kernel function, and the large computation time
needed for large datasets [135].

Knudde et al. in [6] present and compare two ML methods
(i.e., MLP and GP) with a conventional multilateration
approach for 2D position estimation of a PD receiver, when
there is a random transmitter tilt. Both ML algorithms greatly
outperform the conventional approach, while GP achieves
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an average positioning accuracy of 2.45 cm against 2.8 cm
of the MLP, thus being very practical and accurate when
the available training data are limited. GP and MLP are
also compared in [51], using relative RSS input features.
Various datasets were utilized, modifying per dataset either
the LEDs power or the aperture of the PD receiver. The
ML models are compared to a conventional multilateration
approach for two schemes, one where the RSS vector is
normalized using the maximum received light intensity, and
the other where the RSS vector is formulated by merging
the received intensities. The ML models outperform the
conventional multilateration method in all use-case scenarios
and datasets. GP also achieves better average positioning
accuracy than the MLP for both RSS schemes; in more
detail, the p95 error obtained in the two scenarios is 7.19 cm,
7.72 cm, and 7.17 cm, 7.55 cm respectively.
In [8] the measured intensity values are used to predict

the 2D position of a mobile PD receiver through a GP
model. A new active learning (AL) method is utilized to
extract the most important receiver locations, based on
the maximum variation in the RSS values, thus acceler-
ating the data collection process. Then, an inverse GP
is applied to estimate the position of the PD, based on
the previously collected data. The AL strategy prevents
instabilities/deviations in the final GP prediction model,
which is enhanced by measuring RSS values at positions
forming a straight line with the locations obtained from
the AL methodology. This approach outperforms maximum
variance sampling and random sampling methods, obtaining
an average positioning error below 10 cm. Aparicio-Esteve
et al. in [59] compare a conventional triangulation algorithm
based on AoA with a GP for 2D visible light positioning
estimation. Both approaches utilize RSS values on the
quadrant PD receiver with an aperture, to acquire the image
points from each transmitter on the PD, and, through a
least squares estimator (LSE) and trigonometry, predict the
location of the PD. An AE is employed in the initial step of
the data-driven method to reduce the input dimensionality
and produce features that will be utilized as inputs for the
GP, which then produces more accurate position estimates.
The GP outperforms the triangulation algorithm, as the
p95 error is 16.65 cm and 21.94 for the entire area,
respectively. In addition, GP can offer robust estimation
results in the corner of the experimental setup, as the
p95 error is 10.35 cm, while for the triangulation approach
18.56 cm.
ELMs have demonstrated their effectiveness and robust-

ness in ML for a wide range of applications, including
classification and regression problems. Developed for FNNs,
ELMs have garnered attention due to their rapid learning
speed and excellent performance in various use cases. The
ELM was first developed for a single hidden layer FNN and
given a training data set {xi, yi}Ni can be expressed using
matrix multiplication:

Hwo = O (9)

FIGURE 8. MLP architecture.

H is the hidden layer output matrix, w = [w1,w2, . . . ,wL]
the input layer weight matrix, and O = [O1,O2, . . . ,ON]
the output matrix of the model. H can be expressed as a
matrix G as follows:

H = G(V) (10)

V is the matrix of hidden layer inputs for all the given
training samples and is defined as:

V =
⎡
⎢⎣
w1x1 + b1 · · · wLx1 + bL

... · · · ...

w1xN + b1 · · · wLxN + bL

⎤
⎥⎦
LxN

(11)

b = [b1, b2, . . . , bL] is the output layer weight matrix Based
on (11) the ELM focuses on minimizing the training error
of the process err, which can be expressed as

err = min
b
||Hb− T||2F (12)

with T the matrix of the output targets and || · ||F, the error
matrix normalization (i.e., Frobenius matrix) [136].
In [63] a VLP system that uses fingerprinting and the

ELM algorithm is presented for real-time 3D positioning,
assuming that the PD receiver is perpendicular to the ceiling
and has no tilt. The indoor positioning environment is
first split into conventional VLP kernels to reduce the
fingerprint database’s size and corresponding training time.
The implemented method is resistant to noise interference
and can achieve accurate real-time 3D positioning, with an
average positioning accuracy of 3 cm.
In [37] grid-dependent least squares (GD-LS) are utilized

to improve the accuracy of a localization method that
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combines several classifiers based on RSS values. In this
approach, different intensity-modulated sinusoidal signals
from LEDs are recorded by PD receivers positioned at
different grid points. The GD-LS method exhibits numerical
stability when dealing with singular output matrices and
is robust to the inaccuracy of RSS values. In contrast
to trilateration strategies, GD-LS does not rely on the
model parameters and no prior knowledge of the position
of the LEDs is required, is more robust to model errors,
and achieves an average 2D positioning accuracy of 5 cm.
Tran and Ha in [58] develop a novel algorithm, namely
Ada-XCoReg, that combines the improved co-training semi-
supervised regression and adaptive boosting approaches, to
reduce the burden of data collection and enhance 2D posi-
tioning performance of a PD target. The improved co-training
supervised regression (XCoReg) determines the positions
of unlabeled data and removes unnecessary data, based on
a wkNN method and cross-correlation techniques. Then,
adaptive boosting is applied to enhance the performance of
the previously labeled data, achieving a positioning accuracy
of 2.51 cm.
In [45], a two-layer fusion network (TLFN) indoor

localization approach, made up of the diverse and the fusion
layer, is proposed. TLFN is a VLP system that utilizes
multiple combinations of fingerprints and classifiers to
obtain several position estimations in different layers.TLFN
minimizes the average localization errors for all fingerprints
and classifier spaces and saves weights for each grid point in
the fusion layer, to estimate the 2D position of a PD receiver
based on the RSS values. During the online phase, an optimal
weights search strategy is utilized to perform the fusion
localization. A higher and more stable average positioning
accuracy of 5 cm can be achieved, as the TLFN leverages the
intrinsic supplementation among multiple position estimates.
The authors in [43] study a signal pre-processing tech-
nique combined dual-function ML algorithms, performing
classification and regression procedures. The pre-processing
involves removing low-intensity reflected signals and noise
filtering. The classification and sequential regression process
included a comparative study of four methods, namely SVM,
DT, RaF, and kNN. SVM outperformed the other approaches,
with the classification function reducing the execution time
by 78%, while the regression function helped determine the
PD receiver location with an average 2D positioning accuracy
of 8.6 cm.
A second-order regression method is studied in [48] to

improve 2D positioning estimation accuracy in a VLP system
that uses repeated cell strategy. The maximum likelihood
and least squares are used to obtain the model weight
vector, and the PD receiver cell position can be obtained
by utilizing the target vector of the training process to
replace the amplitude vector of the approach. The proposed
method achieves a mean positioning accuracy of 4 cm,
outperforming conventional RSS-based localization methods,
at the cost of higher complexity. In [61] a generalized
Gaussian distribution (GGD) approach is designed, which

scores a 98% classification accuracy for the position area of
the mobile node receiver, with limited NLoS training data
for an ultra-wideband (UWB) IPS. For the GGD, the LoS
and NLoS signal features are extracted, and the distribution
of each feature is utilized to build the model.

2) DL METHODS

DL methods are accurate and robust approaches for position
estimation in the included VLC systems. Several NNs archi-
tectures (e.g., CNNs, ANNs, RNNs), as well as adversarial
deep learning, are applied in the included works.
Artificial neurons (ANs), are the fundamental units of

DL architectures and are inspired by the structure and
function of biological neurons in the human brain. ANNs are
comprised of multiple ANs layers. The ANN architecture is
formed by using input, hidden, and output layers, utilizing
various training methods, such as error backpropagation and
biologically plausible techniques. The hidden layers are used
to process the input data and compute the model’s prediction
to be sent to the output layer. Recent research advancement
in IoT applications has significantly increased the need for
accurate information and feature extraction and ANNs pose
as an important tool in this manner [137].
The authors in [70] propose a convolutional stacked

auto-encoder (CSAE) to exploit the spatial and temporal
interdependence present in RSS temporal image (RTI)
data, which consists of a sequence of successive RSS
measurements as input. After the CSAE extracts and learns
the stable and latent features from the data, a regression ANN
method is utilized to acquire more intricate and consistent
characteristics from the varying RSS readings and achieve
improved 2D position estimation. The proposed method
obtains more accurate and consistent positioning results
from fluctuating RSS data compared to conventional ANN
techniques, as the fluctuating noise is reduced, leading to an
average positioning accuracy of 32 cm. A three-layer ANN
is applied in [67] to accurately predict the 2D coordinates of
a PD location point in an indoor environment. TDOA at the
receiver point from different LEDs is utilized to construct
the data feature, in order to perform feature extraction. These
extracted features are introduced as input in the ANN model,
achieving an average positioning error of 1.66 cm. The
proposed model presents improved robustness by ensuring
the mapping relationship between delay estimation and
coordinates. In [71] a 3D positioning system is employed,
which uses an ANN model consisting of nine input layers,
two hidden layers, and three output nodes. RSS values that
formulate a grid, are introduced as inputs to the ANN,
achieving an average positioning error of 0.9 cm, which is
much lower compared to the dimensions of the mobile PD
receiver.
An ANN architecture is utilized in [25] to address

the complex trilateration approach for a 3D VLP system,
comprising of LED transmitters and a PD receiver. Compared
to conventional trilateration methods, the ANN-assisted
trilateration approach can provide an accuracy of 11.93 cm
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with a computation time that is 50 times faster. The
trilateration problem is simplified by representing it as a
linear mapping, which greatly reduces its complexity and
leads to faster position estimation, resulting in a significant
reduction in computation time. A hybrid single hidden layer
ANN is applied in [74] with pre-training techniques to
enhance the robustness of a PD receiver positioning method.
The proposed hybrid system has an accuracy of 1 cm and
also high adaptability, robustness, and lower complexity in
offline and on-line deployments, compared to conventional
methods. Ni et al. in [75] present a single hidden layer ANN
for the experimental 2D position estimation of a PD receiver,
utilizing LED signal with two frequency response matrices,
obtained with Alamouti space-time block coding (STBC) to
mitigate the effects of different transmission path lengths
in this multiple-inputs and single-output (MISO) system.
The average positioning error of the ANN is 0.73 cm,
offering simultaneous indoor visible light communication
and positioning services.
The authors in [82] propose an innovative method for cor-

recting deviations, namely memory-artificial neural network
(M-ANN) to accurately predict the 3D coordinates of a PD
receiver, based on the RSS values from the LEDs. In this
model, a memory module is added to a two-layer ANN to
create a cell, obtain features as a sequence of discrete test
moments, and prevent large errors in case of emergencies.
This model, utilizing a GA module, can replace missing
RSS values, due to possible blocked LEDs, offering an
accuracy of 3.53 cm in the worst-case scenario of 2 blocked
LEDs. In [88] various ANNs are employed for the 2D
localization of a PD sensor receiver, considering a multi-
path channel. The ANN with Bayesian regularization can
outperform conventional RSS techniques, utilizing non-linear
least square estimation for the SNR values, with the mean
positioning error being 2 cm for 30 dB of SNR.
Majeed and Hranilovic in [84] implement an ANN for

passive indoor visible light 2D position estimation, utilizing
RSS fingerprints to predict the PD receiver location. The
proposed ANN does not require active participation from the
user and learns the correlation between impulse responses
and receiver positions, achieving an average positioning error
of 80 cm with a limited training data set and without the
need for active user participation. In [81] an ANN is utilized
for a conventional VLP monitoring system, consisting of a
single LED as the transmitter and a standard surveillance
camera as the receiver. The ANN can offer an accurate
3D position estimation, even when the target is inclined at
different angles, with a mean positioning error of 0.65 cm
and 0.67 cm for 15◦ and −15◦, respectively. The authors
in [53] propose a VLP scheme utilizing silicon photovoltaic
cells and ANN for 2D position estimation based on AoA
and RSS methods. This approach can offer a positioning
accuracy of 2.99 cm and 2.60 cm for AoA- and RSS-based
systems. Zhang et al. in [73] a Bayesian regularization deep
neural network (BR-DNN) exploits sparse RSS values and
BP and is trained using the Levenberg-Marquardt algorithm,

to estimate the 2D position of a PD target. The weights and
bias are updated by Bayesian regularization and are tested
in three distinct layout configurations, namely the even,
arbitrary, and diagonal sets, with the average positioning
error under the diagonal set being 3.4 cm, while maintaining
a high convergence rate lower than 9 ms.
In [68] a FNN is utilized to extract features and obtain the

relative distance between a camera-based receiver and the
transmitting LEDs, considering that the tilt and angle of the
receiver to be fixed and known. The 2D position coordinated
with the receiver is then estimated based on the triangulation
algorithm and the mapping of the relative distance performed
from the MPL, achieving a mean positioning error of 1.9cm.
Alonso-González et al. in [69] propose an RSS fingerprinting
indoor 3D positioning estimation based on FNN to estimate
the location of a mobile PD receiver. In the system under
study, the positioning problem is broken down into three
FNN models, one per axis. An array of RSS values is utilized
as inputs to each model, taking into account multi-path
reflections and random orientation angles for the receivers.
By optimizing the nodes of each layer for each model,
the proposed method achieved a positioning accuracy of
1.9 cm for the 3D environment. In [79] two FNN approaches
are considered for 2D position estimation of a PD target,
in a large industrial experimental environment with several
large machines of obstacles. Two approaches are studied,
an FNN covering the entire and a cellular approach in
which a less complex FNN is applied per allocated cell. For
the latter approach, a kNN classification of the positioning
cell is required to accurately infer location estimations.
Both approaches can offer accurate position estimations,
below 10 cm, with the cellular approach having a mean
positioning error of 4.2 cm versus 4.3 cm of the single
FNN approach. The single FNN approach might be more
straightforward in terms of hyper-parameter tuning, but the
cellular approach is more accurate, improves scalability, and
lessens the chance of overfitting. The authors in [78] apply
a supervised feedforward BP FNN model to provide an
accurate 3D estimate for the location of a PD sensor, utilizing
RSS fingerprints. In this study, multi-path propagation is
considered, and utilizing receiver diversity (i.e., placing the
receiver in different positions) significantly enhances the
3D position estimation, for both LoS and nLoS scenarios,
with average positioning errors of 1.98 cm and 2.10 cm
respectively.
CNNs are a class of ANNs that utilize convolution

operations instead of matrix multiplication, to learn the
feature representation of data. The core structure of a CNN
consists of the input layer, the convolution layers, the pooling
layers, and the output layer [138]:
• Input Layer: In this layer, the input data are introduced
in a suitable format for further processing, to extract
high-level features through a series of hidden layers.

• Convolution Layers: In this section, the convolution of
data parameters is computed through multiple filters of
equal shape with the input layer, but smaller dimensions.
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FIGURE 9. CNN architecture.

Computing through the whole input data extracts a
feature map of the data.

• Pooling layers: They reduce the sizes of the following
layers by performing down-sampling through maximum
pooling or average pooling operations, thereby reducing
the computation time and complexity.

• Activation Unit: In this layer, a non-linear activation
function is applied to each element in the feature space.
The rectified linear unit (ReLU) activation function
is selected in the majority of CNNs described in
the literature. ReLU function can be mathematically
described as f (x) = max(0, x).

• Output Layer: In this layer, CNN estimates the output
prediction.

A CNN-based network architecture is depicted in Fig. 9.
The work in [83] considers a CNN, an FNN, and a kNN

approach to estimate the 3D position and the orientation
of a randomly positioned light-fidelity (LiFi) PD receiver,
without knowledge of the emitting power beforehand. Both
ANNs leverage RSS fingerprints that include the received
SNR. along with the corresponding orientation angles and
coordinates. CNN obtains the best accuracy results, out-
performing the other models, since the mean positioning
error is 10.53 cm and all orientation angle estimations are
below 10◦. The ANN approaches outperform both the kNN
model in terms of accuracy, bit error rate (BER), and
computation time. In [9] various ML models (i.e., LR, ANN,
and CNN) are employed to predict the 2D location of a PD,
utilizing the DIALux lighting design software based on the
AoA, and positioning unit cells, for a VLP system. CNN
outperforms the other approaches, as the average positioning
error is 3.83cm, with ANN and LR also obtaining good
positioning errors of 5.19 cm and 5.80 cm respectively.
CNN, ANN, and LR approaches are compared in [89], along
with preprocessing the RSS data values, to mitigate the light
deficient regions in a VLP system, and estimate the 2D
location of a PD target, along with the error distribution
uniformity. CNN outperforms the other approaches, as the
average positioning error, after pre-processing the data, is
5.31 ± 3.84 cm.
In [85] a combination of a ResNet and transfer learning

(TL) is implemented, and compared to LR, to estimate the
2D position of a test-bed PD receiver. To obtain the RSS
values, that are utilized as inputs in the approach, a scheme
for duplicating a positioning unit cell model is developed
and demonstrated experimentally. The proposed method

FIGURE 10. LSTM unit.

outperforms the LR approach, with a mean average error
of 6.69 cm and a standard deviation of 3.05 cm. Lin and
Zhang in [77] apply a novel deep neural network (PE-
DNN) to aid the VLC receivers, for user data recovery and
position estimation, using channel impulse responses (CIRs)
with pilot blocks. The PE-DNN method can accurately
estimate the 2D coordinates of the receiver, with an average
positioning error below 1 cm, by using only one PD receiver
and one LED, keeping the remaining transceiver structures
unchanged. Furthermore, the computation time is reduced,
as the PE-DNN method performs an initial normalization of
the pilot symbol P within the range of [0, 1].
RNNs are a class of ANNs that process input data recur-

rently. They are used for processing tasks with sequential
data input and learning the time-series relationship. The most
widely used RNNs are LSTM, gated recurrent unit (GRU),
and Bi-directional RNNs. Due to the back-propagation
algorithm, RNNs had issues storing past information and
learning the sequence for long-term dependencies. To solve
the explicit memory issue, the LSTM method was developed.
LSTM cell has the same inputs and outputs as a regular
RNN but has more parameters and is composed of a gating
system. The gating system contains an input gate, a forgetting
gate, and an output gate that, during the training process,
decides which information data to keep or drop based on the
impact on predictions [139]. Fig. 10 shows an illustration of
an LSTM unit.
Hsu et al. in [38] design a BP-based algorithm to improve

the performance in 2D position estimation in a VLP system.
The system utilizes several trilateral positioning cells to
enfold the entire area of interest, taking into account the
height fluctuation of the PD detector. RSS values are
measured in unit cells for position estimation, and the
BP method is utilized to adjust the positioning function
parameters to improve accuracy, resulting in an average
positioning error of 3.65 cm while demonstrating real-time
tracking capabilities. In [72] the authors develop a modified
momentum back-propagation (MMBP) approach to train an
ANN for a 2D position estimation of a PD receiver, based on
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RSS values. The MMBP algorithm achieves high-accuracy
positioning and addresses the issue of sparse training data by
combining two BP algorithms, namely momentum BP and
variable learning rate BP, to enhance the convergence rate
and generalization ability of the model. The MMBP method
achieves an average positioning error of 1.99 cm, which
outperforms conventional RSS-based localization approaches
with a fast convergence rate.
In [76] the authors utilize a deep learning long short-

term memory (DLSTM) approach for indoor localization,
utilizing magnetic and light sensors in smartphone receivers.
The DLSTM model takes pre-processed bimodal image data
from the sensors to estimate the 2D position of the mobile
camera receiver, with the average positioning error being
120 cm. As the computation time is < 0.1 s, the method
used is suitable for real-time localization services. An LSTM
network is compared in [57] with conventional FCN and
SVR models in terms of 2D position estimation of a PD
target in an indoor environment. The noise characteristics
of the VLP system are analyzed and modeled as Gaussian
white noise before inducing the RSS values as input to
the ML models. The LSTM approach achieves the best
accuracy results, with a mean positioning error of 0.92 cm.
The authors of [90] compare LSTM with LR and ANN
to estimate the 2D location of a silicon solar cell receiver,
using only LED transmitters Tx and a silicon-based solar cell
Rx. The LSTM outperforms the other approaches in terms
of positioning accuracy, with a mean percentage error of
2.9 cm, through the reduction of noise and the influence of
time-dependent fluctuation.
A novel approach, namely AdVLP, is proposed in [80], to

tackle both the challenge of estimating the 3D location of a
PD receiver and the problem of data-driven methods being
vulnerable to changes in channel parameters. The method is
based on deep neural networks and uses adversarial training.
The proposed generative adversarial network (GAN) can
offer a significant improvement for the Lambertian orders
of the receiver and the LED lights, as well as an improved
average positioning accuracy < 20 cm.

3) RL METHODS

Incorporating RL approaches into VLP systems can enhance
their ability to provide precise location estimation and
navigation. Various RL-based architectures (i.e., Q-learning
and AC-based methods) have been included in this review.
Q-learning is an RL value function algorithm that is based
on the relationship of agent-environment, to create a Q-Table
based on the reward action value. At a given time-step t
an agent of a state Ŝt tries to maximize the reward value r
through an action Ât, The Q-Table of the model is constructed
based on the updated Q-values Qt+1 defined as [140]:

Qt+1(Ŝt, Ât)← (1− δ)Qt(Ŝt, Ât)

+ δ(rt+1 + εmax
δ
Qt(Ŝt+1, δ)) (13)

where δ is the step-size/learning rate, ε the discount factor
for the future rewards, and r is the reward value.

AC algorithm is a combination of Q-learning, a value-
based optimization method, and policy-based optimization
methods. The AC algorithm is based on an alternating loop
between a PG “actor” algorithm to decide the action and a
Q-learning-based “critic” model to evaluate the taken action,
providing feedback to adjust the next actions based on the
Q-value. The Q-value is obtained from the reward of the
action and the next state of the environment [141].
The pros and cons of the studied ML methods in location

estimation are included in Table 5, 6.
Iterative point-wise reinforcement learning (IPWRL) is

proposed in [64] to predict the 2D location of a PD
receiver based on the RSS values. IPWRL compensates
the non-deterministic noise (i.e., shot noise, thermal noise)
and deterministic noise, which can occur due to incorrect
a priori knowledge of system parameters (i.e., the height
difference between the receiver and LEDs). The IPWRL
method corrects possible positioning errors caused by noises
and enhances the mean positioning accuracy at 3.14 cm,
at the cost of total running time due to the iterations.
In [65] the authors present an AC-based approach for
3D position estimation without any offline training, where
various AC-based models, which employ different height
update strategies, are explored. The sequential combination
of two strategies, namely RL1 and RL2. In RL1 the RSS
values are adjusted without changing the height difference
h between the PD receiver PD and LEDs, except for
the last action. In RL2 the RSS values and height h are
updated sequentially in each action. In the best method,
namely RL3 the RSS values and height are updated based
on RL2, and sequentially the x, y coordinates are updated
based on RL1, obtaining an average positioning accuracy
of 2.6 cm. Zhang et al. in [66] propose a Q-learning-based
2D positioning method utilizing a stereo camera system.
The RL method aims to balance the handover rate and
positioning accuracy, by segmenting the user’s moving track
at different speeds based on the rewards of the RL method.
The proposed scheme is able to attain positioning precision
at the millimeter level and enhance the normalized reward
by over 40%, and decrease the handover rate by 87% and
78%, compared to the immediate handover (IHO) and dwell
handover (DHO) approaches.

4) EAS IN VLP FORMULATIONS

EAs have been widely used to resolve complex non-
linear optimization problems, and their performance in
VLP systems has received much attention in the last few
years [112]. Various EAs have been investigated in the
position estimation of receivers in VLC systems, and among
the included research studies the most widely used are the
genetic algorithm (GA) and particle swarm optimization
(PSO).
GA is a population-based optimization algorithm that

mimics Darwinian theory of biological evolution. The GA
starts from a set of coded solutions satisfying a set of
random constraints. The set formulates the initial population
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TABLE 5. Advantages and limitations of ML algorithms used in VLP.

P0 based on an initialization method. In each generation
(iteration), tentative solutions in the population are evaluated
based on the fitness function to select the best adapted
and remove the worst solutions. The GA generates new
potential solutions P̄g using variation operators such as

mutation and crossover. These solutions are then evaluated
using the fitness function in the main GA process. In
the crossover operator, new solutions occur based on the
exchange of genetic material, whereas in mutation, the
genetic information of some solutions is modified. The newly
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TABLE 6. Advantages and limitations of ML algorithms used in VLP (continued).

Algorithm 1 Pseudo-Code of Standard GA
g← 0
Initialize random population P0
Evaluate the population P0
while Termination criterion not satisfied do
P̄g← variation(Pg)
Evaluate (P̂g)
P̄g+1 ← replace(Pg, P̄g)
g← g+ 1

end while

generated solutions P̄g replace the ones eliminated and, along
with the current population Pg of the generation, formulate
the next generation population Pg+1. This process is repeated
until convergence criteria, such as the quality of the solution
and the maximum number of iterations, are satisfied. The
last generation consists of the best solutions, in terms of the
balance between fitness function and cost [157]. The pseudo-
code of the standard GA is structured in Algorithm 1.

GA in VLC systems starts by formulating the search space
of the parameters (i.e., position, RSS values, angles, etc.),
and then by utilizing element randomization forms the initial
population. By utilizing the survival of the fittest manner
and mutation/crossover operations, the best individuals are
combined to form the next generation. The fitness function of
the GA in VLP systems is defined as the mean distance error

of measured and projected positioning points. The evolution
process is repeated until the best fitness value is achieved
or the maximum number of generations / iterations is
reached [101], [158]. The major advantages and limitations
of the EAs for the position estimation of the VLP systems
are included in Table 7.

PSO is a swarm intelligence algorithm and takes inspira-
tion from the social behavior of bird flocks and fish schools.
PSO is initialized with a population of random solutions,
namely particles. Each particle i in PSO flies through the
search space and movement is adjusted based on both its
own and its neighbor’s behaviors and experiences. For each
particle, a random velocity vi is generated. The positions of
the initial population are randomly initialized based on the
constraints of the problem and the movement of each particle
is defined from an objective function F . On the basis of the
objective function, the optimal function value and location of
each particle are determined. At each iteration, PSO updates
the location and velocity of the particle according to the
optimal location of each particle Pbesti and its neighbors,
as well as the current velocity until the stopping criterion
is satisfied. Let Gbesti represent the global best position of
the group, then the updated position and velocity can be
expressed as:

vi(t + 1) = vi(t)+ C1r1|Pbesti (t)− xi(t)|
+ C2r2|Gbesti (t)− xi(t)| (14)

xi(t + 1) = xi(t)+ vi(t + 1) (15)
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TABLE 7. Advantages and limitations of EAs used in VLP.

ui is the particle’s velocity, xi the particle’s position,
C1 and C2 the cognitive and social acceleration learning
coefficient and r1 and r2 are random values within [0, 1]
[159], [160].
In VLP systems, PSO is based on RSS signal values,

with each particle representing a candidate for the position
of the receiver. Each location receives RSS signals from
all transmitters. Furthermore, various velocity speeds are
initialized to the corresponding particles, and the predicted
RSS value is compared with the real-time signal, to minimize
the loss function. The loss function corresponds to the
average distance error between the real and estimated
location points. The process is repeated until the optimal
position and velocity are determined based on the objective
function [110], [161].

PSO is proposed in [108] in a 5G VLP system to extract
the positioning reference signal (PRS) and improve the 2D
positioning accuracy of an SVM through the subcarrier
selection. An SVM is employed using the PRSs that
have the lowest positioning error and the corresponding
subcarrier sequence numbers as input. This approach results
in an accuracy improvement of 73.28% and an average 2D
positioning error of less than 6cm for the PD sensor. In [110]
PSO is applied to estimate the location of a PD target based
on RSS values from the transmitters by updating the group’s
optimal location. An ANN used the estimation of the PSO
combined with the RSS data to refine the estimation and
accurately predict the real-time location of the receiver, with
a mean 3D positioning error of 10cm, while offering 3 times
wider coverage. In [114] PSO is studied to determine the

optimal position of an RIS array to maximize the achievable
rate performance, based on PD sensors.
In [93] a positioning approach based on a modified

PSO algorithm improved by simulated annealing (SA), that
is, simulated annealing particle swarm optimization (SA-
PSO). The algorithm estimates the 3D location by using
the unique signals transmitted by each LED and analyzing
the messages received by the PD receiver terminal. Kalman
filters have been utilized to suppress interference signals,
improving accuracy and reducing computation time, with
an experimental average 3D positioning error of 3.492cm.
The authors in [94] implement a chaotic particle swarm
optimization algorithm (CPSO) for a VLC-based 3D indoor
positioning system. Chaos optimization utilizes the properties
of randomness, ergodicity, and regularity of variables to
perform a direct search and optimize the search process. The
approach involves linearly mapping chaotic variables to the
PD target location interval and utilizing them to efficiently
search for the global optimal solution, thus it is time-
consuming. PSO is combined with chaos optimization to
leverage and find a better initial value, with the final position
being estimated based on the carrier search of the chaos
algorithm, obtaining an average 3D positioning accuracy
of 1.4 cm, and reducing complexity. A PSO approach is
employed in [102] to obtain the optimal configuration of a
fuzzy-based 2D localization system. The suggested fuzzy-
based approach expands the concept of trilateration by
eliminating the requirement of solving multiple equations
to determine the PD sensor’s location. The PSO is applied
to optimize the membership functions of the fuzzy logic
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controller, and by performing range adjustment, localization
reliability is achieved, with a mean positioning error of
43 cm.
A 3D VLP positioning method based on adaptive

parameter particle swarm optimization (AP-PSO), namely
adaptive mutation parameter particle swarm optimization
(AP-PSO-M) is developed in [105]. The proposed AP-PSO-
M algorithm takes into account both the LOS model, which
is affected by noise interference, and the NLOS model, which
is affected by multipath reflections. It has an advantage
over the standard PSO algorithm, as it is less likely to
get trapped in a local optimal solution. Additionally, the
approach requires less computational complexity, since it
only uses half of the swarm compared to the standard PSO
algorithm. The average 3D positioning error achieved with
this algorithm is 16.59 cm, even without prior knowledge of
the height of the PD receiver. In [107] an improved particle
swarm optimization (IPSO) algorithm is applied to produce
the most efficient layout design that jointly maximizes both
the positioning accuracy and the ergodic capacity of the
VLC/VLP system. The IPSO is developed on the basis
of a new metric, namely entropy of positioning (EOP),
to evaluate positioning accuracy based on the concept of
entropy in information theory. IPSO obtains a layout pattern
to minimize the ergodic EOP, based on the RSS values, with
the average 2D positioning error of the PD target, being
below 50 cm.
A variation of IPSO based on the Min-Max algorithm,

namely IPSO-Min-Max is studied in [113], to ensure that
particles are always in close proximity to the target. The
proposed method utilizes a nonlinear decreasing strategy for
the inertia weight, based on the Bessel filter, to ensure stable
particle velocity during the iterative process. As a result, the
average positioning error of the PD target is less than 4 cm.
However, to achieve a smaller positioning delay, the accuracy
is reduced. Chen et al. in [109] utilize an improved immune
particle swarm optimization (IIPSO) algorithm for high-
precision position estimation in a 3D indoor environment.
Monte Carlo ray tracing is used to analyze the effect of
multipath reflections, and the optimal viewing angle of the
PD receiver is determined to minimize the impact of the
reflections. Also, by utilizing Kalman filters, the received
light power from the LEDs is optimized, and by enhancing
the inertial coefficient and the acceleration factor, the IIPSO
achieves a 3D positioning accuracy of 3.12 cm, with a
shorter average convergence rate of 2 s.
GA is utilized in [101] to estimate the 2D location of

a receiver, consisting of a position-sensitive detector (PSD)
PD and a coupled lens. A novel method in which a PSD
PD onboard of a mobile target, followed by geometric
calibration, is utilized to obtain the AoA of the received
signals. The locations of the points of impact in relation
to the PSD system’s environmental position are used as
inputs to the GA, to provide intrinsic/extrinsic parameters
and the precise location of the emitters. The proposed
method obtains an average 2D position error < 4.5 cm,

Algorithm 2 Pseudo-Code of Standard PSO
Initialize population size S, and maximum generation tmax
for i = 1 : S do
Generate randomly xi and vi
Pi = xi

end for
Set Gbest = Pbest1 & f (Gbest) = f (Pbest1 )

for i = 1 : S do
if f (Pbesti ) < f (Gbest) then
f (Gbest) = f (Pbesti )

end if
end for
while Termination criterion not satisfied & t < tmax do
for i = 1 : S do
Update velocity using (14)
Update position using (15)
if f (xi(t + 1)) < f (Pbesti ) then
Pbesti = xi(t + 1)

f (Pbesti ) = f (xi(t + 1))

end if
if f (Pbesti ) < f (Gbest) then
Gbest = Pbesti
f (Gbest) = f (Pbesti )

end if
end for
t← t + 1

end while
return Gbest

without prior knowledge of the system parameters. In [117]
apply GA to obtain a low-complexity, weak calibration
for an indoor VLP system. The suggested calibration only
needs six measurement locations inside the environment,
and via the GA the calibration constants are obtained,
without knowing the system characteristics beforehand. The
weak calibration technique improves the accuracy of position
and orientation estimation using a PSD that measures the
angle of arrival from modulated infrastructure lighting.
The mean 3D positioning error is reduced to 35 mm and
the orientation angle errors are around 0.25◦. The authors
in [104] prepare a comparison of GA and PSO in terms
of 2D position estimation and boundary limitations. GA
outperforms PSO in terms of PD receiver position estimation
accuracy, for the upper bounded optimization problem, the
average error is 12 cm, has a lower deviation, and is more
robust.
In [92] a 3D position estimation method, based on a

modified genetic algorithm (MGA) is developed. The MGA
approach can achieve an average localization error of <

1.02 cm, without the need to presume the height or the
orientation angle of the mobile PD device. The approach
considers the first-order reflection and employs an ANN
to match the model of a nonlinear channel, reducing the
average positioning errors at the four corners from 11.94 cm
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to 0.95 cm. MGA is also studied in [98] to improve
the precision of a reversed indoor 3D positioning system.
The positioning problem is treated as a multi-parameter
optimization problem, and the global parallel search of MGA
is utilized. By optimizing the attenuation factor in RSS values
and incorporating the error correction factors into MGA,
the 3D average positioning accuracy of the PD sensor is
improved to 2.32 cm. An improved genetic algorithm (IGA)
is applied in [116] to enhance performance in positioning
accuracy in a VLP system. In this scheme, a single LED and
four-quadrant PDs are utilized as light source transmitters
and receivers, to accurately estimate the location of measured
points, with the average 3D positioning error < 4 cm.
IGA can obtain better positioning accuracy and robustness,
compared with the standard GA.
In [91] ACO utilizes the global search property to

identify the optimal PD location point, and the parallel
search property to correct the deviation of the intensity
attenuation factors, with the average 3D positioning error
at 2 cm, 4 cm, and 8 cm when SNR is 30 dB, 20 dB, and
10 dB, respectively. Authors in [95], [96] transform the 3D
positioning problem of a PD target, into a global optimization
problem, and a fitness function is developed based on the
Lambertian radiation pattern to achieve higher accuracy and
lower system complexity. The positioning problem can be
addressed with MFOA, where the strategy of the fly group
in the traditional fruit fly optimization algorithm is altered,
and an adaptive search scope is utilized to obtain an average
3D positioning accuracy of 0.76 cm. Also, AFSA can offer
excellent accuracy results in indoor 3D positioning problems,
as the average error for a moving target is 3.57 mm.
The paper [97] proposes a global optimization approach to

solve the 3D positioning of a PD node, by computing the area
of overlap of circular projections of LEDs on the terminal
plane. Differential Evolution (DE) is used to optimize the
fitness function and determine the Z-coordinate of the
terminal. DE also reduces the dimensionality of the problem
from 3D to one-dimensional (1D), which significantly
improves the computation time. The average 3D positioning
error is 0.69 cm within an indoor environment of with a
reduced computation time of 24.26 ms per single point.
The RSS-based simultaneous positioning and orientating
(SPAO) problem is addressed in [99] with a novel multi-
scale particle-assisted stochastic search (PASS) algorithm.
The PASS algorithm has an average 3D positioning error
of the PASS algorithm is 10 cm and an orientation error
of 70 cm, in an affordable computational time of 2 s. The
PASS-based solution can be utilized for practical VLC
localization systems, as for the accurate position estimation
prior knowledge concerning the PD receiver’s height, the
precise alignment of transceiver orientations, or the use of
inertial measurements is not required. Peng et al. in [100]
propose the TSA to estimate the 3D location of a PD, for both
static and dynamic trajectory positioning. As TSA emulates
the human memory mechanism, it can avoid being stuck in
local minima and enables a wider search space exploration,

offering average 3D position error below 1.791 cm and
1.428 cm for static and dynamic positioning respectively.
In [103] is applied as a global optimization method to

solve the 3D position estimation of a PD sensor target. BA
is inspired by microbats’ echolocation ability to navigate
around obstacles and locate prey in low-light conditions.
As micro-bats pursue prey, they decrease the volume of
their emitted ultrasonic sounds but increase the emission
rate. The position of the receiver is predicted by identifying
the bat within the entire population that has the lowest
value of the fitness function. The BA approach provides
a good balance between complexity and accuracy, with an
average error of 2.12 cm in 3D positioning. A variant of
BA, namely the improved hybrid bat algorithm (IHBA), is
studied in [106] to improve the performance of 3D position
estimation in a VLC system while considering the tilt of
the receiver. IHBA incorporates several features to enhance
its performance. A set of beacon points are established at
the outset to reduce the number of iterations required, while
the fitness function includes a weight coefficient to improve
positioning accuracy. The algorithm introduces an adaptive
search factor to regulate the speed of the bat individual
update process. A chaotic perturbation operation is utilized
to avoid the algorithm from getting stuck in local optima.
As a result, the algorithm achieved an average position-
ing error of 3.64 cm and a quicker convergence rate of
0.89 seconds.
The improved adaptive cuckoo search algorithm

(IACSA) [111] and the improved whale optimization algo-
rithm (IWOA) [112] are also studied to improve the
positioning accuracy in VLP systems, while considering the
rotation angles of the PD receiver. In [111] for kinematic
positioning without PD rotation, the average 3D positioning
error is 1.54 cm and, in the case of PD rotation, 16.48 cm.
The IWOA applied in [112] has elite opposition-based
learning and Lévy flight strategy. PD rotation is considered
and the average 3D positioning error is 7.85 cm, and
27.14 cm when angle estimation is ignored and taken into
account, respectively.
In [118] the input weights and hidden biases of an ELM

are optimized using gray wolf optimization (GWO) and par-
ticle swarm optimization (PSO). These optimization methods
incrementally update the randomly initialized parameters,
enhancing the 3D positioning accuracy. GWO-ELM outper-
forms ELM-PSO, as the average positioning error is 6.49 cm
versus 6.90 cm. Both GWO and PSO offer a significant
improvement of 58.16% and 55.51% in 3D environments
while reducing the computational complexity of the problem.
GWO is also applied in [115] combined with the non-
sorting genetic algorithm III (NSGA-III), to formulate a
multiobjective optimization strategy that maximizes power
and spectral efficiency in a VLP system and utilizes an
LSTM to predict PD positions, based on the optimal
solutions of the HMO process. The proposed method obtains
a reduction of 80% in power consumption and 20% in
spectrum bandwidth. Based on the optimal parameters of the
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TABLE 8. kNN methods included in the review.

TABLE 9. ANN methods included in the review.

TABLE 10. Deep learning architectures included in the review.

HMO, that offer these reductions, the LSTM has an average
2D positioning error of <7%.

5) COMPARISON

The analysis presented in the above sections is summarized
in Tables 8 - 14. Information about the approaches and

the use-case scenario (i.e., setup, environment, sensor type,
size of test area, method, number of LEDs), and their
optimal results in terms of accuracy and positioning error,
are included. Tables 8 - 11 depict the performance of ML,
DL and RL approaches in terms of position estimation in
VLP systems, whereas Tables 12 - 14 show the EA accuracy
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TABLE 11. Other ML methods included in the review.

in the various scenarios and systems. In most of the included
works, PD sensors are utilized as receivers and target nodes,
with a few camera-based and solar cell-based approaches.
Furthermore, the measurement methodology is included,
with most of the included paper utilizing fingerprints and
trilateration methods. Triangulation is also studied in some
works, whereas proximity is scarcely utilized in these works.
Some authors study the positioning problem by exploiting
other methods (e.g., receiver diversity unit cell duplication,
RSS measurements) to provide their AI-based localization
approach, especially for the EA methodology. It is worth
mentioning that in some works, authors did not give any
information on the height of the test area, thus h value was
assigned.

V. OPEN CHALLENGES AND CONCLUSION
This methodological review aimed to provide a com-
prehensive overview of AI-based VLP studies. ML and
nature-inspired evolutionary research works have been ana-
lyzed, during the last six years in different environments
(2D/3D) and methods (experiment/simulation). AI methods
are capable of enhancing performance and robustness in
predicting receiver position, but there are still some unre-
solved challenges in the field, analyzed in Section V-A.

A. OPEN CHALLENGES AND FUTURE DIRECTIONS
The use of AI methods may offer robust and reliable results,
but there are still challenges to be addressed in indoor
positioning systems, including VLC configurations [172]:
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TABLE 12. PSO approaches included in the review.

TABLE 13. GA methods included in the review.

TABLE 14. Other EAs included in the review.

• Data availability: The quantity and quality of the
data greatly impact the accuracy and performance of
AI methods. Estimating and measuring the required

data is a tough task, and also the collected data
may present divergences caused by the device
heterogeneity.
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• Computation time and complexity: AI-based approaches
require different training and estimation times, depend-
ing on the problem and the system model. Complex
models may offer better accuracy results, but optimizing
complexity and performance is essential.

• Variability shortage: AI models can provide accurate
predictions based on the available data. However, it is
hard to ascertain that the models are suitable for all use
case scenarios.

• Environment: AI methods can offer accurate and robust
results for IPs, but their performance may differ in less
ideal environments, such as underwater or underground
scenarios.

• RSS-based VLP heavily relies on the predictability
of the visible light channel. In comparison with sub-
GHz RF propagation, the visible light channel can
be modeled much more precisely [173], [174], [175],
leading to a higher accuracy of RSS-based positioning.
The main reason is that RSS-based VLP does not
suffer from small-scale fading. Moreover, it was shown
that reflections have a smaller (and more deterministic)
impact [176]. This also explains why reflections have
not frequently been researched, as positioning only
accounting for the LoS contributions already yields
good accuracy.

Telecommunication engineering has made significant
progress, leading to the development of improved VLC tech-
nologies and services. The VLC community has identified
several research directions that show promise for future
development, including [21], [177], [178]:

• The advancement in high-speed complementary metal-
oxide-semiconductor (CMOS) image sensors (ISs) is
crucial in enhancing the accuracy of indoor localization
systems that employ deep learning. The evolution of IS
technology, since LEDs are increasingly becoming the
preferred lighting option in IPs, can enable smartphones,
which are already ubiquitous, to become the primary
devices for indoor positioning problems.

• Integration with other wireless technologies: Combining
VLP with other wireless technologies such as WiFi,
Bluetooth, or ultra-wideband can enhance the accuracy
and reliability of indoor positioning systems.

• Real-time positioning: Real-time positioning using VLP
systems can improve applications such as indoor naviga-
tion, emergency response, and location-based services.

• Outdoor Positioning: Outdoor positioning is a very
complex and attractive challenge, as it is difficult
for PDs to deploy in an outdoor environment, and
environmental factors greatly impact their performance.
The use of off-camera receiving systems in outdoor
positioning can offer solutions in future networks.

• Hybrid positioning: The combination of VLP with
other positioning technologies, such as GPS or sensor
fusion, can improve the accuracy of outdoor and indoor
positioning systems.

• Vehicular communications: Every vehicle is equipped
with high-power head and tail lights. Also, light waves
can be more reliable than radio frequency signals
in closed spaces; thus, VLC and VLP based on
cameras can offer various solutions in the future of
vehicular communications and vehicle-to-vehicle (V2V)
positioning.

B. CONCLUSION
VLP technology can achieve highly accurate real-time
localization in indoor IoT networks, compared to RF-based
positioning systems, thus playing a vital role in the much
needed precise tracking of IoT devices. Combining AI and
VLP can offer highly accurate positioning services in indoor
IoT systems, which are essential in the upcoming future wire-
less networks. In this methodological review, a discussion of
AI methods concerning position estimation in VLC systems
for indoor IoT applications is conducted. Relevant studies
published in peer review journals or conferences in the last
six years are included in this work. The use of AI in IPs
and especially the VLC-based system is a growing trend to
improve localization services. AI methods offer the flexibility
to be combined with conventional localization techniques and
enhance accuracy and robustness, thus posing as a promising
candidate to improve VLC localization services for indoor
IoT applications.
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