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Abstract This work proposes a GPU optimization method-
ology for real-time execution of ultra high frame rate appli-
cations with small frame sizes. While the use of GPUs for
offline processing is well-established, real-time execution
remains challenging due to the lack of real-time execution
guarantees, especially for embedded GPUs. Our methodol-
ogy introduces guidelines and a workflow by focusing on: (a)
controlling latency by means of minimization of CPU-GPU
interactions; (b) computation pruning; and (c) inter/intra-
kernel optimizations. Furthermore, our approach takes advan-
tage of multi-frame processing to attain significantly higher
throughput at the cost of increased latency when the appli-
cation permits such trade-offs. To evaluate our optimization
methodology, we applied it to the monitoring and controlling
of laser powder bed fusion machines, a widely used metal
additive manufacturing technique. Results show that in the
considered application, the required performance could be
obtained on a Jetson Xavier AGX platform, and by sacrificing
latency, significantly higher throughput was achieved.

1 Introduction

In recent years, there has been a growing interest for video
processing at ultra-high frame rates, exceeding 10 kfps, for
different applications ranging from academic to industrial [28,
23, 16, 18]. Although Graphics Processing Units (GPUs)
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have been adopted in this domain, real-time execution of such
applications remains challenging due to the lack of real-time
execution guarantees of GPUs. With the advent of embedded
GPUs, GPU accelerated real-time applications have attracted
great attention. Particularly, coupling with technologies like
NVIDIA GPUDirect that enables direct communication be-
tween GPUs and other PCIe devices [2], has made GPUs
even more suitable for these applications.

Although running applications with both ultra-high frame
rates and high resolution is beyond the capabilities of these
embedded GPUs, they can still offer benefits for applications
that deal with small frame sizes1. Even with small frame
sizes, achieving real-time execution poses several challenges
on embedded GPUs, because of significant run-time over-
heads and fluctuations in the latency (jitter).

To improve real-time performance, one commonly used
GPU programming technique is kernel fusion. By combin-
ing multiple kernels into a single kernel, it is possible to
reduce the run-time overheads and improve data locality, at
least, if the resource contention can be controlled. Kernel
fusion, referred to as operator fusion in the context of neural
networks, has become a common technique to improve the
performance of neural networks [27], and linear algebra [11].
Despite extensive research on this topic, [17, 4], effective-
ness of kernel fusion highly depends on various prior and
subsequent optimizations, which will be focused in our study.

Kernel fusion, when results in a single kernel, enables the
use of kernels that remain resident on the GPU. Persistent
kernels can be executed multiple times without launching
overheads. Although persistent kernel has already been rec-
ognized as an effective approach to improve the real-time
performance of GPU kernels, [14, 6, 6, 33, 32], its applica-

1 In our work, a frame is considered ”small”, if it fits within the
shared memory of a streaming multiprocessor (SM) and the size of
the work (e.g., the number of pixels or elements to be processed) falls
within the range of thread-block size.



2 Mohsen Nourazar, Brian G. Booth, and Bart Goossens

tion to practical applications remains a logistical challenge,
as without care-full analysis incorporating this technique can
result in high register/memory usage and resource contention.

In recent years, several approaches based on Domain-
Specific Languages (DSL) have emerged for automatic paral-
lelization and GPU acceleration of algorithms, e.g. OpenACC
[30], HIPAcc[19], Rootbeer [20], Halide [22], TensorCom-
prehensions [29]. Although these programming approaches
all focus on providing a DSL with compiler optimizations for
implementing computer vision algorithms on GPU, they gen-
erally do not allow to control optimization trade-offs, which
makes them unsuitable under stringent (e.g. real-time) per-
formance requirements, at least for the targeted application
of this work. Alternatively, a lot of programmer interven-
tion/expertise is required to adopt CUDA specific features,
which are not always accessible from the DSL.

In this regards, this work aims to propose a set of guide-
lines and an optimization methodology that can be potentially
automated by compilers for GPU acceleration of ultra-high
frame rate applications that deal with small frame sizes. Our
approach consists of computation pruning followed by iter-
ative intra- and inter-kernel optimizations that reduce both
driver and kernel latency. Optimizations are designed to min-
imize CPU-GPU interactions while making the codes more
amenable to exploit data locality and data reuse opportuni-
ties. Then, data reuse techniques [8], that are adopted for
ultra-high throughput, are used in combination with access
patterns analysis (e.g. to avoid shared memory bank conflicts).
Due to constraints, not every candidate will eventually be se-
lected, and to select the final candidates, we consider adapted
workload scheduling schemes in combination with parallel
multi-frame processing to take advantage of underutilized
GPU resources due to small frame sizes.

Although the proposed workflow focuses on small frame
sizes, it is also applicable to applications with large frames.
We focus on small frame sizes because: a) we aim to reduce
run-time overheads, which are more significant when dealing
with small frames, b) inter-kernel optimizations are partic-
ularly effective when the GPU resources are under-utilized,
which is more likely when frame is small, and c) embedded
GPUs, which are the intended devices for industrial applica-
tions, are more suitable for handling small frame sizes.

Many such applications exist in manufacturing and qual-
ity control systems [12, 24], where our approach can lead
to significant improvements. One such application is laser
powder bed fusion (LPBF), a widely used metal additive
manufacturing (AM) technique that produces high quality
parts for various industries [3, 25]. However, it suffers from
printing defects, mainly keyhole and lack-of-fusion pores,
resulting in sub-standard parts and increased scrap rates [7].

To evaluate our approach, we applied it to real-time con-
trol of an LPBF machine, which is an excellent example
for our purpose. As the physical processes involved in pore

formation occurs rapidly, the monitoring system needs to
capture and analyze at very high frames rates (∼ 20,000 fps),
and once pores are detected, the control system needs to act in
real-time and adjust the parameters before the quality of the
part is significantly reduced. In addition, monitoring needs to
cover only the melt pool (i.e., the molten metal created by the
laser) and a small area around it, which spans approximately
25×25 mm. Using a camera system capable of capturing at
a resolution of 100×100 pixels with each pixel covering an
area of roughly 200×200 microns in size, the pore formation
phenomenon can be effectively monitored.

The acceptable latency levels depends on the required
quality, which itself depends on the application. An LPBF
printer’s typical laser movement speed is around 1 m/s,
meaning that a latency of 10 ms would result in 10 mm
of non-optimized printing. For common metal AM applica-
tions, real-time control requires the latency to be in the range
of microseconds to milliseconds [5]. This corresponds to, at
most, a few millimeters of non-optimized printing.

The techniques used in this paper are intended to be
applied directly in CUDA/OpenCL or, in a DSL that pro-
vides low-level access to some of the CUDA features (e.g.,
Quasar [13]) or similarly appropriate tiling/scheduling op-
tions. The proposed approach borrows from ideas of the
DTSE methodology [8] (e.g. data reuse optimizations), but
adapts these ideas to the setting of GPU compilation for
ultra-high throughput, parallel multi-frame applications. The
proposed workflow also provides a good starting point for
anyone trying to accelerate such an application. Our contri-
butions are as follows:

1. We propose a workflow for GPU acceleration of ultra-
high frame rate applications, which specifically targets
latency control in GPU processing by focusing on vari-
ous optimization aspects, including both intra- and inter-
kernel optimizations.

2. We design special kernel fusion schemes that makes the
code more amenable to various optimization techniques,
e.g. data reuse, while minimizes CPU-GPU interactions.

3. We enable a latency-versus-throughput trade-off in our
methodology by adjusting the inter-kernel optimization
decisions for dynamic multi-frame processing, in order
to meet higher throughput requirements.

4. We utilize our approach for real-time high frame-rate
LPBF monitoring, which results in the first real-time
implementation of video-based monitoring systems for
LPBF, to the best of our knowledge.

This paper is organized in five sections. The proposed
workflow is detailed in section 2. Then, the application of
the proposed workflow for the LPBF monitoring system is
explained in section 3 along with a brief overview of the
LPBF video analysis algorithms. Finally, sections 4 and 5
present the results, discussion, and conclusions.
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Fig. 1: Overview of the proposed optimization workflow.

2 The Design of GPU-specific Optimizations

An overview of the proposed workflow is presented in Fig. 1.
It takes a basic GPU implementation, e.g. in CUDA or Quasar,
as its input and performs computation pruning in the initial
step (section 2.3). Then, iterative intra- and inter-kernel op-
timizations are performed in two phases: 1) iterative opti-
mizations to transform the entire algorithm into a persistent
GPU kernel (sections 2.1 and 2.2), and 2) when throughput
requirements are not satisfied, it takes advantage of multi-
frame processing to trade latency with throughput (section
2.4). Thus, iterative optimizations are performed until the
required number of frames can be processed in parallel. Both
phases can be stopped early if requirements are satisfied.

The workflow includes a feedback loop that incorporates
execution times and GPU occupancy calculations. Execution
times are measured by NVIDIA Visual Profiler, or Quasar
profiling tools, for both total and GPU-only execution times.
As the process progresses, these values can even be estimated
based on the applied fusion and time savings resulting from
data reuse opportunities. GPU occupancy values can be ob-
tained from the NSight compute occupancy calculator or
Quasar APIs. The feedback loop influences mainly the inter-
kernel optimization decisions. Subsequently, these decisions
impact the intra-kernel optimizations as well.

2.1 Intra-Kernel Optimizations

To optimize the GPU kernels, we adopt a straightforward
approach by focusing on two key optimization aspects:

1. Memory throughput optimizations to maximize the band-
width and efficiency of data transfers by: 1) mapping data
into the best suited layer of the GPU memory hierarchy
(see Fig. 2), and 2) improving memory access patterns.

2. Efficient workload scheduling for achieving optimal GPU
utilization and reducing latency by minimizing costly
synchronization and reducing stalls. In addition, proper
workload scheduling provides efficient communication

Table 1: An overview of the available resources on GPUs.

GPU
Xavier
AGX

Orin
AGX

RTX
A6000

SM count 8 16 84
Max. number of threads per SM 2048 1536 1536
Registers per block 65536 65536 65536
Shared mem. per SM (KB) 96 164 100
Global mem. bandwidth (GB/s) 136.5 204.8 768
Shared mem. bandwidth (GB/s) 1536 2662 19350

between threads, as different communication techniques
are available based on the thread mapping used.

The intra-kernel optimization workflow consists of three
steps, which starts by determining the opportunities for op-
timization (see below). Since there is a limit on the number
of registers and amount of shared memory, generally only a
limited subset of the data can be mapped into the fastest mem-
ory (see Table 1 for an overview of the available resources
on GPUs). Hence, it is necessary to prioritize operations by
conducting code analysis to obtain information for each iden-
tified optimization candidate. Finally, the decision variables
concerning the selection of optimization techniques should
be optimized. In the following subsection, we explain these
steps and how optimization decisions are made.

2.1.1 Determining the opportunities for optimization

This involves identifying areas and patterns of the code where
improvements can be made. Potential candidates include:

– Out-of-place operations, which refers to operations in
which the output is stored in a new location in memory,
rather than overwriting the input. Due to existence of
data loading/storing, they are often suitable candidates
for optimizations. Every load/store operation needs to
be checked for access pattern optimization opportunities.
In addition, these operations can be candidates for data
reusing, sharing, and broadcasting optimizations.

– In-place operations, which refer to operations where
threads are involved in performing tasks at the same mem-
ory location. Examples of such operations are histogram
computations, calculation of statistics (e.g. sum, min, and
max), cumulative operations (e.g. cumulative sum), and
propagation algorithms (e.g. label propagation).

– Expensive numerical computations where each thread
needs to perform significant amount of numerical compu-
tations. Mathematical computations (e.g., matrix multiply-
accumulate (MMA), evaluation of transcendental func-
tions, etc.) are examples of such operations.

We start with identifying expensive numerical computa-
tions. Depending on the mapping decision, these elements
may qualify as candidates for either in-place or out-of-place
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Fig. 2: Memory hierarchy of GPU.

optimizations. Candidates for in-place optimization are iden-
tified through analysis of both the algorithm and their mem-
ory access patterns, using prior information as a guiding
factor. Code sections that involve modifying the input data di-
rectly, atomic operations, and successive assesses to the same
memory address can be potential candidates for in-place op-
erations. Finally, out-of-place operations are identified based
on memory load and store operations.

2.1.2 Code Analysis

For the out-of-place operations, we analyze the memory effi-
ciency, storage cost, and calculate the data reuse factors [8],
and for the in-place operations, storage and workload size
needs to be calculated. The data reuse factor of a given array
is defined as the ratio of the number of (element) read opera-
tions from a copy of an array in a smaller memory, and the
number of (element) read operations from the array in the
larger memory on the higher hierarchy level [8]. The more
often data is reused, the higher the performance benefits of
shared memory storage. The efficiency of memory opera-
tions is determined by two factors: the access pattern (e.g.
sequential/regular/random, coalesced/uncoalesced, 1D/2D
access pattern) and the hierarchical level of memory where
the data is located. The typical GPU memory hierarchy con-
tains multiple modules as shown in Fig. 2, each with distinct
bandwidth and access latency characteristics (see Table 1 for
the global and shared memory bandwidth comparison).

2.1.3 Optimization decisions

Mapping onto the GPU memory hierarchy For out-of-place
operations, the first step involves improving the efficiency
of memory operations. If inefficient access patterns, such as
unaligned access, uncoalesced access, 2D spatial or strided
access, and random access are identified, the memory should
be mapped to at least one level down in the hierarchy, so that
the inefficient access is handled in the lower levels of the
hierarchy. Warps2 are traditionally not part of the memory hi-

2 Warp refers to a group of threads (typically 32), which execute the
same instruction simultaneously on a single SM.

erarchy of the GPU. However, due to existence of warp-level
primitives such as voting and shuffling, which are performed
on the registers in a SIMD fashion, in our work, we view
them as a separate level of the memory hierarchy (see in
Fig. 2). However, this shared warp memory is limited by
three factors: 1) number of threads that have access (limited
to 32), 2) limited amount of GPU kernel registers, and 3) the
data access pattern needs to be known at compile-time.

Mapping to the lower levels of hierarchy is more straight-
forward when the array sizes are small. Although the input
data often exceeds the capacity of the lower level of hierar-
chy, it’s worth noting that the intermediate results of parallel
computations, like the final stages of a parallel reduction al-
gorithm, are typically small enough to fit within these lower
level memories. When the memory can not be mapped or is al-
ready mapped, careful access pattern analysis are performed
to increase bandwidth, for example by avoiding shared mem-
ory bank conflicts or enabling vectorized access.

Prioritization of candidates Because of the limit on the
amount of available registers and shared memory, it is impor-
tant to prioritize candidates that can make the most use of
the faster memory. Although optimal prioritization requires
careful analysis which can easily lead to a complicated opti-
mization problem, we adopt a pragmatic approach in which
we assign a fixed level of the memory hierarchy to each array
based on the data reuse factor. For the same data reuse factor,
we prioritize them based on memory access pattern, with 2D
spatial access being the highest priority, followed by random
access, strided access, and finally coalesced access, in order
of decreasing importance. The highest priority memory ac-
cesses are mapped to the warps and shared memory while,
for the lowest priority, we do not perform any additional map-
ping. Later optimization can start from the initial solution we
obtain. When the access pattern cannot be determined during
compile-time, it is regarded as random access.

When out-of-place operations are identified due to the
data reuse or sharing opportunities, they get higher priority
for mapping even if they already access the memory effi-
ciently. Short arrays, small enough to be process with in a
thread-block, are mapped onto the warps when the access
pattern is known at compile-time. While larger arrays are best
communicated using shared memory. Both of these communi-
cation operations have their own synchronization primitives
(thread and warp-based barriers), which in their turn add to
the execution time (and latency) of the kernel. In this sense,
it is useful to re-order operations such that the number of
synchronization steps is minimized. When the operation can
be performed in tiles, memory can be mapped to multiple
levels of hierarchy.

Data reuse considerations under resource limitations If the
data reuse candidate is not small enough to be mapped to the
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warp memory or if there is not enough shared memory for all
the data reuse candidates, then a combination of warp-level
primitives and shared memory operations can be used. Hence,
there are five choices: 1) mapping onto warp shuffling, 2)
mapping onto shared memory, 3) mapping onto combination
of both, 4) not exploiting the reuse opportunity, or 5) using
re-computation rather than storage. The last choice is suited
for simple computations that depend on values already stored
in the registers. Lastly, if a combination is not possible, the
candidate will need to be mapped (at least) one level higher
in the hierarchy, depending on its prioritization.

In-place operations Computations of histograms, statistics,
cumulative operations, and propagation algorithms are, per-
haps surprisingly, not examples of data reuse [8, p. 188]. In
fact, these operations are in-place operations that require a
different treatment, consisting of 1) data layout optimization
and 2) mapping onto the desired level of the memory hier-
archy [8, p. 195]. Finding the desired levels is then done as
follows: histogram computation can be performed on global
memory (which requires atomic operations, but this gen-
erally causes performance issues [10]), in shared memory
(again with atomic operations, but these are now considerably
faster) or using warp voting techniques (e.g., for small his-
tograms). Similarly, for computation of statistics, algorithms
based on parallel reduction are common. These algorithms
can be mapped onto a combination of shared memory with
warp shuffling operations [9, p. 263]. By combining shared
memory with warp shuffling, the amount of required shared
memory for this operation, can be even reduced by a factor
given by the warp size (typically, 32). Hence, for in-place
operations we try to perform operation within warps when
the workload and the memory size allows. If not, we use com-
bination of shared memory and warp-shuffling operations.

Optimization of expensive numerical computations To opti-
mize expensive numerical computations, faster versions of
instructions can be adopted by means of specialized instruc-
tions or approximated computation. Two common examples
are approximate sine/cosine functions which are available
in the NVCC compiler via the --use fast math flag (or
via special intrinsic functions), and the use of Tensor Cores
for MMA operations. In many mathematical operations, it is
also possible to pre-compute some parts of the calculations,
which is especially useful when the same calculations need
to be performed multiple times with different inputs.

2.2 Inter-Kernel Optimizations

A straightforward mapping of a modular implementation
(e.g., in C) consists of mapping each function individually,
which leads to multiple GPU kernels. Although this is useful
from a code reuse and generality point of view, it is not ideal

in terms of performance. Namely, executing multiple kernels
involve launch overheads and costly synchronizations in ad-
dition to the fact that data locality is not well exploited. In
applications with ultra-high frame rates and small frame sizes,
these issues becomes critical as the kernel launch overheads
can be comparable to kernel execution times.

In such scenarios, the use of kernel fusion and CUDA
graphs can be effective [11, 21]. While CUDA graphs are a
run-time solution that only reduces the kernel launch over-
heads, kernel fusion is a compile-time solution that addresses
multiple speed issues by combining multiple kernels into a
single large kernel. Applications with high frame rates and
small frame sizes offer opportunities for both temporal and
spatial parallelism, which can be efficiently mapped onto
the GPU architecture through spatio-temporal mapping. This
allows for a range of degrees of freedom that can be exploited
by using a kernel fusion approach.

Spatio-temporal kernel fusion Based on the flexibility in-
volved in the space-time mapping of the algorithm on a GPU,
we consider two types of kernel fusion: temporal and spatial.

– Spatial kernel fusion is a static task scheduling technique
that allows to exploit task-level parallelism by assigning
parallel kernels to available SMs. A simple technique to
implement this scheduling on a GPU consists in deter-
mining which task to perform based on the thread-block
index. This is practically achieved by fusing the kernels
and incorporating the corresponding control flow.

– Temporal kernel fusion fuses multiple kernels into a sin-
gle kernel in a sequential way. If the fused kernels do not
have any data dependency or at least not in some parts,
then temporal parallelism can be exploited by leveraging
instruction-level parallelism as well. But if the fused ker-
nels have no operations that can be executed in parallel,
synchronization barriers have to be used which will make
the execution of kernels fully sequential. Regardless of
whether temporal parallelism is exploited or not, tempo-
ral fusion generally improves the kernel launch overhead,
data locality, shared memory utilization, and cache effi-
ciency by maximizing data reuse and minimizing costly
global memory operations.

Spatial kernel fusion combined with temporal kernel fu-
sion can further improve throughput and latency of applica-
tions. The decision to fuse kernels spatially or temporally
is typically independent of each other. However, resource
limitations, execution times, data dependencies, available
parallelism, and synchronization barrier requirements narrow
down the feasible fusion schemes.

Our approach for kernel fusion starts by investigating
kernels for which the work dimensions are around the same
order of magnitude as the size of a thread-block. Luckily, in
applications with a small frame size, this is common. For
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these kernels, block-stride loops can be used to schedule
work items into a single thread-block by assigning more
work items to each thread. This approach can even lead to
an increase in data reuse factor due to the opportunity to
copy data before the block-stride loop. Kernels with a single
thread-block are a perfect match for temporal kernel fusion.
Moreover, fusion of such kernels leaves other SMs unused.
Thus, spatial kernel fusion can utilize the unused SMs for
parallel task execution, provided there is no data dependency
between the kernels.

Temporal fusion of single thread-block kernels is the next
step, so that all such kernels are fused into a single kernel,
while respecting the data dependency constraints. Spatial
kernel fusion needs an estimation about the execution time
of kernels that can be run in parallel. When execution times
are in the same range, available SMs can be assigned to the
parallel kernels. If the execution times are not in the same
range, kernels can be fused temporally so that the execution
time gets into the same range. If all the spatially fused kernels
depend on a single kernel with a small work dimension, this
kernel can be repeated for each parallel branches.

Kernel fusion often opens up opportunities for further
intra-kernel optimizations by creating more data reuse and
sharing opportunities. In addition, kernel fusion may require
the implementation of more efficient intra-kernel optimiza-
tions that result in significant speed improvements at a higher
level. Therefore, the proposed GPU acceleration workflow
is an iterative approach and each inter-kernel optimization is
always followed by an intra-kernel optimization.

Grid-level synchronization Kernels that are not fused due to
grid-level synchronization requirements, whether caused by
data dependencies or large work dimensions that cannot be
handled within a single thread-block, can still benefit through
kernel fusion by utilizing barrier-based inter-block communi-
cation for grid-level synchronizations [31]. Therefore, after
applying the temporal and spatial kernel fusions, we fuses
all the remaining kernels into a single mega-kernel using the
barrier-based grid-level synchronization. Barrier based grid-
level synchronization, combined with the use of grid-stride
loops, also allows for the fusion of kernels that have very
large work dimensions, larger than the number of threads that
can be run in parallel by the GPU. This is particularly useful
for video processing algorithms.

Kernel-IO interactions Using pinned host memory for data
transfers between host and device memory at the input and
output stages reduces CPU interactions, which is especially
advantageous for embedded GPUs as the system memory on
these devices is physically shared between CPU and GPU.
Pinned host memory is not swapped out to disk by the oper-
ating system, which allows fast data transfers between CPU
and GPU [1]. However, it must be taken into account that L2

caching is not available for this type of memory and therefore,
memory access on this region gets higher priority for intra-
kernel memory-based optimizations. Furthermore, if both the
GPU and the IO device support the GPUDirect feature, CPU
interactions can be eliminated by moving data directly from
IO device to the GPU memory.

Avoiding conditional kernel launches It is important to avoid
conditional kernel launching, particularly when it requires
GPU-CPU synchronization. One common example of condi-
tional launching is the use of termination condition checks.
In such cases, it is recommended to launch the kernel in a
loop with a fixed number of iterations and check the end
condition in an outer loop.

Persistent GPU kernels Finally, fusing the entire algorithm
into a single GPU kernel, by using all the aforementioned
techniques, offers a significant advantage of utilizing per-
sistent or semi-persistent GPU kernels. With only a single
kernel launch, the persistent kernel allows iterative execution
of the entire algorithm within the kernel [14].

2.3 Dynamic Pruning of Redundant Computations

Algorithms are often designed with generality in mind. When
specialized to a certain problem domain, they may end up per-
forming redundant computations. For example, a connected
component labeling (CCL) algorithm based on equivalence
labeling [15] may allocate a large number of new labels that
need to be merged during region merging, even if it is known
that there are only two objects in the image. A trivial opti-
mization consists in eliminating such redundant calculations
without introducing inaccuracies in the final result. Computa-
tion pruning can be achieved by exploiting prior and domain
information through various methods such as static and dy-
namic video frame cropping, dropping worthless frames, and
performing low-cost pre-processing to provide estimations
in favor of pruning costly computations.

In this work, our consideration of prior knowledge is fo-
cused on a specific type: the selection of a region of interest
(ROI) within the image that can completely determine the
resulting processing outcomes. A trivial pruning technique
then consists in cropping the images to select only the con-
sidered ROI. In static cropping, a fixed ROI is selected based
on the prior experiments and data analysis. While in dynamic
cropping, the center point and region size are adjusted based
on both the content of each frame and the interest of each
computation stage. Cropping techniques provide a significant
advantage in terms of mapping onto the memory hierarchy
of a GPU as the cropped image may fit entirely within a fast
level of memory. For both the static and dynamic cropping,
memory alignment should be taken into account for selecting
the starting address of the cropped region to increase the
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(a) (b)

Fig. 3: Warp-based spatial region assignment in dynamic
cropping: a) row-based, b) block-based.

memory bandwidth. Besides alignment, region size adjust-
ment is best to be performed based on the available shared
memory. For loading data, vectorized memory access should
also be considered, particularly when the number of threads
are less than the number of pixels in the cropped region.
Dynamic cropping with a variable region size can be imple-
mented efficiently by warp-based spatial region assignment
(see Fig. 3). In this way, uninteresting regions can be ignored
by not participating in the assigned warp in further compu-
tations. Note that warps can be efficiently excluded from
computations by conditional statements while thread-based
conditional execution results in thread divergence.

Similarly, a temporal selection of frames can be pruned by
excluding frames that are not useful. This technique is most
effective if the frames to be skipped are identified at an early
stage of computation or even before loading into the desired
memory. For example, by exploiting extra sources of (smaller
sized or lower dimensional) auxiliary data if available. If the
use of auxiliary data affects the control flow, it may be nec-
essary to read this data from within a kernel to avoid the
overhead and increased CPU-GPU interactions associated
with conditional launching of kernel functions. Alternatively,
in cases where the control flow is frequently impacted, dy-
namic load balancing techniques should be considered (e.g.,
run-time warp/block level based techniques [26]).

By exploiting prior information or performing low-cost
pre-processing, it might be possible to provide estimations in
favor of pruning computations. For example, a target object’s
position can be estimated based on its prior exact position
or prior probability distribution. Then, in addition to simpli-
fying subsequent image processing tasks, embedding these
estimations into the image can further simplify later analysis.

2.4 Trading Latency for Throughput

Multi-frame processing The small frame size and the op-
timizations that are applied to schedule work items into a
single thread-block, may result in under-utilized GPU re-
sources. For applications that require higher throughput, re-
quired throughput can be obtained by utilizing the unused

resources to process multiple frames in parallel, at the cost
of increased buffering latency.

Multi-frame processing introduces an additional dimen-
sion to the input data, which can impact both intra- and inter-
kernel optimizations. Kernels can be influenced differently by
the additional dimension based on the assigned work-group
and the available resources. Decisions related to the fusion
require more attention to ensure that (a) enough resources
are available for multi-frame processing, and (b) a balanced
number of thread-blocks/SMs are used for the kernels sep-
arated with grid-level synchronization. When resources are
limited, decisions need to be adjusted to prioritize temporal
fusion over spatial fusion, particularly when data reuse op-
portunities exists. Assuming tasks A and B, with respective
execution times Atime and Btime, temporal fusion is priori-
tized over spatial fusion when (Atime + Btime − DRtime) <

2max(Atime,Btime), where DRtime represents the time saved
by exploiting data reuse through temporal fusion. Accord-
ingly, if a kernel, that runs on multiple thread-blocks, can
benefit from data reuse, it needs to be implemented within a
single thread-block using block-stride loops.

Variable batch-size Due to the dynamic computation prun-
ing, it is beneficial to use a variable batch size. In this case,
GPU kernels process all the available frames without waiting
for a fixed number of frames. Variable batch size may require
variable work-group size. However, variable kernel configura-
tions should be avoided, as this results in more run-time over-
heads. Rather, a fixed kernel configuration with grid/block
stride loops should be used, so that unneeded warps and
thread-blocks can be unloaded at run-time, depending on the
batch size. While dynamic optimization decisions are typi-
cally required for variable batch sizes, we base our decisions
on the most likely number of frames. The optimization de-
cisions and results obtained from processing a single frame
serve as the initial solution and basis for determining the
most probable number of frames for multi-frame processing.

3 Accelerating the LPBF Monitoring Application

To evaluate our optimization workflow, we start from an ex-
isting LPBF video analysis algorithm [7]. An overview of
the algorithms and the hardware-software platform utilized
for this evaluation can be found in sections 3.1 and 3.2, re-
spectively. Section 3.3 explains how the proposed workflow,
explained in section 2, is applied to this application, and fi-
nally, utilization of the multi-frame processing for the LPBF
monitoring is explained briefly in section 3.4.

From an implementation perspective, different versions
of the code have been made for each optimization iteration,
each of which add incremental optimizations upon the previ-
ous ones. Although these different versions are very useful
for benchmarking (e.g., on future GPU architectures), this



8 Mohsen Nourazar, Brian G. Booth, and Bart Goossens

Frame segmentation

Spatial features

Temporal features

Neural 

network 

for pore

prediction

LPBF

printer

Powder bed

Fig. 4: Building blocks of the LPBF monitoring system.

adds extra work in case the initial requirements of the al-
gorithm (to which the optimizations are applied) changes.
However, since this is based on a systematic approach and
all these versions follow the same workflow, it is possible to
have these steps integrated into an automatic domain-specific
language compiler, possibly with special user directives to
steer the optimizations, to avoid the required excessive man-
ual work.

3.1 LPBF Video Analysis

Figure 4 presents an overview of the LPBF monitoring sys-
tem [7]. The analysis starts by reading in a video frame and
segmenting it into the melt pool (the molten metal spot cre-
ated by the laser), spatters (molten metal droplet expelled
from the melt pool), and background image regions. The
segmentation is performed by static thresholding and CCL
to label the melt pool as being separate from the spatters.
The segmented regions are then used to extract physical fea-
tures, including melt pool area, spatter amount and number,
melt pool width-length ratio, and average image intensity
of the melt pool. Additionally, six polar angle features are
computed to capture the direction of spatters leaving the melt
pool, and the Histogram of Oriented Gradients (HOG) is used
to capture image texture using edge orientations. Temporal
variance features are also computed from the spatial features
over a chosen time period to estimate melt pool stability,
resulting in a total of 40 features. These features are then
fed into a neural network for the prediction of lack-of-fusion
pores and keyhole pores. While this LPBF monitoring system
has shown effectiveness in predicting pores in 3D printed
samples, its speed needs to be improved for real-time use.

3.2 The Hardware-Software Platform

The hardware setup includes an LPBF machine, a high-speed
camera, a GPU board, and an interfacing board that connects
these three components together. The printer is a 3D Sys-
tems ProX DMP320 LPBF machine that is controlled by the
Materialise Control Platform (MCP). The camera is Luxima
LUX2810 which can operate at high frame rates by reading

out a subset of the 2.8 megapixels on the sensor. In this ap-
plication, the sensor produces 8-bit monochrome images at
a resolution of 96×96 pixels at 20,000 frames per second.
The interfacing board synchronizes the video frames and
machine signals received, before sending them to the GPU
over a 10 Gb Ethernet connection. The machine signals are a
vector of 32-bit integers which include: the state of the laser
(on/off), the frame counter, the (x,y) position of laser. The
GPU board is a Jetson Xavier AGX which is equipped with
an ASUS 10 Gb Ethernet card through its PCIe interface.
The prediction results are then sent back to the MCP via the
interfacing board over the the same Ethernet connection.

The NVIDIA Jetson Xavier AGX development kit has
an 8-core CPU and a GV10B GPU with 512 CUDA cores.
These CUDA cores are distributed among 8 SMs for 64
CUDA cores/SM. The CPU and GPU share the same physical
memory but have their own caches. Besides the CUDA cores,
the SMs are equipped with 8 Tensor Cores. Tensor Cores are
capable of performing 4×4 matrix-multiply-and-accumulate
operations in one GPU clock cycle. In addition to the Jetson
Xavier AGX, we also evaluated the proposed approach on
NVIDIA RTX A6000 GPU. The RTX A6000 has 84 SMs
equipped with 10752 CUDA cores and 336 Tensor Cores in
total. While the Jetson board has an integrated low power
8-core CPU, a high performance Intel Core i7-9800X CPU
is used for the RTX A6000. The Jetson board consumes
30W at maximum power configuration while the system that
includes the A6000 consumes more than 500W at maximum
performance. Finally, both GPUs support GPUDirect RDMA
feature which allows direct transferring of input frames to
the GPU memory space.

The software platform consists of a main program written
in Quasar that performs the video analysis, and a C++ library
that performs low-level, driver-related tasks.

3.3 Utilizing the Workflow

3.3.1 Exploiting Signal Data to Prune Computations

Dropping Empty Frames Because the camera captures frames
regardless of whether the laser is on or off, there will be empty
frames in the frame group. By using machine signals, it is
possible to identify and ignore these empty frames to avoid
unnecessary computations. The occurrence and frequency
of empty frames depend on the object’s geometries during
manufacturing and can be quite frequent. From an imple-
mentation perspective, a new kernel is proposed prior to the
segmentation stage to identify them before loading frames.

Exploiting the Melt Pool Position By having synchronized
video frames and printer signals, we are able to further exploit
signal data to prune computations. We can use the x-y posi-
tion of the laser to calibrate the laser position in the machine
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to the laser position in the pixel array of the camera [7]. This
allows us to perform dynamic cropping by estimating the
melt pool position early on using the laser x-y coordinates.

Based on [7], a region of 40×40 pixels around melt pool
has been shown to have sufficient information for predicting
pores. Therefore, a dynamic ROI cropping, with the melt
pool at the center, is performed to make the frames smaller.
To improve memory bandwidth, we adjust the estimated cen-
ter point so that the start address of cropping region has the
correct alignment for a vectorized memory load. To imple-
ment non-fixed window size cropping, threads of each warp
communicate to determine if the warp has any non-zero data.
Empty warps do not participate in further computations.

Prior information of melt pool position can also simplify
the spatial features extraction as well. A pixel search for the
melt pool (by means of the find index max function) is
no longer needed. The melt pool position can be embedded
into the label image by assigning a specific label to the melt
pool during segmentation. By doing so, the index of the
bin in CCL histogram corresponding to the melt pool is
known. This prior information simplifies all the melt pool
related computations: computations for average melt pool
intensity and the melt pool width-length ratio do not depend
on histogram computations and can be performed along with
the histogram computations. Once the histogram is computed,
the first bin gives the melt pool area and the other non-zero
bins indicates the number of spatter and their amount.

3.3.2 Intra-Kernel optimizations

While computation pruning needs to be adapted to the ap-
plication, the intra-kernel optimizations are straightforward
to apply. Each task depicted in Fig. 5, is checked to identify
the most suited candidates for the optimizations. Presented
in Fig. 5, are the tasks required for the LPBF monitoring,
separated based on the functionality. Below, we will discuss
a few of these candidates and corresponding decisions:

– Identifying the index of non-empty frames can be per-
formed by a cumulative sum over the laser status signal
array. Assuming the number of available frames to be
less than 8 for each kernel launch, this is mapped to
warp-level operations within a single warp.

– Multi-scan label-equivalence based connected compo-
nent labeling (MSLE-CCL) algorithms use two stages [15]:
1) initial unique label assignment, 2) minimum label prop-
agation. Assigning a unique label for the CCL algorithm
which can be performed by a cumulative sum over the
non-zero pixels, is mapped to a combination of warp
shuffling and shared memory operations. Every warp per-
forms a cumulative sum using warp-level primitives for
few rows of the frame. Once done, the last thread of each
warp stores the partial sum to the shared memory, and

Input frames

Pore predictions

Temp. std. deviation

Histogram of label image

Average melt pool intensity

Melt pool width/length ration

Number of histogram bins

Segmentation

First dense layer

Second dense layer

Activation function

CCL (assignment)
Thresholding

CCL (propagation)

Pre-processing

Dynamic cropping

Identifying frames

Histogram of gradients

Normalizing the histogram

Intensities within polar grid

Physical features extraction

Temporal features

Neural Network

HOG features extraction

Polar features extraction

Fig. 5: Flow chart of the LPBF video analysis.

(a) (b) (c)

Fig. 6: Different steps of minimum label propagation: a)
warp-shuffling in vertical direction; a) warp-shuffling in hori-
zontal direction; and c) based on shared memory.

then a single warp performs cumulative sum over the par-
tial sums. Finally, every warp use these values to assign
a unique label to each non-zero pixel.

– The second stage of MSLE-CCL algorithm is the prop-
agation of the minimum pixel labels to the 4-connected
neighbouring pixels. For this purpose, each thread checks
the neighbouring pixels’ value and label. This stage is
also mapped to a combination of warp-level and shared
memory operations. As presented in 6, we first perform
warp-level operations in two directions, horizontally and
vertically, in a small block around the melt pool and then
shared memory is used to cover the whole frame. Since
only a few spatters, which are usually much smaller than
the melt pool, can be in the region that was not covered by
warp-level operations only a few iterations of this shared
memory based approach need to be applied. Furthermore,
only the non-empty warps are involved in this operation
thanks to the dynamic ROI cropping.

– To sum intensity within polar angle zones, a block-stride
loop is used to cover the entire zone. The sum operation
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is mapped to warp-level primitives, and shared memory
is used to sum up the result of each warp.

– While Tensor Cores have the potential to enhance per-
formance for MMA operations, none of the MMA op-
erations in this case are currently assigned to the Ten-
sor Cores. The sizes of the matrices being multiplied,
[1,40]× [40,164] and [1,164]× [164,2], are too small
for the available fragment sizes.

– The segmentation and physical features extraction kernels
have a data reuse factor of one for the frame data, which
means that the matrix is not mapped to higher levels
of memory. However, when these two kernels are fused
during later inter-kernel optimizations, the data reuse
factor for the region of the melt pool will increase, which
justifies the need to map to the shared memory.

3.3.3 Inter-Kernel optimizations

Kernel fusion starts by fusing all the kernels within in each
block of Fig. 5. Temporal fusion involves re-implementing
kernels with the same kernel configuration and merging them
into a single kernel. When a data dependency exists, synchro-
nizations are required in between.

Initial fusion results in seven kernels (Pr = Pre-processing,
Se = Segmentation, Ph = Physical, Po = Polar, Ho = HOG, Te
= Temporal, and Ne = Neural net.), where all operate using a
single thread-block, except the Po kernel which requires six
thread-blocks. After initial fusion, the intra-kernel optimiza-
tion is applied once again to identify and optimize the newly
introduced opportunities.

For the second round of kernel fusion, we evaluate whether
it is feasible to combine these seven kernels. Based on data
dependency, Se and Ph can be fused into Se-Ph, and Te and
Ne can be fused into Te-Ne. Although Se-Ph, Po, and Ho
can run in parallel, execution times of these kernels justifies
temporal fusion of Po with Ho, and then spatial fusion of
Se-Ph with Po-Ho. As there is no dependency between Po
and Ho kernels, no synchronization is required in between
which allows temporal parallelism to be leveraged as well.
Finally, the Pr kernel is repeated for both the Se-Ph and
Po-Ho to reduce the number of kernels to two. Fig. 7 illus-
trated these steps. Further optimization is available by use of
barrier-based grid-level synchronization that fuses these two
remaining kernels into a single kernel.

IO-Kernel Interaction To feed the input frames, circular
buffers are considered in a pinned memory region. While
driver fills the buffers with all the available data it receives,
the kernels can access the buffers. A similar approach is con-
sidered for the output. The utilization of the kernel fusion
technique along with intra-kernel optimizations diminish the
impact of L2 cache unavailability as the input data is loaded
and mapped to the shared memory just once.
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Fig. 7: The proposed kernel fusion steps.

Persistent GPU kernel Finally, having the whole algorithm
fused into a single GPU kernel along with the zero-copy
implementation for the input-output data, allows implemen-
tation of a persistent GPU kernel. The resulting persistent
kernel is launched once and iterates the algorithm using a
loop inside the kernel to continuously process the input data.

3.4 Multi-frame processing

The kernels preceding grid-level synchronization employ a
larger number of thread-blocks to process each frame, which
results in resource imbalance between the two sides of grid-
level synchronization. To address this, the Po kernel, which
runs with six thread-blocks, is implemented using a block-
stride loop within a single thread-block. Since execution
times of Pr-Po-Ho and Pr-Se-Ph are in the same, we do not
prioritize temporal fusion over spatial fusion. Finally, grid-
stride loops are used for spatial fusion of parallel instantiation
of kernels for processing frames in parallel.

4 Results and discussion

This section presents the evaluation results for the LPBF ap-
plication. The evaluation was carried out by measuring the
performance during 6 layers of the printing process, where
each layer consisting of an average of 8,500 frames, with
approximately 10% of frames being empty. All experiments
were conducted on two GPUs, the Jetson Xavier AGX and
RTX A6000. The results are measured using timers via the
tic/toc API in Quasar. To evaluate the approach for through-
put higher than the capabilities of camera, pre-captured frames
are transferred to the input buffer beforehand.

Table 2 presets the average measured execution time per
frame for the various steps of the optimization workflow. Dy-
namic computation pruning is the first optimization that is
applied, which resulted in a gain of ∼3 times in performance
of Jetson board. Then, initial intra-kernel optimizations led
to more than 2 times speed-up in execution time of Jetson
Xavier. Since the initial implementation is already a GPU
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Table 2: Measured execution time per frame.

Optimization Jetson Xavier RTX A6000

Initial implementation [7] 7 ms 3.5 ms
+Computation pruning 2.5 ms 600 µs
+Intra-kernel optimizations 900 us 310 µs
+Initial kernel fusion 350 µs 130 µs
+Unconditional kernel launch 280 µs 120 µs
+Kernel fusion (Fig. 7(a)) 200 µs 88 µs
+Kernel fusion (Fig. 7(b)) 126 µs 57 µs
+Kernel fusion (Fig. 7(c)) 95 µs 42 µs
+Grid-level synchronization 63 µs 31 µs
+Persistent kernel 45 µs 18 µs

accelerated implementation (namely, by means of the Quasar
compiler), the speed-up achieved at this point can be consid-
ered as a significant accomplishment.

The following optimizations are inter-kernel optimiza-
tions, each followed by an intra-kernel optimization. Initial
kernel fusion, which results in seven kernels as illustrated in
Fig. 5, provides ∼3 times speed-up on both GPUs.

To demonstrate how conditional kernel launch can affect
the performance, a termination condition was initially em-
ployed based on the number of frames processed by the GPU.
In the following step, this condition was removed, and the
kernel was launched in a loop with a fixed number of itera-
tions, and condition was then checked in an outer loop. Since
launching kernels is a task executed by the CPU, the result-
ing overhead varies in proportion to the CPU’s performance.
Thus, the speed-up achieved by this optimization for the Jet-
son board, which has a low-power/low-performance CPU, is
higher than the RTX A6000 which uses a high-performance
CPU.

Subsequently, three extra kernel fusions, according to the
steps presented in Fig. 7, are applied, which leads to more
than a 3x speed-up. Final optimizations are based on the
grid-level synchronization. Fusing the two remaining kernels
into a single kernel results in 63 µs for processing each frame,
and finally, the implementing the entire algorithm as a single
persistent kernel allows processing each frame in 45 µs on
the Jetson Xavier and 18 µs on RTX A6000. Overall, these
optimization could speed-up the initial implementation by up
to 155 times on the Jetson board and by up to 194 times on
the RTX A6000 GPU.

Trading latency The next experiments focus on processing
multiple frames in parallel. Table 3 shows the maximum
throughput achieved by multi frames processing. To eliminate
the buffering latency, we assume that all frames are already
present in the input buffer. Based on the results, doubling
the number of frames lead to ∼ 1.5 times improvement in
throughput when there are sufficient resources available. On
the Jetson, throughput improvements become saturated when
processing more than 16 frames in parallel, while for the RTX

Table 3: Maximum achievable throughput (fps) by multi-
frame processing.

Parallel frames Jetson Xavier RTX A6000

1 22k 55k
2 33k (1.5x) 85k (1.5x)
4 56k (2.5x) 125k (2.3x)
8 87k (4.0x) 170k (3.1x)
16 106k (4.8x) 200k (3.6x)
32 106k (4.8x) 222k (4.0x)

(a)

(b)

Fig. 8: Latency-throughput curves for different number of
frames processed in parallel; a) Xavier AGX; b) RTX A6000.

A6000, the saturation occurs in higher number of frames
because of having more SMs (see Table 1).

Finally, Fig. 8 presents the latency-throughput curves for
the different number of frames processed in parallel, where
both the computation and the buffering latency are consid-
ered. Each curve begins with a low-load latency and ends in
saturation throughput, demonstrating the trade-off between
latency and throughput. The inflection points indicate the
configuration where the latency is minimized while achiev-
ing the maximum possible throughput. As an example, for a
throughput of 50 k f ps, the optimal configuration is to process
4 frames in parallel when using the Jetson Xavier.
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5 Conclusion

This work proposed an optimization workflow for real-time
execution of applications with ultra-high frame rates and
small frame sizes on GPUs by focusing on computation prun-
ing, and intra- and inter-kernel optimizations. The proposed
approach is evaluated for a real-time LPBF machine using
the NVIDIA Jetson Xavier AGX and RTX A6000, which
led to throughput of 22 k f ps with computation latency of 45
µs using single-frame processing on the Jetson board, and
55 k f ps with the latency of 18 µs on the RTX A6000.

By allowing parallel multi-frame processing, low occu-
pancy issues of GPU multiprocessors can be mitigated at the
cost of increased latency. The joint analysis of throughput
and latency in parallel multi-frame processing interestingly
leads to curves containing inflection points which highlight
suitable local trade-offs that minimize latency for a given
maximal frame rate.
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