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Multimodal Core Tensor Factorization and its
Applications to Low-Rank Tensor Completion

Haijin Zeng, Jize Xue, Hiêp Q. Luong and Wilfried Philips

Abstract—Low-rank tensor completion has been widely used
in computer vision and machine learning. This paper develops
a novel multimodal core tensor factorization (MCTF) method
combined with a tensor low-rankness measure and a better
nonconvex relaxation form of this measure (NC-MCTF). The
proposed models encode low-rank insights for general tensors
provided by Tucker and T-SVD and thus are expected to simul-
taneously model spectral low-rankness in multiple orientations
and accurately restore the data of intrinsic low-rank structure
based on few observed entries. Furthermore, we study the
MCTF and NC-MCTF regularization minimization problem and
design an effective block successive upper-bound minimization
(BSUM) algorithm to solve them. Theoretically, we prove that
the iterates generated by the proposed models converge to the
set of coordinatewise minimizers. This efficient solver can extend
MCTF to various tasks such as tensor completion. A series of
experiments including hyperspectral image (HSI), video and MRI
completion confirm the superior performance of the proposed
method.

Index Terms—Tensor, low-rankness, tensor factorization, non-
convex optimization.

I. INTRODUCTION

Low-rankness is a common attribute of many data sources.
To date, methods based on low rankness have reported empir-
ical and theoretical success on a large variety of scientific and
engineering applications: face modeling [1], gene categoriza-
tion [2], camera image processing [3], compressive imaging
[4], image restoration [5], etc.

A promising method that measures the low-rankness of a
matrix should account for the number of nonzero singular
values [6]. This low-rankness metric and its relaxations (for
example, the L1 norm and nuclear norm) have been proven
useful as regularization terms in applications and have inspired
various low-rank models and algorithms to cope with different
tasks. On the other hand, a large amount of data generated by
modern sensors is naturally represented by high-order tensors,
whereas the SVD is restricted to 2D data.

Early high-dimensional data analysis methods reformatted
high-dimensional data tensors artificially into 2D matrices and
resorted to methods developed for classic two-dimensional
analysis methods. However, this flattening strategy and the
strict assumptions inherent in two-dimensional analysis do not
always match the high-dimensional data well. For example,
hyperspectral image (HSI) is the imaging result of different
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spectral bands from the same spatial scene, which indicates
that there is a high correlation in the spectral dimensions
[7]; a video contains multiple frames, which contain a high
correlation in the temporal dimension, especially for adja-
cent frames [8]. Therefore, converting these high-dimensional
tensor data artificially to 2-D matrices spreads this “local
correlation” (e.g., between adjacent frequencies) over large
strides in the 2D matrix, complicating the analysis. Thanks to
the inherent high-dimensional structure of the data, high-order
tensor decomposition allows capturing correlation in a more
local fashion along each dimension [9]. In other words, only
when analyzing existing inherent multidimensional patterns,
we are able to discover the hidden components in the high-
dimensional data to model the data more accurately.

The tensor is the generalization of the matrix and vector
concept: a vector is a first-order or one-way tensor, and a
matrix is a second-order tensor. To measure the low-rankness
of tensors, much of the current work involves decomposing the
tensor into a combination of several factors to explore its low-
rank structure through preliminary tensor decomposition or to
unfold the target tensor into matrices according to the modal,
and then directly applying the rank of the matrix or the sparsity
of the vector to the resulting matrices. Popular decompositions
include Tucker [10, 11], Canonical Polyadic (CP) [12], tensor
SVD (t-SVD) [13–15], tensor train [16] and tensor ring [17].
There are also some models that further improve the above
decomposition or approximation methods. For example, a t-
SVD-based nonlocal patches mode is proposed in [18, 19],
which achieves robust and promising performance. Ji et al.
proposed a smooth matrix factorization-based low-rank tensor
completion model [20]. A kernel-based model was proposed in
[21] to represent the global correlation prior effectively. This
model maps the underlying tensor into the feature space by
using a kernel. Some works impose specific prior constraints
on the factors obtained by these decompositions [6, 22, 23].

According to the well-established theory of rank function
in the matrix case, it seems natural to directly extend matrix
completion methods to the tensor completion problem. How-
ever, it has been proven that calculating such a tensor rank
(whether it is based on Tucker, CP or T-SVD decomposition)
is an NP-hard problem [24]. It is difficult to determine or even
limit the rank of arbitrary tensors compared to the matrix rank
due to tensor low-rankness insight. This should be explained
beyond the low-rank properties of all its expanded subspaces.
More important, how these subspace low-rank properties are
related to the entire tensor structure should also be considered
[9]. Some current works directly extend the rank of a matrix
to higher-order by simply summing ranks (or its relaxations)
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Fig. 1. Y: original video tensor Suzie, there are 150 frames in total, and
spatial size of each frame is 144 × 176. (a) shows mode-n singular value
curve of Gn. (b) Factor tensor Gn and factor matrix Xn obtained by MCTF
decomposition along its three modes. (c) Singular value curve of factor matrix
Xn.

along all tensor modes [25] or directly consider the global
low-rankness of underlying tensors. Different from the matrix
scenarios, the simple rank summation term generally lacks
a clear physical meaning for tensors [6]. Furthermore, when
the sampling rate is very low, it is not sufficient to explore
only global low-rankness. As shown in Fig. 1, after exploring
the global low-rank prior through tensor decomposition, for
the factor obtained by the decomposition, instead of being
identical global low-rankness, the low-rankness in different
modes or orientations evidently exists and is different. Actu-
ally, from Fig. 1-(c), one can see that most singular values of
the factor matrices are very close to zero and much smaller
than the first several larger singular values. Moreover, instead
of being independent, as shown in Fig. 1-(b), there are apparent
correlations across different slices of each mode of the factor
tensor and matrix.

In this paper, we propose a novel tensor low-rankness
measure for the tensor completion problem to effectively
model the multimodal low-rankness of high-order tensors.
Similar to Tucker, our method is also based upon the tensor
and matrix decomposition definitions. However, instead of
using the tensor Tucker decomposition directly and requir-
ing the components to be orthogonal, first, a novel tensor
decomposition is proposed, in which a high-order low-rank
decomposition is introduced into each mode of the underlying
tensor. However, the factors are not required to be orthogonal,
as shown in Fig. 1(b). Instead of utilizing only one mode
low-rankness of the underlying tensor as the tensor nuclear
norm based on T-SVD, this decomposition utilizes all mode
low-ranknesses of the tensor to give much better performance.
Compared with Tucker decomposition, our method does not
require the components to be orthogonal; thus, there is no
need to use the SVD in our decomposing algorithms, which
is computationally much cheaper than Tucker and T-SVD.

TABLE I
NOTATIONAL CONVENTION IN THIS PAPER

Notation Definition
x,y Vectors
X,Y Matrices
X ,Y Tensors

xi1···iN (i1, · · · , iN )-th entry of X
unfoldn(X ) = X(n) Mode-n unfolding of X

foldn (unfoldn(X )) = X The inverse of unfoldn
rankn(X ) = rank(X(n)) The n-rank of X

Second, a tensor low-rankness measure based on the pro-
posed decomposition is proposed. This combines both the low-
rank prior of the global tensor and the local factors obtained by
the proposed tensor decomposition method. Its insight can be
easily interpreted as a regularization for the factor tensor and
matrix derived from the nonorthogonal multimode low-rank
decomposition. Furthermore, an alternative convex relaxation
of the proposed low-rankness measure is presented. Such a
measure not only unifies the traditional understanding of low-
rankness from matrix to tensor but also encodes both sparsity
insights delivered by common Tucker, SVD and T-SVD low-
rank decompositions for a general tensor.

Third, we apply the proposed low-rank measures to high-
dimensional tensor completion tasks, e.g., video, hyperspectral
image and MRI completion, and designed a block succes-
sive upper-bound minimization (BSUM) method to efficiently
solve the resulting models. We also proved that the iterates
generated by the proposed model converge to the set of co-
ordinatewise minimizers. The validity of the proposed models
is evaluated on a series of experiments including video, MRI
and hyperspectral image completion.

II. NOTIONS AND PRELIMINARIES

In this section, we summarized some notations, tensor
operations and operators used in this paper.

Table I summarizes the common notations throughout this
paper. Following [26, 27], a fiber of tensor X ∈ Rn1×n2×n3 is
defined as a vector obtained by fixing all indices of X except
one, and a slice of X is defined as a matrix by fixing all
indices of X except two. X̂ denotes the result of discrete
Fourier transformation (FFT) of X along the 3-rd dimension,
and X can be computed from X̂ via the inverse FFT. Then
the multi-rank of X is defined as the array rank(X ) =
(rank(X̂(1)), . . . , rank(X̂(N))), where X̂(N) denotes the rank
of the N -th frontal slice of X̂ . Specially, for a 3-way tensor
A ∈ Cn1×n2×n3 , its (i, j, k)-th entry is denoted as aijk and
A(i, :, :), A(:, i, :) and A(:, :, i) represent the i-th horizontal,
lateral and frontal slice, respectively.

Based on these common notations of tensor, one can define
inner product, t-product and n-mode product.

Definition 1 (inner product [28]): For X ,Y ∈ RI1×···×IN ,
their inner product is defined as

〈X ,Y〉 =

I1∑
i1=1

· · ·
IN∑
iN=1

xi1,··· ,iN yi1,··· ,iN , (1)

and ‖X‖F =
√
〈X ,X〉 denotes the Frobenius norm of X .
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Definition 2 (T-product [29]): Given X ∈ Rd1×d2×d3 and
Y ∈ Rd2×d4×d3 , their t-product T = X ∗ Y ∈ Rd1×d4×d3
is a tensor whose (i, j)th fiber T (i, j, :) =

∑d2
k=1 X (i, k, :) •

Y(k, j, :), where • is the circular convolution.
Definition 3 (n-mode (matrix) product) [28]: The n-mode

product of tensor X ∈ RI1×I2×···×IN with a matrix U ∈
RJ×In , denoted by X × nU ∈ RI1×···×In−1×J×In+1×···×IN ,
is defined as

(X × nU)i1···in−1jin+1···iN =

In∑
in=1

xi1i2···iNujin .

Definition 4 (Conjugate transpose [30]): The conjugate
transpose of tensor A ∈ Cn1×n2×n3 is the tensor A∗ ∈
Cn2×n1×n3 obtained by conjugate transposing each of the
frontal slices and then reversing the order of transposed frontal
slices 2 through n3.

III. RELATED WORKS ON TENSOR LOW-RANKNESS

The task of tensor completion is to recover the missing
values of an incomplete tensor Y ∈ Rn1×n2×n3 . Since tensor
data of high dimensionality usually underlie low-rank [30], the
completion of Y can be modeled as follows:

min
X

rankt(X ), s.t. PΩ(X − Y) = 0,

where Ω is the given subset of the observed entries, rankt(X )
denotes the tubal rank of C and PΩ is the linear operator that
extracts entries in Ω and fills the entries not in Ω with zeros,
i.e.,

(PΩ(Y))i1···iN =

{
yi1,··· ,iN , (i1, · · · , iN ) ∈ Ω
0, otherwise

A tensor is a high-dimensional extension of a two-
dimensional matrix, and it can also be reordered into a two-
dimensional matrix. Therefore, a natural tensor-filling tech-
nique is to unfold the tensor into a matrix and use matrix-
based filling methods to achieve its filling and then fold it back
to the original high-dimensional tensor. There are two main
categories of such methods: low-rank matrix decomposition
methods (LRMF) and rank minimization techniques. The prin-
ciple of low-rank matrix decomposition is to decompose the
target matrix into two planar matrices to achieve the inscription
of a low-rank prior, while rank minimization achieves this by
directly imposing an additional rank constraint on the matrix
to be estimated [31, 32].

Although the method of reordering the tensor into a matrix
is computationally efficient, this method of dimensionality
reduction inevitably destroys the intrinsic structure of the
tensor. For example, unfolding hyperspectral or multispectral
images along the spectral dimension and those unfolding
videos along the temporal dimension will destroy the spatial
information of each frequency/time band/frame of these data
[6]. Therefore, in the past ten years, much work has focused
on completing the task of tensor completion by directly
imposing low-rank and sparse constraints on the target tensor.
Motivated by the great success of matrix nuclear norms and
decomposition, their promotion in the form of tensors has
aroused increasing research interest, and there have been

many results, e.g., tubal nuclear norm (TNN) [33] and partial
sum of the tubal nuclear norm (PSTNN) [34], Tucker rank
based on Tucker decomposition, CANDECOMP/PARAFAC
(CP) rank based on CP decomposition and framelet-based
TNN (FTNN) [35]. Among existing tensor nuclear norms
and tensor decomposition, Tucker decomposition, TNN and
their extensions have shown superior performance in various
applications such as image/video inpainting/denoising [36, 37]
and clustering [38].

In Tucker decomposition [10, 36], an N -order tensor X ∈
RI1×···×IN can be written in the following form:

X = S ×1 U1 ×2 U2 ×3 · · · ×N UN (2)

where S ∈ RR1×···×RN (ri ≤ Ri ≤ Ii) is called the core
tensor, Ui ∈ RIi×Ri(1 ≤ i ≤ N) is composed of the Ri
orthogonal bases along the i-th mode of X . With this Tucker
formula, high-order low-rankness can be quantified as a vector
(r1, r2, · · · rN ), i.e., Tucker rank. The degree of freedom of the
abovementioned Tucker decomposition is

∏N
i=1 ri, which uses

the volume of the core tensor to evaluate the low-rankness of
the underlying tensor. However, the core tensor obtained by the
decomposition of natural data usually has a low-rank structure,
which causes this degree of freedom to be further restricted to
a smaller number [6]. Therefore, it is difficult for the Tucker
rank to take reasonable measures to fully describe the inherent
low-rank priors of tensors.

TNN is induced by the T-SVD [13], which attempts to
decompose a third-order tensor as a tensor product of three
factor tensors. Specifically, let A ∈ Rn1×n2×n3 . Then, by
using T-SVD, it can be factorized as

A = U ∗ S ∗ V∗ (3)

where U ∈ Rn1×n1×n3 ,V ∈ Rn2×n2×n3 are orthogonal, and
S ∈ Rn1×n2×n3 is a f-diagonal tensor, which is defined as a
tensor whose frontal slices is a diagonal matrix. U ∗S and V∗
are the T-product of U ,S and the conjugate transpose of V ,
respectively, which are defined in Section II.

The TNN-induced method has reported success in various
applications in recent years [39, 40]. It utilizes the low rank of
the tensor spectrum, which can well capture the spatiotemporal
smoothness. However, by calculating the nuclear norm of the
frontal slice after 1-D DFT on the mode-3 fiber, it is sensitive
to the orientation of mode and cannot capture the complex
intramode and intermode correlation of tensors in multiple
directions.

The tensors collected from real scenes often have obvious
correlations along each of their modes. Taking HSI as an
example, Fig. 2-(b) shows the singular value curve diagram
of the three modes of Fig. 2-(a). From the figure, it can be
quantitatively observed that only a small fraction of singular
values of the three mode unfolding matrices are greater than
zero, which means that the three modes along its spectrum
and spatial distribution are correlated. This indicates that the
tensor along each mode is located on the low-rank subspace,
and the entire tensor corresponds to the membership of the
subspace along all tensor modes. These facts motivate us to
define TNN along different dimensions as the natural intuitive
meaning.
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(a) (b) (c)

Fig. 2. (a) Real HSI of size 200*200*80; (b) Singular value curves of matrices
unfolded along three tensor modes. (c) Tensor completion performance by T-
SVD decomposition (TNN) for video ”Suzie” dataset. Prediction accuracy
severely degenerates when observations are sparse.

On the other hand, in real scenarios, the data representa-
tion along a meaningful factor (e.g., S,U ,V in (2) or (3))
should always have an evident correlation and thus a low-rank
structure [6], Such useful knowledge, however, cannot be well
expressed by Tucker or T-SVD decomposition. To ameliorate
this issue, we propose a measure for more rationally measuring
the low-rankness of the tensor.

IV. MCTF DECOMPOSITION-BASED TENSOR
LOW-RANKNESS MEASURE

Here, we introduce the details of our multimodal core
tensor factorization model and then introduce the low-rankness
measure metric based on it and a better nonconvex relaxation
form of the low-rankness measure.

A. MCTF Decomposition

Tensor low-rankness insight should be interpreted beyond
the low-rank property of all its unfolded subspaces and should
more importantly consider how such subspace low-rankness
are affiliated over the entire tensor structure, especially when
the elements in the tensor to be restored are seriously missing.
For example, Fig. 2-(c) shows the prediction errors by T-SVD
decomposition against the fraction of unobserved elements for
a particular HSI dataset, i.e., Pavia City Centre1. It can be seen
that when fewer data are missing, the error remains a small
state, However, when more data are missing, the error starts
to increase dramatically.

To reduce the sensitivity to direction and simultaneously
capture the complex intra- and intermodal correlations of high-
order tensors in multiple directions, improve the limited rep-
resentation ability and flexibility of the tensor decomposition
model in multiorigin correlation modeling, we propose an
omnidirectional tensor decomposition strategy called the mul-
timodal core tensor factorization (MCTF) model by employing
multilinear techniques.
Definition 2.1 (MCTF). Given an N -way tensor Y ∈
RI1×I2×···×IN , as Tucker proposed, our MCTF decomposition

1http://www.ehu.es/ccwintco/index.php/Hyperspectral Remote Sensing
Scenes

decomposes the input tensor as follows:

Y = w1(G1 ×1 X1) + w2(G2 ×2 X2) + · · ·+ wn(GN ×N XN )

=

N∑
n=1

wn(Gn ×n Xn),

(4)
However, the main difference is that we do not require the
components Xn to be orthogonal, and where Xn ∈ RIn×rn
is the n-th (n = 1, 2, · · · , N ) factor matrix which reflects
the connections (or links) between the latent components and
factor matrices, Gn ∈ RI1×···×In−1×rn×In+1×IN is a tensor
reflecting the joint connections between the latent components
in each mode. wn(n = 1, 2, · · · , N ) are positive weights
satisfying

∑N
n=1 wn = 1. Tucker decomposition imposes

the condition of all-orthogonality, instead of diagonality, on
tensor Gn, implying that the Tucker is always defined. In
fact, G cannot be diagonal in general, which means that
the Tucker test does not necessarily reveal the rank of Y :
in the cases where G is diagonal, and the orthogonality of
the matrices of mode-n singular vectors implies that Y =∑Rn
in

ginin...inX
(1)
in
◦X(2)

in
◦ . . .◦X(N)

in
is a decomposition in a

minimal number of rank-1 terms, where ◦ is the outer product.
On the other hand, the number of nonzero (significant) mode-n
singular values corresponds to the mode-n rank (in a numerical
sense) of Y [41].

Actually, the orthogonality constraint in the Tucker decom-
position (Y = G ×n A) has two effects. First, it encourages
the representations in factor A to be more distinguishable
from each other. A has column full rank, which means the
columns of A are unrelated to each other. This helps to
keep noise out of A. Second, it preserves the distribution of
the noise, which enables the denoising of observation Y by
denoising core tensor G. Therefore, the Tucker decomposition
is a powerful tool for image denoising, but for the tensor
completeness problem that is the focus of this paper, it is
virtually noiseless. In addition, the key purpose of employing
Tucker decomposition for tensor completion is to represent
the high-dimensional low-rankness of the underlying low-
rank tensor. However, due to the orthogonality constraint, A
is a column full-rank matrix, and the rank (Tucker) of G
is also bounded with an upper bound and a down bound.
Therefore, the efficiency of employing Tucker decomposition
to represent low rankness is limited. In addition, for orthogonal
Tuker decomposition and nonorthogonal MCTF, we have the
following theorem:
Lemma 1. Given a matrix A with size m×n, A products (left)
a nonsingular matrix P with size m ×m or products (right)
a nonsingular matrix Q with size n × n will not change the
rank of A.

Proof: due to matrix P with size m ×m is a nonsingular
matrix, i.e., rank(P) = m, so rank(A) 6 rank(P). Let M =
PA. Due to rank(PA) 6 min{rank(P), rank(A)}, we have
rank(M) 6 rank(A). In addition, according to A = P−1M,
we have rank(A) 6 rank(M). so, rank(A) = rank(M) =
rank(PA). Similarly, we have rank(A) = rank(AQ).
Theorem 1. Given an N -way tensor Y , Y = G×nXn denotes
its Tucker decomposition, where G ∈ RI1×I2×···×IN is the
so-called core tensor and Xn ∈ RJn×In is a semiorthogonal
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Fig. 3. Illustration of proposed MCTF tensor decomposition for 3D tensors, which encourages simultaneously low rank structure in all orientations.

Fig. 4. Illustration of proposed MCTF-based low-rankness measure, which models underlying tensor as mixture of three low-rank combinations of tensor
and matrix.

matrix. Then, we have the following conclusions: rank(Xn) =
Jn; if Jn = In, rank(Y(n)) = rank(G(n)); if Jn 6= In,
rank(Y(n)) + In − Jn 6 rank(G(n)) 6 rank(Y(n)).

Proof: In Tucker decomposition, Xn is a semiorthog-
onal matrix and has a column full rank. Therefore, we
have rank(Xn) = In and G = Y ×n X∗n. By denoting
the mode-n product of tensor and matrix as matrix format,
G = Y ×n X∗n can be rewritten as G(n) = X∗nY(n). If
Jn = In, according to Lemma 1, rank(Y(n)) = rank(G(n)).
If Jn 6= In, rank(G(n)) > rank(X∗n) + rank(Y(n)) − Jn,
i.e., rank(G(n)) > In + rank(Y(n)) − Jn. Similarly, for
Y = G ×n Xn, we have rank(Y(n)) > rank(Xn) +
rank(G(n))− In, i.e., rank(Y(n)) > rank(G(n)). Therefore,
we have rank(Y(n)) + In−Jn 6 rank(G(n)) 6 rank(Y(n)).
Theorem 2. Given an N -way tensor Y ∈ RI1×I2×···×IN , Y =
G ×n Xn denotes its MCTF decomposition, where there is
no semiorthogonal constraint for Xn ∈ RIn×Jn . Then, we
have the following conclusion: rank(Xn) 6 rank(Y(n)) −
rank(G(n)) + In, i.e., there is no lower bound but only an
upper bound for rank(Xn) and rank(G(n)).

Therefore, according to Theorem 1 and Theorem 2, if
there is a semiorthogonal constraint in the Tucker case, then
both the rank of Xn and G(n) are fixed, and one cannot
further minimize their ranks. If there is no semiorthogonal
constraint as in our MCTF, then one can further add low-rank
regularization to minimize the rank of Xn and G(n).

MCTF encourages a low-rank structure, which means low
rankness in the spectral domain of all orientations. It models
a data tensor as simultaneously having low tubal rank in
all orientations (see Fig. 5 and 4). It differs from TNN,
which only considers a low tubal rank of one spectral ori-
entation. For ease of reading, while facilitating the algorithm
implementation, we further simplified the form of MCTF.
First, we defined a ”tensor permutation” operation

−→
X k to

rearrange the dimensions of a tensor. Specifically, for a tensor

80% Masked TMac TNN NC-MCTF

95% Masked TMac TNN NC-MCTF

Fig. 5. Two slices of recovered video ”Suzie” by TMac, TNN and our NC-
MCTF. Sampling rate of first line is 20%, and that of second line is 5%.

X ∈ Rn1×n2×n3 ,
−→
X k is defined as the tensor whose ith

mode-3 slice is the ith mode-k slice of X ., i.e., X (i, j, s) =−→
X 1(j, s, i) =

−→
X 2(s, i, j) =

−→
X 3(i, j, s). Then, by using this

permutation, the modal-n product of the tensor and the matrix
can be uniformly transformed into the modal-3 product, so the
MCTF can be rewritten as follows:
Y = w1(G1 ×1 X1) + w2(G2 ×2 X2) + · · ·+ wn(GN ×N XN )

=

N∑
n=1

wn(
→
Gnn ×3 Xn).

(5)

B. MCTF-Based Tensor Low-Rankness Measure

Existing methods use either factorization or approximation
schemes to recover the missing components. However, as the
number of missing entries increases, factorization schemes
may overfit the model because of incorrectly predefined ranks,
while approximation schemes may fail to obtain an easy-
to-interpret model factors. Taking the video ”Suzie” as an
example, as shown in the Fig. 5, when the sampling rate is
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high, all methods can restore a clear image. However, when
the sampling rate is very low, that is, when there are few
known entries, both TMac and TNN fail to recover the main
information of the image.

Fortunately, there are extra priors that we can utilize, i.e.,
the model structure is implicitly included in the low-rank
factorization model, according to the factor priors, which are
usually known a priori in real-world tensor objects. Fig. 3
shows an example of low rank factors. From the figure, one
can observe that the factor tensor obtained by the proposed
MCTF decomposition is close to low rank along all mode
slices. Meanwhile, similar to the factor tensor, the factor matrix
is also of low rank. This inspires us to further explore the struc-
ture of the factors obtained by the proposed decomposition and
then better described the low-rank nature of the original tensor.

To this end, based on the proposed MCTF, we designed the
multiple transform domain-based tensor nuclear norm regu-
larization for the factor tensor obtained by the decomposition,
together with classic matrix nuclear norm for the factor matrix,
to represent the underlying joint manifold drawn from the
model factors. We finally propose a low-rankness measure for
tensor Y based on the proposed MCTF, i.e.,

S(Y) =

3∑
n=1

(τn ‖Xn‖* + λn ‖Gn‖Λn,*), (6)

where Xn and Gn are the factor matrix and tensor of Y
with MCTF, respectively; τn and λn are the parameters to
trade off the two terms; ‖X‖* is the matrix nuclear norm;
and ‖X‖Λn,* denotes the TNN of X based on transform
domain Λn. Applying transform domain Λn to X is equivalent
to performing the DFT along each mode-n fiber of X (as
shown in the A and A-I column of Fig. 1). This can enhance
flexibility for handling different correlations along different
modes and reduce the sensitivity to direction. An illustration
of the proposed low-rankness measure can be found in Fig.
6. As shown in Fig. 6, the first operation in the proposed (6)
is the MCTF decomposition of the underlying tensor, which
serves as a complexity measure in the original domain for all
orientations. It is based on the matrix decomposition theory to
extend the Tucker decomposition and conforms to the internal
mechanism of these two decompositions. As shown in Fig.
4, The second term can be interpreted as the number of
nonzero singular values of the factor matrix, and the third term
models the TNN of Gn in all orientations, which measures low-
rankness in the Fourier domain. They tend to normalize the
low-rank attributes across the subspace of each tensor mode.
This comprehensive consideration in the proposed measures is
conducive to exploring the internal low-rank construction of
the factor tensor and the low-rank nature of the tensor quantum
space along each mode.

C. MCTF-Based Tensor Nonconvex Low-Rankness Measure

Although the proposed multiple transform domains based on
low-rankness measure (6) can provide an efficient numerical
solution and report success on low-rank completion experi-
ments (the detailed performance of MCTF can be found in
Section VI), we must admit that it also has two shortcomings.

Fig. 6. Visual display of proposed tensor low-rank measure.

First, the TNN in MCTF is essentially the nuclear norm
of each spectral slice in the Fourier domain, measuring the
L1 norm of nonzero singular values, which is not an ideal
approximation of the tensor tubal rank. Second, both the
TNN and NN treat each singular value equally, so the main
information may not be well preserved. Larger singular values
usually correspond to primary information such as contours,
sharp edges and smooth areas, while smaller singular values
are mainly composed of noise or outliers [34, 42, 43]. This
means that singular values with different numerical values
should be treated differently, that is, the punishment for
singular values with large numerical values should be reduced,
and the punishment for singular values with small numerical
values should be increased.

Fig. 7. Different approximations of rank function.

To overcome the above two shortcomings, we designed
a novel tensor log-norm and matrix log-norm to perform
nonconvex relaxation of TNN and NN to more accurately
describe the low-rank structure of the factor tensor and factor
matrix:

min

3∑
n=1

αn
2
‖Y − Gn ×n Xn‖2F + τn ‖Xn‖log + λn ‖Gn‖Λn,log ,

(7)
where

‖Gn‖Λn,log = ‖nGn‖log = ‖ blockdiag (nĜn)‖log

=
1

p

p∑
i=1

‖nĜ(i)
n ‖log

(8)

and ‖X‖log =
∑min{m,n}
i=1 (log (|σi (X)|+ ε)) , for X ∈

Rm×n, σi(X) is the i-th singular value of the matrix X,
ε > 0 is a constant. αn, n = 1, 2, 3, are positive weights
satisfying

∑3
n=1 αn = 1. For L ∈ Rm×n×p, nL̂ ∈
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Cm×n×p denotes the result of Discrete Fourier Transforma-
tion (DFT) on L ∈ Rm×n×p along the n-th dimension,
i.e., nL̂ = F nL, where F n is the DFT matrix defined
as F n =

[
f1, · · · ,f i, · · · ,fn3

]
∈ Rn×n. L denotes the

block-diagonal matrix of tensor L in the Fourier domain.

L = blockdiag (L̂) = diag(L̂(1), L̂(2),
. . . , L̂(p)) ∈ Cmp×np,

where L̂(i) denotes the i-th frontal slices of L̂, i = 1, 2, · · · , p.
In addition, a detailed comparison between the true rank,
nuclear norm and nonconvex log-norm is shown in Fig. 7.
Obviously, the black curve of the log-norm is closer to the
green curve of the L0 norm (rank function) than the blue
nuclear norm.

V. MCTF LOW-RANKNESS MEASURE-BASED MODEL & ITS
SOLVING SCHEME

Here we introduce the optimization of the proposed two
models and analyze their convergence.

A. The MCTF and NC-MCTF minimization models

Before giving the optimization of MCTF and NC-MCTF,
we first introduce two lemmas as follows:

Lemma 1 (singular value shrinkage operator, SVT): For
M ∈ Rn1×n2 , M = PErQ

† denotes the singular value
decomposition (SVD) of matrix M with rank r, where Er =
diag({σi}1≤i≤r), σi is the i-th largest singular value of M.
Then, the following properties hold,

Dδ(M) = arg min
rank(X)≤r

δ‖X‖∗ +
1

2
‖X−W‖2F,

where Dδ(W) = Pdiag {max ((σi − δ) , 0)}Q†, and ‖.‖∗ is
the matrix nuclear norm.

Lemma 2 (weighted nuclear norm minimization, WNNM)
[42]: For any γ > 0,Y ∈ Rm×n and 0 ≤ d1 ≤ d2 ≤ · · · ≤
dr(r = min(m,n)), a global optimal solution to the following
problem

min
X

r∑
j=1

γdjσj(X) +
1

2
‖Y −X‖2F (9)

is given by the following singular value thresholding

X∗ = Wγ,d(Y) = USγ,d(Σ)VT (10)

where Y = UΣVT is the SVD of Y, σj(X) denotes the j-th
singular value of X and Sγ,d(Σ)jj = max (Σjj − γd, 0).

We then analyzing the optimization of the proposed models,
the objective function of the proposed MCTF and NC-MCTF
are listed as follows:

f(X,G,Y) =

3∑
n=1

αn
2
‖Y − Gn ×n Xn‖2F + τn ‖Xn‖*

+ λn ‖Gn‖Λn,* ,
(11)

f(X,G,Y) =

3∑
n=1

αn
2
‖Y − Gn ×n Xn‖2F + τn ‖Xn‖log

+ λn ‖Gn‖Λn,log .

(12)

The minimization of the proposed models are two com-
plicated optimization problems, which are difficult to solve
directly. Here, we adopt the block successive upper-bound
minimization (BSUM) [44] to solve them.

According to the proximal operator [45], for the k-th
iteration, the update can be written as follows:

Proxf (S,Sk) = arg min
S

f (S) +
ρ

2

∥∥S − Sk∥∥2

F , (13)

where ρ > 0 is the proximal parameter, S = (X,G,Y) and
Sk =

(
Xk,Gk,Yk

)
.

Let Sk1 =
(
Xk,Gk,Yk

)
, Sk2 =

(
Xk+1,Gk,Yk

)
, Sk3 =(

Xk+1,Gk+1,Yk
)
. By BSUM, (13) can be rewritten as fol-

lows:

Xk+1 = Proxf
(
X,Sk1

)
= arg min

X
f
(
X,Gk,Yk

)
+
ρ

2

∥∥X−Xk
∥∥2

F ,

Gk+1 = Proxf
(
G,Sk2

)
= arg min

G
f
(
Xk+1,G,Yk

)
+
ρ

2

∥∥G − Gk∥∥2

F ,

Yk+1 = Proxf
(
Y,Sk3

)
= arg min

Y
f
(
Xk+1,Gk+1,Y

)
+
ρ

2

∥∥Y − Yk∥∥2

F .

(14)

1) Update Xn with fixing others: By introducing one
auxiliary variable Zn, the Xn-subproblem in (14) can be
rewritten as

arg min
Xn,Zn

3∑
n=1

(
αn
2
‖Y − Gn ×n Xn‖2F + τn ‖Zn‖* or log

+
ρn
2

∥∥Xn −Xk
n

∥∥2

F), s.t.,Xn = Zn.

(15)

Based on the augmented Lagrange multiplier (ALM) method,
the above minimization problem (15) can be transformed
into no-contrined problem, and be solved by SVT (V-A) and
WNNM operator (10):

Zk+1
n = D τn

ρn
(Xk

n + ΓX
n /ρn), n = 1, 2, · · · , N ; (16)

Zk+1
n = W τn

ρn
,ε

(
Xk
n + ΓX

n /ρn
)
, n = 1, 2, · · · , N. (17)

Xk+1
n = (αnG

T
nGn + 2ρIn)−1[αnG

T
nY(n)

+ µn(
Zk+1
n − Γkn/µn + Xk

n

2
).

(18)

where (16) for MCTF, (17) for NC-MCTF. Based on the
ALM method, the multipliers are updated by the following
equations:

ΓX
n = ΓX

n + Xn − Zn. (19)

2) Update Gn with fixing others: By introducing an auxil-
iary variable, the Gn-subproblem can be rewritten as

arg min
Gn

3∑
n=1

(
αn
2
‖Y − Gn ×n Xn‖2F + λn ‖Jn‖Λn,*

+
ρn
2

∥∥Gn − Gkn∥∥2

F), s.t.,Gn = Jn.
(20)
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By using the ALM and SVT operator (V-A), one can also
obtain the solutions:

nĴ
k+1,(q)
n = D 1

ρn

(
nÛ (q)

n

)
, q = 1, 2, · · · , p. (21)

Then, the (k + 1)-th updating of J k+1
n can be obtained via

inverse Fourier transform

J k+1
n = ifft

(
nĴ k+1

n , [ ], n
)
. (22)

Similarly, the Jn related subproblem can be solved by the
WNNM operator (10), i.e.,

nĴ
k+1,(q)
n = W 1

ρn
,ε

(
nÛ (q)

n

)
, q = 1, 2, · · · , p. (23)

Then, the (k + 1)-th updating of J k+1
n can be obtained via

inverse Fourier transform

J k+1
n = ifft

(
nĴ k+1

n , [ ], n
)
. (24)

With other variables fixed, the minimization subproblem for
Gn is also convex and has the following closed-form solution

Gk+1
n = fold

((
Yk

(n)

(
Xk+1
n

)T
+ 2ρn(

Jk+1
n −ΓGn/ρn+Gk

n

2 )
)

(
Xk+1
n

(
Xk+1
n

)T
+ 2ρnIn

)†)
,

n = 1, 2, · · · , N.
(25)

Finally, the Lagrangian multiplier can be updated by the
following equations

ΓGn = ΓGn + Gn − Jn. (26)

3) Update Y with fixing others: The update of Yk+1 can
be written explicitly as

Yk+1 = PΩc

(
3∑

n=1

αn fold n

(
Gk+1
n Xk+1

n + ρnY
k
(n)

1 + ρn

))
+ F ,

(27)
where F is the observed data; PΩ is an operator defined in
subsection II.

B. Complexity Analysis

The proposed algorithms for the proposed MCTF and NC-
MCTF are summarized as Algorithm 1. Further, we discuss the
complexity of the proposed algorithms. Complexity Analysis:
The cost of computing Xn is O

(
Inr

2
n + Inrnsn + r2

nsn
)
;

calculating Zn has a complexity of O
(
Πj 6=nIj × r2

n

)
;

the complexity of updating Jn is O
(
Inr

2
n

)
; calculating

Gn, n = 1, 2, 3, in both MCTF-based solver and NC-MCTF-
based solver, have a complexity of O(I1I2I3(log(I1I2I3) +∑3
n=1 min(In, In+1))), where we define I4 = I1; calculating

Y has a complexity of O(
∑N
n=1 rnInsn). Then, the total

complexity of the proposed algorithms can be obtained by
counting the complexity of the above variables. For easily
viewing, we list the total complexity of the proposed models
as follows:

O(3Inr
2
n + 3Inrnsn + 3r2

nsn + I1I2I3(log(I1I2I3)

+

3∑
n=1

min(In, In+1))).
(28)

Algorithm 1 :Algorithm for the proposed MCTF and NC-
MCTF based tensor low-rankness measure.

1: Input: The observed tensor F ; The set of index of
observed entries Ω; The given n-rank, r = (r1, r2, r3);
stopping criterion ε.

2: Outpot: the completed tensor.
3: Initialize: X0

n = Z0
n = 0,G0

n = J 0
n = 0,ΓX

n = 0,ΓGn =
0, n = 1, 2, · · · , N ; µmax = 106, ρ = 1.5, Y = PΩ(F),
and k = 0.

4: Repeat until convergence:
5: Update X,Z,G,J ,Y,ΓX,ΓG via

1st step: Update Zn of MCTF via (16) or Zn of
NC-MCTF via (17)
2nd step: Update Xn via (18)
3rd step: Update Gn via (25)
4th step: Update Jn of MCTF via (22) or Jn of
NC-MCTF via (24)
5th step: Update Y via (27)
6th step: Update the parameter via (19), (26)

6: Check the convergence condition:
‖Yk+1−Yk‖F
‖Yk‖F

< ε.

By comparison, the costs of TNN at each iteration
is O (n1n2n3 log n3 + n1n2n3 min (n1, n2)). The costs of
TMac is O ((r1 + r2 + r3)n1n2n3) at each iteration, where
r1, r2 and r3 respectively denote the estimated rank
of the three unfolded matrices. The costs of PSTNN
is O

(
n1n2n3 log (n3) + n3 min

(
n1n

2
2, n2n

2
1

))
. The costs

of FTNN is O (wn1n2n3 (n3 + min (n1, n2))). The costs
of MF-TV is O

(
I3r

2
3 + 2I3r3s3 + 3r2

3s3 + r3s3 log s3+∑
n 6=3

(
2Inr

2
n + 3Inrnsn + 2r2

nsn
))

.

C. Convergence Analysis

For the case of using nuclear norm as the rank approxi-
mation, due to nuclear norm being the convex approximation
of rank function, the convergence can be established easily.
For the case of using the non-convex log norm as the rank
approximation, although log-norm is not convex, it is a qua-
siconvex function. Therefore, the convergence of the resulting
algorithm can also be established under the BSUM [44, 45]
framework.
Lemma 1 [44, 45]. Given the problem arg min f(x), s.t. x ∈
X , where X is the feasible set. Assume h

(
x, xk−1

)
is an

approximation of f(x) at the (k−1)th iteration, which satisfied
the following conditions:

1) hi (yi, y) = f(y),∀y ∈ X ,∀i;
2) hi (xi, y) ≥ f (y1, . . . , yi−1, xi, yi+1, . . . , yn) ,
∀xi ∈ Xi,∀y ∈ X ,∀ii;

3) h′i (xi, y; di)|xi=yi = f ′(y; d), vi = (0, . . . , di . . . 0)

s.t. yi + di ∈ Xi,∀i;
4) hi (xi, y) is continuous in (xi, y) ,∀i;

(29)
where hi (xi, y) is the sub-problem with respect to the ith
block and f ′(y; d) is the direction derivative of f at the point
y in direction d. Suppose hi (xi, y) is quasiconvex in xi for
i = 1, 2, · · · , n. Furthermore, assume that each sub-problem
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argminhi
(
xi, x

k−1
)
, s.t. x ∈ Xi has a unique solution

for any point xk−1 ∈ X . Then, the iterates generated by
the BSUM algorithm converge to the set of coordinatewise
minimum of f .
Theorem 1. The iterates generated by (13) converge to the set
of coordinatewise minimizers.
Proof. According to the notations in (13) and (14), we give
the notions for convenience

g(S,Sk) = f (S) + ρ
2

∥∥S − Sk∥∥2

F ,

g1

(
X,Sk1

)
= f

(
X,Ak,Yk

)
+ ρ

2

∥∥X−Xk
∥∥2

F ,

g2

(
A,Sk2

)
= f

(
Xk+1,A,Yk

)
+ ρ

2

∥∥A−Ak
∥∥2

F ,

g3

(
Y,Sk3

)
= f

(
Xk+1,Ak+1,Y

)
+ ρ

2

∥∥Y − Yk∥∥2

F .
(30)

It is easy to verify that g
(
S,Sk

)
is an approximation and a

global upper bound of f(S) at the k-th iteration, which sat-
isfies the following conditions: (1) gi(Si,S) = f(S),∀S, i =
1, 2, 3; (2) gi(S̄i,S) ≥ f

(
S1, . . . , S̄i, . . . ,S3

)
,∀S̄i,∀S, i =

1, 2, 3; (3) g′i(S̄i,S;Mi)S̄i=Si = f ′(S;Mi),∀Mi =
(0, . . . ,Mi, . . . , 0); (4) gi(S̄i,S) is continuous in (S̄i,S), i =
1, 2, 3; (5) For nuclear norm, nuclear norm is convex, therefore
gi(i = 1, 2, 3) is also convex with respect to X,A. For
the case of non-convex log norm, it is not convex, but it
is a quasiconvex, so gi(i = 1, 2, 3) is quasiconvex with
respect to X,A and Y and has a unique solution, where
S = (S1,S2,S3) = (X,A,Y). To sum up, all assumptions
in Lemma 1 are satisfied, and the iterates generated by (13)
converge to the set of coordinatewise minimizers.

VI. NUMERICAL EXPERIMENTS

Three types of public tensor datasets, i.e., video, MRI and
hyperspectral image, are selected for verification experiments
to evaluate the performance of the proposed model. Five state-
of-the-art techniques were proposed between 2013 and 2020,
i.e., five tensor completion models related to the proposed
models: TMac (2013) [26], MF-TV method (2016) [45], TNN
(2016) [33], PSTNN (2020) [34] and FTNN (2020) [35]. These
were chosen for comparison.

Two types of standards for evaluation: qualitative visual
evaluation of the restored data, five widely used quantitative
picture quality indices (PQIs, PSNR [46], SSIM [47], FSIM
[48], ERGAS [49] and SAM [50]) were utilized to assess the
quality of the restored tensor. All experiments were performed
on MATLAB 2018b, Intel Core i7@2.2 GHz and 64.0 GB
RAM. For a tensor Y ∈ RI1×...×IN , The SR can be defined as
SR = Snumber∏N

n=1 In
, where Snumber denotes the number of sampled

entries, and Ω represents the index set. The sampled entries are
chosen randomly from a tensor Y by a uniform distribution.

A. MRI

In this subsection, to further verify the versatility of the
proposed models for different datasets, We conducted exper-
iments on cubical MRI data2 with size 150 × 150 × 181.
SRs are set as follows: 5%, 10%, 20% and 30%. Here, we set
the rank to (T1, T2, T3), where T1, T2, T3 denote the number

2http://brainweb.bic.mni.mcgill.ca/brainweb/selection normal.html

TABLE II
AVERAGED PSNR, SSIM, FSIM AND ERGAS OF RECOVERED RESULTS

ON MRI BY MF-TV, TMAC, FTNN, PSTNN, TNN, OUR MCTF AND
NC-MCTF AT DIFFERENT SAMPLING RATES. BEST VALUES APPEAR IN

BOLDFACE.

SR =0.05
method noisy MF-TV TMac FTNN PSTNN TNN MCTF NC-MCTF
PSNR 10.258 12.332 20.51 22.540 15.859 18.218 22.951 23.698
SSIM 0.228 0.099 0.45 0.508 0.224 0.27 0.528 0.534
FSIM 0.473 0.52 0.711 0.732 0.642 0.646 0.771 0.775

ERGAS 1030.203 814.747 339.385 268.839 545.77 434.774 277.105 258.370
SR = 0.1

method noisy MF-TV TMac FTNN PSTNN TNN MCTF NC-MCTF
PSNR 10.492 15.406 21.411 27.641 22.061 22.535 29.592 31.597
SSIM 0.241 0.25 0.531 0.805 0.482 0.536 0.814 0.884
FSIM 0.511 0.587 0.732 0.885 0.764 0.78 0.883 0.912

ERGAS 1002.8 584.827 308.655 165.366 275.473 266.753 128.252 101.607
SR = 0.2

method noisy MF-TV TMac FTNN PSTNN TNN MCTF NC-MCTF
PSNR 11.003 27.062 22.33 31.783 29.152 28.571 35.550 36.471
SSIM 0.271 0.737 0.586 0.907 0.804 0.802 0.950 0.960
FSIM 0.564 0.84 0.754 0.938 0.895 0.891 0.953 0.960

ERGAS 945.583 173.636 276.269 100.444 127.133 136.182 64.008 57.003
SR = 0.3

method noisy MF-TV TMac FTNN PSTNN TNN MCTF NC-MCTF
PSNR 11.582 36.355 23.077 34.806 32.608 32.481 37.783 38.531
SSIM 0.303 0.954 0.625 0.949 0.895 0.89 0.969 0.974
FSIM 0.597 0.962 0.773 0.963 0.939 0.939 0.969 0.974

ERGAS 884.608 52.449 252.057 70.542 85.845 87.312 49.323 45.028

of the largest 0.5% singular values of model-1, model-2 and
model-3, respectively.

For quantitative evaluation, Table II lists the PQI of all
recovery results in detail, and the best results are marked in
boldface. It can be seen from the table that the proposed NC-
MCTF obtains the best PQI and the second best is the proposed
MCTF, both of which are superior to competing methods of
the same type. Fig. 13 shows the detailed PSNR, SSIM and
FSIM of all slices of the restored data. The same advantages
of our model can also be seen here.

Furthermore, the proposed model is evaluated in terms of
visual evaluation. We choose the restoration result of a 0.1
sampling rate as an example. Fig. 8 shows the original MRI
data, sampled data and recovery results of different methods.
Compared with competing methods, the images recovered
by MCTF and NC-MCTF show richer details and clearer
structures. In addition, one can see from the figure that
the nonconvex metric, as shown in NC-MCTF, produces an
impressive improvement over MCTF.

B. Video

In this subsection, two public and classic video datasets,
i.e., ”Suzie” and ”Hall”3 with a size of 144 × 176 ×
150, are selected for comparative experiments to test the
performance of our model. SRs are set as 5%, 10% and 20%.
The proposed model was comprehensively evaluated from both
quantitative and qualitative perspectives. Here, we set the rank
to (T1, T2, T3), where T1, T2, T3 denote the number of the
largest 0.5% singular values of model-1, model-2 and model-
3, respectively.

Quantitative comparison: Table III and Table IV give the
detailed PQI of all recovered data at three sampling rates.
Boldface indicates the best PQI for each sampling rate. It
can be clearly seen from Table III and Table IV that among
all of the test methods, the proposed NC-MCTF obtains the

3http://trace.eas.asu.edu/yuv/
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Original Masked MF-TV TMac FTNN PSTNN TNN MCTF NC-MCTF

Fig. 8. Slices (7th and 83th) of recovered MRI by MF-TV, TMac, FTNN, PSTNN, TNN, our MCTF and NC-MCTF. Sampling rate is 10%.

Original Masked image MF-TV TMac FTNN PSTNN TNN MCTF NC-MCTF

Fig. 9. Slices (95th and 118th) of MRI recovered by MF-TV, TMac, FTNN, PSTNN, TNN, our MCTF and NC-MCTF. Sampling rate is 10%.

Original Masked MF-TV TMac FTNN PSTNN TNN MCTF NC-MCTF

Fig. 10. Slices (94th and 10th) of recovered video for ”Suzie” by MF-TV, TMac, FTNN, PSTNN, TNN, our MCTF and NC-MCTF. Sampling rates of first
and second rows are 5% and 10%, respectively.

best results, and the evaluation index obtained by the proposed
MCTF is superior to competitive methods.

Based on the above quantitative comparison, we conduct
a quantitative evaluation of the proposed model in terms of
vision. Fig. 10 and Fig. 11 show the partial slice images of
restored data under different sampling conditions. The closer
the restored result to the original reference image, the better
the performance of the corresponding model. It can be seen
from the figure that the proposed model achieved a significant
advantage in restored images, especially at low sampling rates.
When the sampling rate is low, the original image information
contained in the input observation image is scarce. If it is
desired to restore the data image relatively accurately, as at
high sampling rates, it is necessary to impose additional prior
constraints on the solution space of the optimization model to
increase the accuracy of the obtained solution, as the proposed
model does.

TABLE III
AVERAGED PSNR, SSIM, FSIM AND ERGAS OF RECOVERED RESULTS
ON VIDEO ”Suzie” BY TMAC, MF-TV, TNN, FTNN, PSTNN AND OUR
MCTF AND NC-MCTF AT DIFFERENT SAMPLING RATES. BEST VALUE

APPEARS IN BOLDFACE.

SR =0.05
method noisy MF-TV TMac FTNN PSTNN TNN MCTF NC-MCTF
PSNR 7.259 13.801 23.385 27.294 17.447 22.005 27.430 29.312
SSIM 0.009 0.094 0.622 0.465 0.192 0.563 0.766 0.822
FSIM 0.454 0.42 0.792 0.555 0.59 0.776 0.842 0.880

ERGAS 1057.282 501.117 167.927 129.27 327.678 194.844 104.955 84.698
SR = 0.1

method noisy MF-TV TMac FTNN PSTNN TNN MCTF NC-MCTF
PSNR 7.493 22.356 26.189 29.484 26.647 26.032 29.414 30.223
SSIM 0.014 0.605 0.74 0.585 0.68 0.692 0.801 0.830
FSIM 0.426 0.758 0.838 0.670 0.843 0.846 0.886 0.897

ERGAS 1029.096 196.059 124.369 95.472 117.104 124.923 84.888 77.398
SR = 0.2

method noisy MF-TV TMac FTNN PSTNN TNN MCTF NC-MCTF
PSNR 8.005 32.064 27.274 32.184 30.566 30.561 33.353 33.992
SSIM 0.02 0.872 0.782 0.721 0.829 0.831 0.906 0.917
FSIM 0.391 0.916 0.853 0.788 0.91 0.911 0.938 0.945

ERGAS 970.285 66.692 109.627 65.322 75.472 75.598 53.121 49.395
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Original Masked MF-TV TMac FTNN PSTNN TNN MCTF NC-MCTF

Fig. 11. Slices (21th and 104th) of recovered video for ”Hall” by MF-TV, TMac, FTNN, PSTNN, TNN, our MCTF and NC-MCTF. Sampling rates of first
and second rows are 5% and 10%, respectively.

TABLE IV
AVERAGED PSNR, SSIM, FSIM AND ERGAS OF RECOVERED RESULTS

ON VIDEO ”Hall” BY MF-TV, TMAC, PSTNN, TNN, FTNN, OUR MCTF
AND NC-MCTF AT DIFFERENT SAMPLING RATES. BEST VALUES APPEAR

IN BOLDFACE.

SR =0.05
method noisy MF-TV TMac FTNN PSTNN TNN MCTF NC-MCTF
PSNR 4.82 13.539 22.101 30.022 16.075 20.78 26.215 27.415
SSIM 0.007 0.412 0.675 0.792 0.36 0.636 0.856 0.882
FSIM 0.387 0.612 0.789 0.835 0.672 0.792 0.890 0.906

ERGAS 1225.779 452.351 168.866 98.14 335.52 195.315 105.199 91.728
SR = 0.1

method noisy MF-TV TMac FTNN PSTNN TNN MCTF NC-MCTF
PSNR 5.055 24.855 26.936 32.790 29.014 28.433 30.731 31.481
SSIM 0.013 0.829 0.854 0.854 0.892 0.905 0.933 0.942
FSIM 0.393 0.873 0.888 0.889 0.934 0.936 0.945 0.952

ERGAS 1193.075 131.422 97.185 59.375 77.395 82.259 62.923 57.805
SR = 0.2

method noisy MF-TV TMac FTNN PSTNN TNN MCTF NC-MCTF
PSNR 5.567 33.006 27.648 35.755 33.629 33.691 33.052 34.097
SSIM 0.025 0.94 0.869 0.902 0.961 0.962 0.956 0.962
FSIM 0.403 0.954 0.897 0.927 0.973 0.974 0.965 0.970

ERGAS 1124.737 50.971 89.271 44.184 46.123 45.851 48.414 43.191

(a) SR = 0.05 (b) SR = 0.1 (c) SR = 0.2

Fig. 12. PSNR, SSIM and FSIM of recovered video ”Suzie” by MF-TV,
TMac, FTNN, PSTNN, TNN, our MCTF and NC-MCTF for all slices.

C. Hyperspectral Image

In this subsection, we choose two HSI data to apply
simulation experiments. The first dataset is five sequential
images4 that were acquired by the Sentinel-2 MSI on 05/09,
15/09, 20/09, 5/10 and 15/10, 2018, in Belgium, with 20-m

4https://drive.google.com/file/d/1LlvUKtUWAKoF6R0igbREwvP2 Wfja9U
Bv/view

TABLE V
PSNR, SSIM, FSIM, ERGAS AND SAM OF RECOVERED RESULTS ON

HYPERSPECTRAL IMAGE ”Cuprite” BY MF-TV, TMAC, FTNN, PSTNN,
TNN, OUR MCTF AND NC-MCTF AT DIFFERENT SAMPLING RATES.

BEST VALUES APPEAR IN BOLDFACE.

SR =0.025
method noisy MF-TV TMac PSTNN TNN MCTF NC-MCTF
PSNR 7.666 26.115 21.25 13.387 22.783 31.091 31.208
SSIM 0.007 0.539 0.412 0.124 0.554 0.771 0.774
FSIM 0.48 0.765 0.755 0.613 0.775 0.842 0.847

ERGAS 1043.633 237.074 235.594 539.574 245.333 77.458 76.503
SAM 81.221 12.913 7.842 17.98 9.156 2.512 2.468

SR = 0.05
method noisy MF-TV TMac PSTNN TNN MCTF NC-MCTF
PSNR 7.779 34.684 28.945 20.621 26.579 34.739 35.481
SSIM 0.01 0.845 0.712 0.31 0.663 0.860 0.879
FSIM 0.471 0.915 0.846 0.735 0.836 0.907 0.920

ERGAS 1030.139 89.372 93.352 234.445 154.292 51.913 48.063
SAM 77.268 4.386 3.278 7.886 5.413 1.751 1.653

SR = 0.1
method noisy MF-TV TMac PSTNN TNN MCTF NC-MCTF
PSNR 8.013 40.888 35.627 35.51 35.015 37.449 37.623
SSIM 0.014 0.957 0.885 0.907 0.897 0.912 0.913
FSIM 0.451 0.978 0.931 0.951 0.943 0.943 0.943

ERGAS 1002.75 34.263 44.518 54.421 57.537 39.232 38.546
SAM 71.695 1.46 1.445 2.072 2.192 1.452 1.410

(a) SR = 0.05 (b) SR = 0.1 (c) SR = 0.2

Fig. 13. PSNR, SSIM and FSIM of recovered MRI by MF-TV, TMac,
PSTNN, TNN, our MCTF and NC-MCTF for all slices.

spatial resolution at 10 × 10 km. For this dataset, the HSIs are
corrupted by various types of missing areas with cloud shapes
(see the second row of Fig. 16).

The second dataset is the airborne visible/infrared imaging
spectrometer (AVIRIS) copper salt data5 with size 150 × 150

5http://aviris.jpl.nasa.gov/html/aviris.freedata.html
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TABLE VI
AVERAGED PSNR, SSIM, FSIM AND ERGAS OF RECOVERED RESULTS

ON COLOR VIDEO BY SMF-LRTC AND OUR MODEL AT DIFFERENT
SAMPLING RATES.

SR =0.1
Method PSNR SSIM FSIM ERGAS
Sampled 7.475 0.025 0.466 1095.701

SMF-LRTC 18.241 0.498 0.733 400.4275
NC-MCTF 29.563 0.860 0.924 93.960

SR =0.15
Method PSNR SSIM FSIM ERGAS
Sampled 7.724 0.033 0.453 1064.745

SMF-LRTC 27.073 0.800 0.895 187.139
NC-MCTF 34.248 0.948 0.970 51.979

× 210. The SRs are set as follows: 0.025, 0.05 and 0.1. Here,
the missing values are also randomly sampled, and we set the
rank to (T1, T2, T3), where T1, T2 and T3 denote the number
of the largest 0.5% singular values of model-1, model-2 and
model-3, respectively. Because the FTNN did not perform HSI
experiments, the original article of the FTNN did not describe
the parameter settings of the HSI dataset; therefore, in this
subsection, we will not perform comparison experiments on
the FTNN.

Table V lists the PQIs of the results restored by all the test
models at three different SRs. It can be clearly seen that the
two proposed methods obtain the best PQIs among all of the
test methods. Fig. 16 and Fig. 17 show the visual results of the
ground truth, simulated cloud-covered/missing area, recovery
results of TMac, MF-TV, PSTNN, TNN and the proposed NC-
MCTF.

D. Color Video Data

Based on the aforementioned 3-D video, MRI and HSI
data completion testing, we further consider applying the
proposed model to 4-D data. Here, we focus on color videos:
Akiyo 6, which has a size of 144 × 176 × 50 × 3. One
of the original frames is shown in Fig. 14. The proposed
model is compared with a low-rank tensor completion model
using smooth matrix factorization (SMF-LRTC) [20] at two
sampling rates: 10% and 15%. SMF-LRTC only shows results
on 3-D data; therefore, to implement SMF-LRTC, each color
frame with size h×w×3×k is reshaped to a (hw)×3×k tensor
[43, 51]. Fig. 14 provides a visual comparison of the original
frame, the sampled frame, and the results reconstructed by
SMF-LRTC and the proposed model. One can observe that
SMF-LRTC completes most missing elements but still fails
on some local patches, e.g., the hair of the person and the
white number on the TV. Table VI lists all of the PQI values.
The proposed model outperforms SMF-LRTC with respect
to PSNR, SSIM, ERGAS and is slightly higher than SMF-
LRTC. It is also worth noting that the advantages of our model
are more obvious at a low sample rate, e.g., 0.1, which is
consistent with the experimental results on the previous three-
dimensional data.

6http://trace.eas.asu.edu/yuv/

(a) Original (b) 85% Masked (c) SMF-LRTC (d) NC-MCTF

Fig. 14. One slice (1st) of completed color video ”Akiyo” by NC-MCTF
and SMF-LRTC. Sampling rate is 15%.

Fig. 15. Visual comparison (18th, 8th, 2nd bands) of ADMM-ADAM [52]
and proposed NC-MCTF on Ottawa dataset.

TABLE VII
AVERAGED PSNR, SSIM, UIQI, ERGAS AND SAM OF ALL RECOVERED
BANDS ON HYPERSPECTRAL IMAGE ”Ottawa” BY ADMM-ADAM AND

PROPOSED NC-MCTF WITH MASKED STRIPES.

PQI of the masked 11-60th bands
Method Basis PSNR (↑) SSIM (↑) UIQI (↑) ERGAS (↓) SAM (↓)

ADMM-ADAM ADMM+DL 45.503 0.998 0.997 0.288 0.926
NC-MCTF Tensor theory 47.185 0.942 0.95 3.678 10.081

PQI of all the 172 bands
ADMM-ADAM ADMM+DL 42.248 0.947 0.985 1.552 0.926

NC-MCTF Tensor theory 60.203 0.985 0.985 1.984 10.081

E. Comparison with Deep Learning

With the successful application of deep learning-based
methods in image processing tasks, deep learning has also
been introduced to tensor completion. To claim the superiority
of the proposed method, an experimental comparison with the
latest techniques is necessary. Therefore, in this subsection,
we compare the proposed model with the latest tensor com-
pletion technique combining the advantages from both convex
optimization and deep learning, i.e., ADMM-ADAM [52, 53].
The selected dataset Ottawa with a size of 256× 256× 172
is masked with a stripe, the stripe patterns are set as [52],
and 50 continuous bands are masked with stripes, where
bands 11-13 are completely missing. For a fair comparison,
in this subsection, all employed datasets, mask patterns and
evaluation metrics are the same as in [52]. As shown in Fig.
15 and Table VII, both the proposed method and ADMM-
ADAM successfully reconstruct the masked image.

F. Parameter selection and running-time analysis

Since the proposed method consists of two balanced terms,
i.e., τn ‖Xn‖* or log+λn ‖Gn‖Λn,* or log, which need parameters
to trade off them, it is necessary to discuss the issue of
setting the parameter appropriately. To reduce the workload
of adjusting parameters, we fix one of τn and λn (to enhance
the generalization ability of the parameters. Here, we set the
same τn and λn for different n) and then indirectly adjust
the ratio of the two, i.e., C = τn

λn
. In this subsection, we

provide some experiments with real tensor data to analyze
this problem. We set the sampling rate to 0.05, 0.2 and 0.3.
Under the above three different sampling rates, Fig. 18 visually
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Original Cloud-covered NC-MCTF TMac MF-TV PSTNN TNN

Fig. 16. Sentinel-2 MSI multitemporal data sequence cloud removal experiments (20-m spatial resolution; 10 × 10 km; five temporal images) over Mechelen
in Belgium.

Original 95% Masked MF-TV TMac PSTNN TNN MCTF NC-MCTF

Fig. 17. One slice of recovered HSI ”Cuprite” by MF-TV, TMac, PSTNN, TNN, our MCTF and NC-MCTF. Sampling rate is 5%.

TABLE VIII
RUNNING TIME (IN MINUTES) OF TMAC, MF-TV, TNN, FTNN, PSTNN,
PROPOSED NC-MCTF AND DEEP-LEARNING-BASED ADMM-ADAM ON

VIDEO Suzie.

Dataset Size ADMM-ADAM TNN TMac FTNN PSTNN MF-TV NC-MCTF
Video-Suzie 144× 176× 150 0.07 1.1 0.3 4.6 1.2 17.1 27.8

shows the performance of the proposed method under different
settings of C. In addition, for the given rank r = (r1, r2, r3) of
the blind mode-n product decomposition, we configure it by
using an adaptive rank estimation metric, i.e., approximating
the rank of mode-n rn according the numbers of the largest
0.1%− 1% singular values [26, 45, 54, 55].

Table VIII lists the running times. For all of these large-scale
datasets, all tested methods can complete the reconstruction
in less than 30 minutes. Although the proposed NC-MCTF
is slower than MF-TV because the modal decomposition and
factorial low-rank constraints are parallel for each mode, we
can accelerate the proposed algorithm by computing in parallel
to compute each mode at the same time.

VII. CONCLUSIONS

In this paper, based on basic tensor decomposition theory,
we defined a novel tensor decomposition to explore the
multimode low-rank structure of underlying tensors. Then, we
studied the structural characteristics of the factors obtained by
the decomposition and proposed a novel tensor low-rankness
measure. Furthermore, we performed nonconvex relaxation on
the submeasure and obtained a better low-rankness measure.

(a) SR=0.05 (b) SR=0.2 (c) SR=0.3

(d) SR=0.05 (e) SR=0.2 (f) SR=0.3

Fig. 18. Performance variation of proposed method in terms of NC-MCTF
on different C and different sampling rates.

We developed an effective method to calculate the optimiza-
tion problem corresponding to the proposed model and estab-
lish the convergence of our algorithm. Numerical experiments
verified our theory, and the results of hyperspectral imaging,
MRI and video proved that our algorithms can recover a
variety of low-rank tensors with significantly fewer samples
than the compared methods. It is also worth noting that rank
estimation is the key to the LR-based metric but also a
challenge. Therefore, in the future, it is necessary to design
a fully adaptive rank approximation model with respect to
different data to make the LR model effective to industry.
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