
A. Ferrando, R.C. Cardoso (Eds.): Third Workshop on
Agents and Robots for reliable Engineered Autonomy 2023 (AREA’23)
EPTCS 391, 2023, pp. 26–41, doi:10.4204/EPTCS.391.5

Safe and Robust Robot Behavior Planning
via Constraint Programming

Jan Vermaelen Tom Holvoet
imec-DistriNet, KU Leuven, Belgium

jan.vermaelen@cs.kuleuven.be tom.holvoet@cs.kuleuven.be

The safe operation of an autonomous system is a complex endeavor, one pivotal element being its
decision-making. Decision-making logic can formally be analyzed using model checking or other
formal verification approaches. Yet, the non-deterministic nature of realistic environments makes
these approaches rather troublesome and often impractical. Constraint-based planning approaches
such as Tumato have been shown to be capable of generating policies for a system to reach a stated
goal and abiding safety constraints, with guarantees of soundness and completeness by construction.
However, uncertain outcomes of actions in the environment are not explicitly modeled or accounted
for, severely limiting the expressiveness of Tumato.

In this work, we extend Tumato with support for non-deterministic outcomes of actions. Actions
have a specific intended result yet can be modeled to have alternative outcomes that may realistically
occur. The adapted solver generates a policy that enables reaching the goals in a safe manner, even
when alternative outcomes of actions occur. Furthermore, we introduce a purely declarative way of
defining safety in Tumato, increasing its expressiveness. Finally, the addition of cost or duration
values to actions enables the solver to restore safety when necessary, in the most preferred way.

1 Introduction

Autonomous robotic systems are becoming increasingly popular, both in industry and households. The
number and complexity of tasks they are expected to execute are expanding. However, generating a
plan providing both productive (goal-oriented) and safe behavior is far from trivial. A plan must be
constructed, given the actions that the robot can execute, the information about the environment, and the
desired goals. During planning, additional safety constraints have to be taken into account to generate
a safe plan while trying to achieve the goals. If such a safe and productive plan can be generated, it is
sound by construction.

The main contribution of this paper is to support foreseeable non-deterministic transitions while
guaranteeing safety when planning robot behavior. For this purpose, we focus on constraint-based plan-
ning and build further upon Tumato, a planning framework by Hoang Tung Dinh et al. [5]. Firstly, we
support specifying and accounting for foreseeable non-deterministic alternative effects of actions rather
than assuming a purely deterministic system. Effects of actions in the real world are virtually never fully
deterministic. Non-determinism can arise from varying weights of payloads, various ground surfaces to
navigate across, and small measuring and actuation errors, to name just a few. Secondly, the extension
supports specifying safety conditions explicitly. In the original version of Tumato, to obtain a similar
result, one has to consider all state-action combinations that could lead to unsafe states separately, which
is error-prone and inflexible when the specification of the system evolves. Furthermore, the generated
behavior always has to adhere to the safety conditions, even when alternative effects occur.

Since the environment, and hence the effects of actions, are most often not deterministic in practical
robotic applications, the policy must be sufficiently robust to deal with this kind of uncertainty. Ideally, all

http://dx.doi.org/10.4204/EPTCS.391.5

J. Vermaelen & T. Holvoet 27

contingencies are taken into account. A first step is to pursue a complete policy. For each state in which
the system could be, the policy must provide the actions to execute next. If the system unexpectedly
arrives in an unintended state, the operation can continue. We maintain this powerful feature of Tumato’s
original approach. In a second step, we take the uncertainty into account by allowing the effects of actions
to be modeled in a non-deterministic way. In our approach, we assume that each action has one intended
outcome. We call this outcome the nominal effect of the action. Additionally, each action can have
a number of alternative effects. These effects could emerge instead of the nominal one, but they are
not intentional. For the goal-oriented aspect of planning, only the nominal effect is relevant. Alternative
effects are unintentional outcomes and can not reliably be used to achieve a goal. However, when dealing
with safety, also the alternative effects must be taken into account as there is a possibility they occur.

Due to external causes, the system might still end up in an unforeseen state. Although for such
events safety can not be guaranteed (an external force might put the system in an unsafe state directly),
the planner will make sure that the policy contains instructions on how to get back on (safe) track to
the goal immediately. If multiple such instructions are possible, the planner is capable of selecting the
preferred one based on cost values assigned to actions.

The paper is structured as follows. Section 2 discusses the related work to outline the necessary
background and provides an overview of Tumato. Section 3 briefly introduces the use case of the robotic
system used to illustrate the proposed extension. Section 4 explains and motivates the approach. Sec-
tion 5 elaborates and analyzes the extension of the specification using the robotic system from the case
study. Section 6 discusses the approach and its results. Finally, Section 7 draws conclusions.

2 Background and Related Work

Well-thought-out behavior planning is essential for the safe operation of autonomous safety-critical
robots. Furthermore, practical systems often involve a degree of non-determinism that needs to be ad-
dressed. In this section, we point to the related work necessary to provide a background for the explored
planning approach. However, all (fully observable) non-deterministic planning can be considered related.

Traditionally, the behavior of robots has been defined manually. Finite State Machines (FSMs) are
often used to represent the robot’s behavior [9, 15]. However, FSMs are known not to cope well with the
increasing complexity of the behavior. It is non-trivial to manually specify sound and complete behavior
for larger and more complex systems, and one has to rely on simulation and verification approaches to
check whether the behavior effectively meets the requirements. This problem can partly be solved by
automatically generating the behavior based on a model of the system, along with a representation of the
desired requirements.

Different specification languages and planners have been proposed. For example, Linear Tempo-
ral Logic (LTL) [8] is often used in robotics. Techniques exist to use (fragments of) LTL to generate
FSMs [14, 20], or to compile them into PDDL [1]. Since LTL can take all contingencies into account,
the generated behavior will be sound and complete, a property we also value. Further, modeling state-
based safety conditions explicitly in LTL should require limited effort. Two other examples are Tempo-
ral Action Logic (TAL) [6, 7] and the previously mentioned, more generic Planning Domain Definition
Language (PDDL) [11, 13]. Both TAL and PDDL generally rely on replanning at run-time to cope with
contingencies. They do not guarantee completeness of the behavior since the replanning could fail due
to an unrealizable specification. This lack of completeness would only be detected at run-time. Simi-
larly, in a more practical context, probabilistic planners can be used within the ROSPlan [3] framework
directly [2].

28 Safe and Robust Planning

To a certain extent, robustness can be obtained by explicitly dealing with non-determinism, as cov-
ered in the book Automated Planning and Acting by Malik Ghallab et al. [12]. The planning can freely
make use of the non-deterministic effects of actions to reach the goal. Unlike this approach, we opt to
define one (intended) nominal effect for each action while recognizing alternative (less likely and less
desired) outcomes. This is more closely related to practical behavior planning problems. Note that, in
the non-deterministic context, the definition of a Safe Solution is a policy in which the goal is reachable
from the initial state [12]. This definition is different from the additional safety constraints that we are
imposing on the system to reach the goal in a safe manner.

Tomas Geffner et al. introduce a SAT encoding for fully observable non-deterministic planning [10].
A distinction is made between fair and unfair non-deterministic actions. In our work, we focus on fair
actions and do not consider adversarial actions or agents. We do acknowledge that probabilistic effects
of actions are difficult to estimate correctly, while they should not be considered fully non-deterministic
either.

We have surveyed existing frameworks combining safe and robust planning before [19]. The use
of Markov Decision Processes (MDPs) [17] for probabilistic planning and, to a smaller extent, Simple
Temporal Networks (STNs) [4] for temporal scheduling have been explored. Especially their extensions
are able to explicitly guarantee safety while dealing with uncertainties. In this work, avoiding the need
for (often inherently imprecise) probabilistic values, we investigate and extend the promising constraint
programming approach Tumato by Hoang Tung Dinh et al. [5].

Tumato Hoang Tung Dinh et al. [5] obtain sound and complete behavior via constraint programming.
As the specification of a system has to contain information about the environment, the actions, and the
goals of the system, as well as a set of safety rules, it effectively combines classical planning (using
states, actions, and goals) with constraint programming to enforce safety.

Constraint-based planning is achieved by (automatically) translating the entire specification into con-
straints. Trivially, preconditions of actions constrain whether or not the action can be executed. Further-
more, the effects of actions on the state of the system and whether or not an action is executed in the
first place are modeled as constraints. One Constraint Satisfaction Problem (CSP) [18] is generated for
each valid starting state of the system. The set of CSPs yielding from the specification can be solved
offline. Tumato currently employs Choco-solver [16], yet we try to maintain transparency to the exact
solver used. The first execution step found by each individual CSP is selected as the set of actions for the
corresponding state. The final result is a mapping from every state to the actions that have to be executed
in that state. We will call this mapping the policy. If a solution exists, we consider the specification to
be realizable. Otherwise, we say the specification is unrealizable. If a sound and complete policy exists,
it will be found by the constraint solver. The obtained policy can safely be used at run-time without re-
quiring online re-planning. For further details on the general approach, please refer to the original work
on Tumato [5].

In the remainder of this section, we will give an overview of the specification of a model in Tumato.
The specification contains information on the state space of the system, the actions that can be executed,
the relevant safety constraints, and the goals of the system. Our work will extend this specification where
necessary, as described in Section 5.

States A state vector is used to represent the states in which the system can reside. This vector consists
of a set of discrete state variables. Each of the state variables represents one aspect of the state. At run-
time, the state variables are updated by a monitoring module. This module is responsible for translating

J. Vermaelen & T. Holvoet 29

the sensor readings and other input to discrete values in the state variables. An example of a state variable
is the location of the robot. A state variable SLocation can represent the different discrete locations at which
the robot can reside. For example, {corridor, charger, workstation_1, workstation_2} includes a common
corridor, a charging station for the robot, and two interactable workstations. Additional workstations and
locations can be added as needed. Alternatively, when more detailed location information is required, a
more fine-grained location discretization can be utilized.

Actions Actions represent elemental behavior. They are the smallest unit of execution that we consider
during planning. As an example, both move_one_cell_forward and move_to_charging_station are pos-
sible actions, yet they relate to planning at different abstraction levels. Actions can be specified to have
preconditions that must hold before they can be executed. Actions also can be specified to make use of
certain resources. The purpose of allocating resources is to prevent two actions from being simultane-
ously executed if they make use of at least one resource in common. Finally, actions usually have an
effect on the state. After executing an action, which can take an arbitrary amount of time, the state has
changed according to that effect. An example of a simple action is move_to_workstation_1, which:

• controls one resource: motors,

• has one precondition: SLocation = corridor,

• has the effect: SLocation = workstation_1.

Reaction Rules As their name indicates, reaction rules can be used to specify reactive behavior. They
are logical rules on the current state and the executed actions. If a certain condition holds on the current
state, either a specific action has to be executed or is not allowed to be executed. For example, if the robot
resides in the corridor with a workstation-sensitive actuator (for example, a conveyor belt) active, then
it should deactivate that actuator (for example, by executing the action stop_conveyor). Let SConveyor

represent whether or not the conveyor is currently active, as {on, off }.

(SLocation = corridor∧SConveyor = on)⇒ Exec(stop_conveyor).

We will discuss the use of reaction rules in more detail in Section 5.2.1.

Goals The goals define conditions that have to be achieved by the system. Because of the constraint-
based approach, different formats of goals can be specified. For this example, we focus on prioritized
and conditional goals. A conditional goal is a goal that is active only when a specified condition is met.
Consider a state variable SLoad that can be {loaded, free}. If the robot is loaded with an item, the goal is
to unload that item (2) and hence, deliver it. Analogously for picking up an item, a conditional goal is
specified (3). Priorities can indicate which conditional goals should be taken into account first. Consider
a state variable SBattery that can be {low, ok}. A conditional goal can be responsible for recharging
the battery when the battery level becomes low (1).1 This conditional goal should get priority over the
transport goals (2) and (3). Priorities are determined by the order in which the goals are specified.

(SBattery = low)⇒ SGoal
Battery = ok (1)

(SLoad = loaded)⇒ SGoal
Load = f ree (2)

(SLoad = f ree)⇒ SGoal
Load = loaded (3)

1For a practical application, it is important that the monitoring module only updates S_Battery to ok when the battery has
been sufficiently charged. An earlier update would result in (undesired) shorter operation cycles.

30 Safe and Robust Planning

3 Case Study

As hinted toward in the previous section, we consider a battery-powered Autonomous Mobile Robot
(AMR) for validation purposes. The AMR, shown in Figure 1, operates in an automated demo factory.
The workstations present in the factory are capable of executing different operations on small, standard-
ized workpieces. Adjacent workstations share a conveyor belt, yet not all workstations are connected.
The AMR is responsible for moving around workpieces in the factory. We use this system as an example
to paint out shortcomings of the current constraint programming planning approach and to illustrate how
to mitigate these shortcomings.

Figure 1: The AMR

The base of the AMR has three omnidirectional wheels (not vis-
ible in the picture), enabling the AMR to move in all directions as
well as to turn in place. Combined with information regarding the
layout of the factory, the AMR can move to any location and obtain
any orientation within the factory. Only 2D movement and orien-
tation are applicable. The AMR can navigate between the different
workstations and a charging station, as well as the corridor con-
necting the different locations. The AMR has a camera and LIDAR
system for perception, along with a number of proximity sensors.
On top of the base, a looping conveyor belt is mounted at a fixed
height. This setup is used to dock to workstations and receive or de-
liver workpieces from or to workstations. Infrared sensors attached
near the conveyors help with the alignment when docking. Further-
more, an emergency stop button is mounted on top, as well as a
beacon for visual signaling.

One or more AMRs can be operating simultaneously on the fac-
tory floor alongside human agents. The AMRs and humans are not
physically separated, increasing the importance of generating safe
behavior. An AMR should complete its assigned transport without
creating any unsafe situations. As an additional hurdle, the effects
of actions can unintentionally vary, even within a relatively controlled environment such as a factory.

4 Uncertainty and Safety

As mentioned in Section 1, we account for uncertainty by adding foreseeable alternative outcomes to
actions. Merely to illustrate the approach, this section introduces a grid-based 2D navigation planning
example, although the approach can be more fully appreciated with examples from the case study, see
Section 5.

4.1 Uncertainty

Assume a 3×3 grid, with starting point S and destination D as illustrated in Figure 2a. We assign each
cell in the grid to a corresponding state. Further, we define the actions move_up, move_down, move_left,
and move_right. In a deterministic setting, each action always moves the agent exactly one cell in the
intended direction of that action. In this example, the shortest plan from starting point S to destination
D executes move_right twice. An example of a complete policy for this planning problem is shown in
Figure 2b.

J. Vermaelen & T. Holvoet 31

(a) Starting point S and destina-
tion D

(b) Policy for a deterministic
approach

(c) Move_right in S with two al-
ternative outcomes (X)

Figure 2: Illustrative 3×3 grid example

More realistically, however, in a non-deterministic planning setting, actions are not always success-
ful. Firstly, the action could have no effect. For example, the agent did not move far enough to reach the
new cell. Since we are dealing with policy-based execution, the same action will be executed again, pre-
sumably leading to a new state eventually. Note that this implicit assumption has to be taken into account
when constructing the system. If an action could fail indefinitely, for example, if the agent could have
insufficient force to move up a hill, the action should be reconsidered. Either the model is not adequate
(the effect does not correspond to the real world), or the (physical) implementation of the action has to
be adapted.

Secondly, deviations can occur. When executing move_right at the starting point S, two states (cells)
could be reached unintentionally, as shown in Figure 2c. Such outcomes could either be observed after
deploying and running the system for an extended period or be indicated by experts. These outcomes
are less likely than the desired and intentional (nominal) outcome, which is the middle cell in the 3×3
grid. Since these outcomes can occur, we should be aware of them when modeling the system, especially
when dealing with safety. However, as the alternative outcomes only occur sporadically, we can not
determine accurate probabilistic values to use during planning.2 For the productive, goal-oriented aspect
of planning, we do not take into account alternative outcomes. The constraint solver will assume that the
intended effects occur. If, during execution, the system were to arrive in any unintentional state (possibly
due to an alternative effect), the completeness of the policy will make sure that the operation can continue
to reach the goal. If from such a state, and by extension from any state, the goal can not be reached no
policy can be found. The planner will then provide such states as feedback to the developer.

Note on non-determinism The presented approach, using nominal and alternative effects, can also be
used to model true non-determinism in the system. We illustrate this with the example of a coin flipped
at run-time. Two actions (one for each side of the coin) are modeled to eliminate the inherent bias toward
the nominal outcome. For each action, the nominal effects take care of one side of the coin while the
alternative effects take care of the other side. Regardless of the outcome of an individual toss, the policy
ensures that the executed actions are safe, as we define next.

4.2 Safety

We extend the previous grid example to a 5× 5 grid. In this example, the outer cells are considered
unsafe. These cells could be located next to stairs which the agent could fall off, or a wall it could run into.
Although simply defining unsafe states or conditions is a very straightforward way to define (un)safety,

2If one is able to determine the probabilistic values for the effects accurately, using an MDP would be a better choice to
obtain the policy.

32 Safe and Robust Planning

(a) Visualization of the three reachable states by
move_right from S. A second move_right (not visual-
ized) in either x or y could lead to unsafe (gray) states.

(b) A guaranteed safe policy. This policy should not
be considered complete unless it is accompanied by the
necessary assumptions.

Figure 3: Illustrative 5×5 grid example

it yields a powerful approach. It provides a large improvement over manually identifying which state-
action combinations are unsafe, as the original Tumato planner requires using reaction rules.

A move_right at the starting point S will never lead to an unsafe state, as shown in Figure 3a. This
action will be allowed to be used during planning. In turn, in both of the unintentionally reachable states
(separately denoted as x and y in the figure), a similar move_right will not be allowed, as alternative
outcomes could lead the agent into an unsafe state. A safe policy is shown in Figure 3b. Note that
many cells remain empty. Those cells do not allow any safe actions in our current example. To obtain
this policy, the specification would explicitly have to contain a number of assumptions to exclude those
cells from the valid state space. If those assumptions are not added, no result will be obtained since no
complete policy exists. In this paper, we will not look further into assumptions or how they are modeled.

Note on restoring safety The approach mentioned above does not distinguish between starting from a
safe or unsafe state: the next state is guaranteed to be safe. Hence, for unsafe states, a solution will only
be found when safety can be restored within one step. In addition, when multiple actions are executed,
the planner is aware that only the effects of one of those actions will take place first. As a result, every
possible outcome of every action selected for execution must be safe. Furthermore, since actions can be
assigned a cost value (see Section 5.1), the planner can choose the set of actions that restores safety in
the most preferred way.

5 Specification

In this section, we elaborate on the modifications made to the specification introduced in Section 2. Our
contribution lies in the inclusion of alternative effects and costs for actions, as well as the addition of state
rules. We use the AMR described in Section 3 as an example for constructing a formal specification. For
the complete specification, formatted as supported by Tumato, please refer to Appendix A.

5.1 Actions

Unlike in the original Tumato framework, we define two kinds of effects. The nominal effects represent
the desired and intended outcome of an action, whereas the alternative effects correspond to unintended
outcomes that could occur instead of the nominal one, but are less likely to. To provide a comprehensive

J. Vermaelen & T. Holvoet 33

understanding of both kinds of effects, we present a two-fold perspective. In the context of productive
(goal-oriented) planning, only the nominal effects are considered, as mentioned in Section 4.1. Unde-
sired outcomes are deliberately excluded. However, when ensuring safe behavior, all effects should be
considered. Each possible outcome of every executed action must be safe. This two-fold perspective
enables the appreciation of both kinds of effects within their respective formal contexts.

Further, we extend the specifications of actions with a generic cost. In the AMR example, the notion
of duration3 is used. If no value is specified, the planner will assume a value of 0. The planner only
considers these values when choosing the best solution to restore safety. For states where safety should
only be maintained rather than restored, these values are ignored and can be all considered 0.

Next, a few examples of actions of the AMR are given to provide further clarification.

The action stop_conveyor:

• has a duration of 1,

• controls one resource: conveyor,

• has one precondition: SConveyor = on,

• has the nominal effect: SConveyor = o f f ,

• has no alternative effects.

Since stopping the conveyor happens virtually instantly, the action gets assigned an arbitrarily low dura-
tion value. Since there are no alternative effects specified, we assume that the action will never fail.

The action move_to_workstation_1:

• has a duration of 10,

• controls one resource: motors,

• has one precondition: SLocation = corridor,

• has the nominal effect: SLocation = workstation_1,

• has one set of alternative effects: SLocation = corridor.

For moving to a specific location, we assign a relative duration of 10. The nominal effect is as expected,
reaching workstation_1, and the alternative effect is expressed as the AMR not reaching the workstation.
In practice, this alternative effect can occur when this specific workstation is blocked or occupied. This
possibility is workstation-specific, and the effects can be modeled differently for every action.

The action receive_workpiece:

• has a duration of 3,

• controls the resources: conveyor and motors,

• has the preconditions: SLocation = workstation_1 and SLoad = f ree,

• has the nominal effects: SConveyor = on and SLoad = loaded,

• has two sets of alternative effects:
SConveyor = on and SLoad = f ree, and
SConveyor = o f f and SLoad = f ree.

3Please note that time is not considered explicitly. The durations are merely used to find the most preferred (fastest) way to
restore safety.

34 Safe and Robust Planning

A relative duration of 3 is assigned to load transfer actions. During the transfer of a workpiece, the motors
are used to hold the AMR in place. In this example, workpieces can only be obtained at workstation_1,
hence the corresponding precondition. For this action, two sets of alternative effects are considered.
The first one represents the outcome where a (for example, oddly shaped) workpiece gets stuck. The
second one represents an even worse scenario where the entire conveyor gets blocked by receiving a (for
example, too heavy) workpiece.

These three examples show how actions and their effects can be modeled. If only one effect is given
(the nominal effect), the outcome of the action is considered deterministic. Alternatively, one or more
alternative outcomes can be specified. Recall that the alternative outcomes are not taken into account for
the productive aspect of planning. We do not (want to) rely on the alternative effects to reach a particular
goal. They are, however, considered when guaranteeing safety.

5.2 Safety Rules

Safety rules are used to add constraints to the behavior of the system to guarantee safe behavior. In this
section, we delve deeper into the use of reaction rules and introduce the new state rules.

5.2.1 Reaction Rules

As explained in Section 2, reaction rules are used to specify reactive behavior. If a condition holds on
the current state, an action is constrained to be executed or not. We specified that if the AMR is present
in the corridor with the conveyor on, the conveyor should be stopped:

(SLocation = corridor∧SConveyor = on)⇒ Exec(stop_conveyor).

However, we would prefer to guarantee that the conveyor is never on when the AMR is in the cor-
ridor (or at the charger4) in the first place. Such behavior could lead to dropping workpieces and other
dangerous situations for human agents in the factory. Given our knowledge of the system, we specify:

(SLocation = corridor∨SLocation = charger)∧ (SConveyor = o f f)

⇒¬Exec(receive_workpiece)∧¬Exec(deliver_workpiece).

This rule has to be updated every time a new action is introduced that could turn on the conveyor. We
also have to specify:

(SConveyor = on)⇒¬Exec(move_to_{x})

for every location x for which moving toward x could result in arriving at the corridor or charger. This
last expression can require a large number of reaction rules to be modeled, depending on the number
of locations and how the effects of different move-actions connect them. To considerably reduce the
number of safety rules that have to be specified and hence, to make the specification less prone to errors,
we introduce the concept of state rules next.

4The previous reaction rule becomes: (SLocation = corridor ∨ SLocation = charger) ∧ (SConveyor = on) ⇒
Exec(stop_conveyor).

J. Vermaelen & T. Holvoet 35

5.2.2 State Rules

This new kind of safety rule enables specifying constraints on reachable states rather than on the actions
to execute. We can simplify the previous example to one state rule:

(SLocation = corridor∨SLocation = charger)⇒ (SConveyor = o f f).

We introduce state rules in the form of desired safety conditions. The specified conditions should, ac-
cording to the system’s ability, always remain True. Alternatively, one can specify the unsafe conditions,
which should be kept False. Translating between the two corresponds to negating the conditions.

The effects of an executed action should never lead to the violation of a state rule. Formally, a state
rule expresses a condition that must hold after executing any (set of) action(s) that the policy instructs
for a state, regardless of which action effectuates first and regardless of which (nominal or alternative)
effects occur. Whether an action a is allowed in a state s can more formally be expressed as follows:

allowed(a,s)⇔∀e f f ect ∈ e f f ect(a,s) : e f f ect ⇒{state_rules}

where e f f ect(a,s) represents all possible effects (nominal ∪ alternative) of action a in state s and
e f f ect ⇒{state_rules} denotes that the effect does adhere to all conditions described by the state rules.

If the current state was to violate a state rule, the next planned (set of) action(s) will always clear
that violation (see Section 4.2). Since the state rules do not allow any actions that could knowingly
lead to undesired states, the system must have reached that state under the influence of an external
force. Further, if during planning for some state no instructions to restore safety exist, the planner
notifies the user, indicating for which state no solution can be found. When multiple such instructions
are available, the planner selects that set of instructions that restores safety in the most preferred way.
For this example, we assigned durations to actions, hinting at the intention of restoring safety as quickly
as possible. Alternative approaches are to use costs and find the cheapest solution or to deal with risk
explicitly.

6 Discussion

In this section, we first discuss the modifications made to the set of constraints solved during planning.
We also present the findings from a preliminary experiment and analyze the resulting policy. Finally, we
discuss the challenges and potential limitations of the approach, hinting toward possible future work.

6.1 Constraint-Based Planning

The constraint-based approach providing the basis for this work has been introduced in the original work
on Tumato [5]. The constraints that differ are the ones related to the new state rules. While reaction
rules could be incorporated directly into the constraint satisfaction problem as a constraint prohibiting
or enforcing an action to be executed in a certain state, state rules require more insight. For every
execution step, the condition of the state rule is applied as a constraint to each state in the set of possible
next states. State rules constrain every possible outcome of an action in the current state rather than
the actions themselves. This approach results in a number of new constraints, one for every possible
outcome, enforcing a state rule conditionally to whether the action gets executed. As a result, if an action
could violate one or more state rules, this action will be prohibited in the given state. Practically, these
constraints replace a (potentially large) number of constraints specified by reaction rules, as illustrated in

36 Safe and Robust Planning

Section 5.2.1. Complementary, state rules can enforce the execution of actions if their effects are required
to maintain safety. Even if the current state is not safe, the next state is guaranteed to be safe, and the
planner will minimize the required duration or cost to restore safety using a minimization objective.
Since the use of objectives is solver-specific, we refrain from elaborating further and only illustrate their
potential use. Finally, when no solution exists, the solver can refer to states for which no behavior can
be generated to explain why the specification is unrealizable, identical to the original feature of Tumato.

6.2 Preliminary Experimental Results

The example model described throughout this paper contains 32 states and 8 actions, and the planner
takes between 2 and 3 seconds to obtain a policy on a 1.6 GHz Dual-Core Intel Core i5. No significant
memory usage was detected. The initial CSP starts off with 518 constraints and ramps up to 5266 (as in
Tumato, constraints are added automatically to obtain conflict-free plans to define a policy). The number
of decision variables starts at 823 and reaches up to 8487. These numbers are slightly higher compared
to using a reaction rule based approach but within the same order of magnitude. For a scalability com-
parison, a somewhat larger model with 2688 valid states and 18 actions takes about 75 seconds, while
memory usage remains negligible. The CSP starts with 1130 constraints and ramps up to 5545. The
number of decision variables starts at 1787 and reaches up to 8911.

Practically, all the individual reaction rules have been replaced by the constraints generated from the
state rule. However, reaction rules require manual (more error-prone) implementation, and the state rules
might cover situations the user did not anticipate. Especially for more complex systems, this approach
can be beneficial. Finally, albeit more technical, we want to mention the impact on restoring safety
the most preferred way when the maximum planning length or number of possible unsafe states grows.
Now, the best solution has to be found, rather than any solution, as otherwise was sufficient. Performance
worsens because of the increasing number and complexity of the minimization objectives.

6.3 The Policy

Since the generated policies are complete, every valid state of the system has a corresponding entry in
the policy. In this section, a few well-chosen entries from the AMR’s policy are presented.5

" S _ L o c a t i o n " : " c o r r i d o r " , " S _ L o c a t i o n " : " c o r r i d o r " ,
" S _ B a t t e r y " : " ok " , " S _ B a t t e r y " : " low " ,
" S_Load " : " f r e e " , " S_Load " : " f r e e " ,
" S_Conveyor " : " o f f " , " S_Conveyor " : " o f f " ,
" A c t i o n s " : [" m o v e _ t o _ w o r k s t a t i o n _ 1 "] " A c t i o n s " : [" m ove_ to_c ha rge r "]

The first entry (left) instructs the AMR to move to workstation_1, as it is currently not carrying a work-
piece and there is sufficient battery power left. The desired productive behavior appears. In the second
entry (right), as the battery level holds the value low, a different (prioritized) conditional goal is active.
The AMR now moves to the charger. In neither entry the state rule condition (specified in Section 5.2.2)
is violated, neither in the current state nor any foreseeable possible next state.

" S _ L o c a t i o n " : " w o r k s t a t i o n _ 2 " , " S _ L o c a t i o n " : " c o r r i d o r " ,
" S _ B a t t e r y " : " ok " , " S _ B a t t e r y " : " low " ,
" S_Load " : " f r e e " , " S_Load " : " f r e e " ,
" S_Conveyor " : " on " , " S_Conveyor " : " on " ,
" A c t i o n s " : [" s t o p _ c o n v e y o r "] " A c t i o n s " : [" s t o p _ c o n v e y o r "]

5A short clip of the AMR executing a policy generated by Tumato can be found online.

https://kuleuven-my.sharepoint.com/:v:/g/personal/jan_vermaelen_kuleuven_be/EQgdGpJ28eNCnuuap2i2mG4BOD2N92KTFuz1R013CdiIrA

J. Vermaelen & T. Holvoet 37

In the next entry (left), the specified state rule is more prominent. Without the state rule, the planner
would instruct the AMR to start moving to workstation_1. Since the conveyor will be active later on,
turning it off now would be redundant. It is clear that the state rule leads to executing stop_conveyor. A
naive implementation of state rules (or use of reaction rules) would allow simultaneous movement and
stopping of the conveyor. However, the adapted Tumato solver recognizes the non-deterministic order
in which actions effectuate when multiple actions are executed simultaneously and ensures safety by
permitting only the stop_conveyor action. In the final presented entry (right), the current state violates
the state rule. To restore safety, the AMR is instructed to execute stop_conveyor. Although the more
productive action move_to_charger would also restore safety (as the only foreseeable next state is safe),
the planner chooses the most preferred way to restore safety based on the durations of actions.

6.4 Overview and Future Work

Tumato succeeds in connecting theoretic agents-based research, specifically on guaranteeing safe behav-
ior, to the field of robotics, where non-determinism is inevitable. By including durations and alternative
outcomes, we achieve a concise and expressive behavior specification. State rules further enhance ex-
pressiveness and result in a stronger as well as less error-prone safety specification. One main limitation
of the approach is the use of discrete state variables. For practical applications, a monitoring module has
to be present to map the continuous world into a discrete state space.

Despite the promising combination of uncertainty and safety with the constraint-based planning ap-
proach, challenges remain open for further investigation. The state rules currently enforce that any
foreseeable outcome of the executed actions is safe. When multiple sets of actions exist to restore safety,
the planner is capable of choosing the best one with regard to a value such as duration or cost. When no
actions are available to restore safety immediately, the planner will notify the user, indicating for which
state safety can not be restored. Although this is a desirable approach, future research could explore how
allowing multiple successive (sets of) actions in unsafe states could be required to restore safety. Further-
more, in practice, different safety constraints relate to different severities. In the same way that actions
can be assigned a specific value, the safety rules could be weighted to enable the constraint solver to find
the overall best solution. Finally, an empirical study will be conducted concerning the practical use of
the adapted planner. This study should consider the actual safety guarantees that are obtained as well
as the specification effectiveness and comfort that is achieved. Comparisons with the original version of
Tumato, as well as with more traditional approaches, are in order.

7 Conclusion

This paper presents an approach to specify and generate safe and robust robot behavior. For this purpose,
we extend the existing constraint-based planning tool Tumato with the notion of uncertainty and state
rules. Robustness against uncertainty is achieved by extending actions with alternative, less desired and
less likely, but foreseeable outcomes. Further, state rules form a powerful approach for expressing safety
rules based on state conditions rather than manually having to specify all situations that could lead to
such unsafe states. This new approach requires an order of magnitude fewer rules to be specified and
hence is less prone to errors. Tumato translates the declarative specification, including the defined safety
rules, automatically into a set of Constraint Satisfaction Problems. Solving the CSPs yields an execution
policy that inherently satisfies all the specified rules. This approach enables the detection of unrealizable
specifications early on. The obtained policy is sound and complete by construction.

38 Safe and Robust Planning

Acknowledgements This research is partially funded by the Research Fund KU Leuven.

References

[1] Alberto Camacho, Eleni Triantafillou, Christian J Muise, Jorge A Baier & Sheila A McIlraith (2016): Non-
Deterministic Planning with Temporally Extended Goals: Completing the Story for Finite and Infinite LTL.
In: Proceedings of the Workshop on Knowledge-based Techniques for Problem Solving and Reasoning co-
located with 25th International Joint Conference on Artificial Intelligence (IJCAI 2016), New York City,
USA, July 10, 2016. Available at https://ceur-ws.org/Vol-1648/paper10.pdf.

[2] Gerard Canal, Michael Cashmore, Senka Krivić, Guillem Alenyà, Daniele Magazzeni & Carme Torras
(2019): Probabilistic planning for robotics with ROSPlan. In: Towards Autonomous Robotic Systems:
20th Annual Conference, TAROS 2019, London, UK, July 3–5, 2019, Proceedings, Part I 20, Springer, pp.
236–250, doi:10.1007/978-3-030-23807-0_20.

[3] Michael Cashmore, Maria Fox, Derek Long, Daniele Magazzeni, Bram Ridder, Arnau Carrera, Narcis
Palomeras, Natalia Hurtos & Marc Carreras (2015): Rosplan: Planning in the robot operating system.
In: Proceedings of the international conference on automated planning and scheduling, 25, pp. 333–341,
doi:10.1609/icaps.v25i1.13699.

[4] Rina Dechter, Itay Meiri & Judea Pearl (1991): Temporal constraint networks. Artificial intelligence 49(1-3),
pp. 61–95, doi:10.1016/0004-3702(91)90006-6.

[5] Hoang Tung Dinh, Mario Henrique Cruz Torres & Tom Holvoet (2017): Sound and complete reactive
UAV behavior using constraint programming. Available at https://lirias.kuleuven.be/retrieve/
470086.

[6] Patrick Doherty, Joakim Gustafsson, Lars Karlsson & Jonas Kvarnström (1998): Tal: Temporal action logics
language specification and tutorial. Electronic Transactions on Artificial Intelligence. Available at http:
//www.ep.liu.se/ej/etai/1998/009/.

[7] Patrick Doherty & Jonas Kvarnström (2001): TALplanner: A temporal logic-based planner. AI Magazine
22(3), pp. 95–95, doi:10.1609/aimag.v22i3.1581.

[8] E Allen Emerson (1990): Temporal and modal logic. In: Formal Models and Semantics, Elsevier, pp. 995–
1072, doi:10.1016/B978-0-444-88074-1.50021-4.

[9] Maksym Figat, Cezary Zieliński & René Hexel (2017): FSM based specification of robot control system
activities. In: 2017 11th International Workshop on Robot Motion and Control (RoMoCo), IEEE, pp. 193–
198, doi:10.1109/RoMoCo.2017.8003912.

[10] Tomas Geffner & Hector Geffner (2018): Compact policies for fully observable non-deterministic planning
as SAT. In: Proceedings of the International Conference on Automated Planning and Scheduling, 28, pp.
88–96, doi:10.1609/icaps.v28i1.13880.

[11] Alfonso E Gerevini, Patrik Haslum, Derek Long, Alessandro Saetti & Yannis Dimopoulos (2009): Deter-
ministic planning in the fifth international planning competition: PDDL3 and experimental evaluation of the
planners. Artificial Intelligence 173(5-6), pp. 619–668, doi:10.1016/j.artint.2008.10.012.

[12] Malik Ghallab, Dana Nau & Paolo Traverso (2016): Automated Planning and Acting, 1st edition. Cambridge
University Press, USA, doi:10.1017/CBO9781139583923.

[13] Erez Karpas & Daniele Magazzeni (2020): Automated planning for robotics. Annual Review of Control,
Robotics, and Autonomous Systems 3, pp. 417–439, doi:10.1146/annurev-control-082619-100135.

[14] Spyros Maniatopoulos, Philipp Schillinger, Vitchyr Pong, David C Conner & Hadas Kress-Gazit (2016):
Reactive high-level behavior synthesis for an atlas humanoid robot. In: 2016 IEEE International Conference
on Robotics and Automation (ICRA), IEEE, pp. 4192–4199, doi:10.1109/ICRA.2016.7487613.

https://ceur-ws.org/Vol-1648/paper10.pdf
https://doi.org/10.1007/978-3-030-23807-0_20
https://doi.org/10.1609/icaps.v25i1.13699
https://doi.org/10.1016/0004-3702(91)90006-6
https://lirias.kuleuven.be/retrieve/470086
https://lirias.kuleuven.be/retrieve/470086
http://www.ep.liu.se/ej/etai/1998/009/
http://www.ep.liu.se/ej/etai/1998/009/
https://doi.org/10.1609/aimag.v22i3.1581
https://doi.org/10.1016/B978-0-444-88074-1.50021-4
https://doi.org/10.1109/RoMoCo.2017.8003912
https://doi.org/10.1609/icaps.v28i1.13880
https://doi.org/10.1016/j.artint.2008.10.012
https://doi.org/10.1017/CBO9781139583923
https://doi.org/10.1146/annurev-control-082619-100135
https://doi.org/10.1109/ICRA.2016.7487613

J. Vermaelen & T. Holvoet 39

[15] Hai Nguyen, Matei Ciocarlie, Kaijen Hsiao & Charles C Kemp (2013): Ros commander (rosco): Behavior
creation for home robots. In: 2013 IEEE International Conference on Robotics and Automation, IEEE, pp.
467–474, doi:10.1109/ICRA.2013.6630616.

[16] Charles Prud’homme & Jean-Guillaume Fages (2022): Choco-solver: A Java library for constraint pro-
gramming. Journal of Open Source Software 7(78), p. 4708, doi:10.21105/joss.04708. Available at
https://choco-solver.org.

[17] Martin L Puterman (2014): Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, doi:10.1002/9780470316887.

[18] Edward Tsang (1993): Foundations of constraint satisfaction. Academic Press Limited.

[19] Jan Vermaelen, Hoang Tung Dinh & Tom Holvoet (2020): A survey on probabilistic planning
and temporal scheduling with safety guarantees. In: ICAPS Workshop on Planning and Robotics.
Available at https://icaps20subpages.icaps-conference.org/wp-content/uploads/2020/10/
12-PlanRob_2020_paper_12.pdf.

[20] Tichakorn Wongpiromsarn, Ufuk Topcu & Richard M Murray (2013): Synthesis of control protocols for
autonomous systems. Unmanned Systems 1(01), pp. 21–39, doi:10.1142/S2301385013500027.

A The Specification

In this appendix, we use the AMR example to illustrate the extended format of specification supported
by Tumato.

BEGIN STATE VECTOR
s t a t e S _ L o c a t i o n can be c o r r i d o r , c h a r g e r , w o r k s t a t i o n _ 1 , w o r k s t a t i o n _ 2
s t a t e S _ B a t t e r y can be low , ok
s t a t e S_Load can be loaded , f r e e
s t a t e S_Conveyor can be on , o f f

END STATE VECTOR

BEGIN RESOURCES
r e s o u r c e MOTORS
r e s o u r c e CONVEYOR
END RESOURCES

BEGIN ACTIONS
a c t i o n m o v e _ t o _ w o r k s t a t i o n _ 1
d u r a t i o n : 10
c o n t r o l l e d r e s o u r c e s : MOTORS
p r e c o n d i t i o n s : S _ L o c a t i o n i s c o r r i d o r
nomina l e f f e c t s : S _ L o c a t i o n i s w o r k s t a t i o n _ 1
a l t e r n a t i v e e f f e c t s : S _ L o c a t i o n i s c o r r i d o r

a c t i o n m o v e _ t o _ w o r k s t a t i o n _ 2
d u r a t i o n : 10
c o n t r o l l e d r e s o u r c e s : MOTORS
p r e c o n d i t i o n s : S _ L o c a t i o n i s c o r r i d o r
nomina l e f f e c t s : S _ L o c a t i o n i s w o r k s t a t i o n _ 2

a c t i o n move _ to_cha r ge r
d u r a t i o n : 10
c o n t r o l l e d r e s o u r c e s : MOTORS
p r e c o n d i t i o n s : S _ L o c a t i o n i s c o r r i d o r
nomina l e f f e c t s : S _ L o c a t i o n i s c h a r g e r

https://doi.org/10.1109/ICRA.2013.6630616
https://doi.org/10.21105/joss.04708
https://choco-solver.org
https://doi.org/10.1002/9780470316887
https://icaps20subpages.icaps-conference.org/wp-content/uploads/2020/10/12-PlanRob_2020_paper_12.pdf
https://icaps20subpages.icaps-conference.org/wp-content/uploads/2020/10/12-PlanRob_2020_paper_12.pdf
https://doi.org/10.1142/S2301385013500027

40 Safe and Robust Planning

a c t i o n m o v e _ t o _ c o r r i d o r
d u r a t i o n : 2
c o n t r o l l e d r e s o u r c e s : MOTORS
p r e c o n d i t i o n s : NOT S _ L o c a t i o n i s c o r r i d o r
nomina l e f f e c t s : S _ L o c a t i o n i s c o r r i d o r

a c t i o n r e c e i v e _ w o r k p i e c e
d u r a t i o n : 3
c o n t r o l l e d r e s o u r c e s : MOTORS, CONVEYOR
p r e c o n d i t i o n s : S _ L o c a t i o n i s w o r k s t a t i o n _ 1 , S_Load i s f r e e
nomina l e f f e c t s : S_Conveyor i s on , S_Load i s l o a d e d
a l t e r n a t i v e e f f e c t s : S_Conveyor i s on , S_Load i s f r e e
a l t e r n a t i v e e f f e c t s : S_Conveyor i s o f f , S_Load i s f r e e

a c t i o n d e l i v e r _ w o r k p i e c e
d u r a t i o n : 3
c o n t r o l l e d r e s o u r c e s : MOTORS, CONVEYOR
p r e c o n d i t i o n s : S _ L o c a t i o n i s w o r k s t a t i o n _ 2 , S_Load i s l o a d e d
nomina l e f f e c t s : S_Conveyor i s on , S_Load i s f r e e
a l t e r n a t i v e e f f e c t s : S_Conveyor i s on , S_Load i s l o a d e d

a c t i o n s t o p _ c o n v e y o r
d u r a t i o n : 1
c o n t r o l l e d r e s o u r c e s : CONVEYOR
p r e c o n d i t i o n s : S_Conveyor i s on
nomina l e f f e c t s : S_Conveyor i s o f f

a c t i o n c h a r g e
d u r a t i o n : 50
c o n t r o l l e d r e s o u r c e s : MOTORS
p r e c o n d i t i o n s : S _ L o c a t i o n i s c h a r g e r
nomina l e f f e c t s : S _ B a t t e r y i s ok
END ACTIONS

BEGIN REACTION RULES / / P l e a s e note , comments s t a r t w i th " / / " .
/ / r u l e : IF (S _ L o c a t i o n i s c o r r i d o r OR S _ L o c a t i o n i s c h a r g e r) AND S_Conveyor i s on
/ / THEN e x e c u t i n g s t o p _ c o n v e y o r
/ / r u l e : IF (S _ L o c a t i o n i s c o r r i d o r OR S _ L o c a t i o n i s c h a r g e r) AND S_Conveyor i s o f f
/ / THEN NOT e x e c u t i n g r e c e i v e _ w o r k p i e c e AND NOT e x e c u t i n g d e l i v e r _ w o r k p i e c e
/ / / /AND NOT any f u t u r e a c t i o n t h a t c o u l d t u r n t h e conveyor on
/ / r u l e : IF S_Conveyor i s on THEN NOT e x e c u t i n g m o v e _ t o _ c o r r i d o r
/ / AND NOT e x e c u t i n g move_ to _cha rge r AND NOT e x e c u t i n g m o v e _ t o _ w o r k s t a t i o n _ 1
/ / / /AND NOT any f u t u r e a c t i o n t h a t c o u l d move t h e
/ / / /AMR away from NOT(c o r r i d o r OR c h a r g e r) .
/ / And p r o b a b l y more r u l e s

END REACTION RULES

BEGIN STATE RULES
r u l e : IF S _ L o c a t i o n i s c o r r i d o r OR S _ L o c a t i o n i s c h a r g e r THEN S_Conveyor i s o f f
END STATE RULES

BEGIN GOALS
g o a l t y p e : p r i o r i t y
when S _ B a t t e r y i s low t h e n g o a l : S _ B a t t e r y i s ok
when S_Load i s l o a d e d t h e n g o a l : S_Load i s f r e e
when S_Load i s f r e e t h e n g o a l : S_Load i s l o a d e d

J. Vermaelen & T. Holvoet 41

END GOALS

BEGIN CONFIG
m a x _ p l a n _ l e n g t h : 5
END CONFIG

	Introduction
	Background and Related Work
	Case Study
	Uncertainty and Safety
	Uncertainty
	Safety

	Specification
	Actions
	Safety Rules
	Reaction Rules
	State Rules

	Discussion
	Constraint-Based Planning
	Preliminary Experimental Results
	The Policy
	Overview and Future Work

	Conclusion
	The Specification

