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Abstract: Within the broader context of improving interactions between artificial intelligence and
humans, the question has arisen regarding whether auditory and rhythmic support could increase
attention for visual stimuli that do not stand out clearly from an information stream. To this end, we
designed an experiment inspired by pip-and-pop but more appropriate for eliciting attention and
P3a-event-related potentials (ERPs). In this study, the aim was to distinguish between targets and
distractors based on the subject’s electroencephalography (EEG) data. We achieved this objective
by employing different machine learning (ML) methods for both individual-subject (IS) and cross-
subject (CS) models. Finally, we investigated which EEG channels and time points were used by
the model to make its predictions using saliency maps. We were able to successfully perform the
aforementioned classification task for both the IS and CS scenarios, reaching classification accuracies
up to 76%. In accordance with the literature, the model primarily used the parietal–occipital electrodes
between 200 ms and 300 ms after the stimulus to make its prediction. The findings from this research
contribute to the development of more effective P300-based brain–computer interfaces. Furthermore,
they validate the EEG data collected in our experiment.

Keywords: electroencephalography; machine learning; classification; P300; event-related potential

1. Introduction

The interaction between humans and artificial intelligence (AI) still lacks the level
of engagement and synchronization that symbolizes the interactions between humans.
The primary goal of the WithMe project (The WithMe project is a research project funded
by the Research Foundation Flanders (FWO). More information can be found at https://
researchportal.be/en/project/withme-making-human-artificial-intelligence-interactions-
more-entraining-and-engaging, accessed on 1 November 2023.) is to thoroughly study the
processes that occur in the human brain during joint activities with another individual,
such as working towards shared objectives [1]. The brain signals collected in this study
were primarily indicative of attention but also of emotion and reward. The purpose of this
research was to determine relevant electroencephalography (EEG) features indicative of
attention using machine learning (ML).

To this end, a specific experiment was designed. Temporal audiovisual integration
and support of visual attention by sound was well demonstrated in the pip-and-pop
experiment [2]. The pip-and-pop experiment is based on a visual search, which does not
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lead to a strong visually evoked potential. Moreover, as we expected that the rhythmic
presentation of target stimuli also affects working memory, the task was replaced with a
modified digit-span task, where five target digits had to be remembered and reported in
our experiment [1]. This task involves visual attention, working memory, and sequence
recall. To investigate the role of attention, we directly measured the brain activation
by means of EEG. Specifically, event-related potentials (ERPs) have been shown to be
excellent tools for studying attention [3,4]. Risto Näätänen was a pioneer in this domain,
as they studied the connection between ERPs and attention, which led to the discovery
of (auditory) mismatch negativity ERP [5–8]. Additionally, research has shown that the
amplitude of P300 is directly related to the amount of attentional resources available for
stimulus processing [8–11]. The P300 ERP is observed to be elicited for deviant stimuli in a
sequence of standard stimuli, where the deviant stimuli are in some way more relevant
to the presented task [12–14]. In our experiment, we thus expected that the targets would
elicit a P300 ERP. Research showed that the P300 actually consists of two subcomponents:
P3a and P3b [15]. P3a generally reaches its peak around 250 ms to 280 ms after a stimulus
and is associated with attention-related brain activity [16]. On the other hand, the P3b peak
can vary in latency, lying between 300 ms and 500 ms post-stimulus [15]. P3b is elicited by
improbable events, provided that the improbable event is somehow relevant to the task at
hand [17]. In our experimental setting, we expected to elicit a P3a, as the target stimuli were
not scarce (there are approximately 50% targets and 50% distractors), and our experiment
was designed to evoke attention. We did not expect to elicit a P3a for distractors, as subjects
should not pay attention to them.

The goal of this work was to accurately classify whether a target or distractor stim-
ulus was presented to the subject based on the subject’s EEG data. For this purpose, we
applied different existing ML methods to classify EEG data and investigate which method
performed best on our specific use case. As we expected to elicit attention when a target
was shown (and not when a distractor was shown), the trained ML was effectively an
attention detector. We expected the attention to manifest itself in the form of a P3a ERP,
and therefore we expected that the model would base its predictions on the presence of a
P3a peak. Detecting P3a signals and, more broadly, P300 signals has a wide range of applica-
tions [18,19], particularly in P300-based brain computer interfaces (BCIs) [20], for example,
in spellers [21–23] and intelligent home control systems [24,25]. These applications can be of
great help for patients suffering from amyotrophic lateral sclerosis (ALS) or spinocerebellar
ataxia, as they can enable them to communicate in a daily environment [21,23,26,27]. In
the literature, a wide array of techniques have been reported for classifying and detecting
P300 [28]. Some techniques rely on a data transformation and subsequently use logistic
regression to classify the transformed data, for example, xDAWN + RG [29–32]. Recently,
deep learning approaches, primarily based on convolutional neural networks (CNNs),
for example, EEGNet [33–35], have also gained in popularity [36–38]. Finally, as EEG data
are essentially heavily correlated multivariate time series, it is possible to apply standard
time series classification techniques as well [39–41].

Building BCIs that are trained on multiple subjects and generalize well to previously
unseen subjects holds significant value [42]. Indeed, BCIs often need to be retrained or at
least calibrated for the end user [43], which is a costly and user-unfriendly process [44,45].
However, due to intersubject variability in EEG data, training models that generalize to
multiple-subjects (cross-subject (CS) models) is a harder task than training models for one-
subject (individual subject (IS) models) [44–46]. For this reason, we also investigated the
hypothesized drop in performance when transitioning from IS to CS models. Additionally,
the ML models should be able to make predictions in real time, as this is essential in
real-world BCI applications.

Finally, we analyzed which EEG channels and time points were used by our models
to make its predictions and checked whether these align with the expected P3a attention
signature. However, ML models such as CNNs are considered “black boxes”, as no clear
explanation exists for the decisions made by these models [47]. The rapidly emerging
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and improving field of explainable AI (xAI) aims to tackle these issues by providing
insights into ML models’ decision-making processes. Some xAI techniques that are often
used to gain insights into EEG classification models are local interpretable model-agnostic
explanations (LIME) [48,49], DeepLIFT [33,50,51], and saliency maps [52–54], among others.

In summary, we aimed to enhance the interaction between humans and AI and de-
signed a novel experiment for this purpose. Specifically, we considered building a ML
model to recognize targets shown to a subject, which equates to creating an attention detec-
tor. These models should ideally generalize well to previously unseen subjects. The primary
contributions of this study are:

• Training of state-of-the-art classification methods to accurately predict target and
distractor stimuli based on EEG data.

• Analysis of the performance difference between IS and CS models.
• Investigation into which EEG channels and time points were important for the model

predictions, using xAI.

Ultimately, the contributions of this research collectively advance our understanding
of human–AI interaction and will aid in the development of more effective BCIs and their
associated applications.

The remainder of this paper is structured as follows: Section 2.1 introduces the
WithMe experiment and dataset, while Section 2.2 explains the data preprocessing routine.
Section 2.3 illustrates the classification problems and provides a description of the classifi-
cation methods used in this study. Section 3 presents the results and provides an in-depth
analysis of the best-performing model. This section also contains an extensive discussion
of the achieved results. Finally, in Section 4, we draw conclusions and provide possible
directions for future research.

2. Materials and Methods

In this section, we describe the WithMe dataset that was analyzed using acMLin this
study. We then define the preprocessing steps that were applied to the EEG data. Finally,
we present the classification problem and the classification methods and metrics that we
used to tackle this problem.

2.1. The WithMe Experiment

A total of 42 young adults participated in the experiment (21 women, 21 men; mean
age 23.64± 2.69 years). They were recruited through the university network and through
the social and professional networks of the authors. All subjects declared to have normal
or corrected to normal vision and showed normal hearing (<25 dB hearing loss) for the
frequencies used in the experiment based on a standard pure tone audiometry hearing test.
To mitigate the potential influence of age and/or intelligence, the subject’s age range was
limited to young adults under 30 years, and they were only accepted if they were enrolled
in or had finished some form of higher education.

Before starting the experiment, subjects had to fill in a questionnaire that asked for
general background information to identify some personal characteristics. For example,
subjects were asked if they ever enrolled in some form of musical education and/or were
an active musician. More details about the questionnaires and their extensive analyses are
described in [1].

The experiment consisted of a modified digit-span task. A target digit was presented,
followed by either no, one, or two distractor digits; another target; etc. One sequence of
digits always consisted of five targets and five distractors, although the subjects did not
know this a priori. After one sequence of targets and distractors was presented, the subject
had to report all targets in the correct order that they were presented to them. The targets
and distractors were presented as an encircled number x ∈ {0, 1, 2, . . . , 9}. Additionally,
a distractor could show up as an empty circle. Target digits were colored black (rgb(0, 0, 0)),
while distractor digits were displayed in dark gray (rgb(x, x, x), x ∈ [50, 75]), with the exact
value of x determined individually to ensure the difference between targets and distractors
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was just noticeable. An example sequence is shown in Table 1. In total, 30 different
sequences of targets and distractors were created, which were shown to the subject under
four different conditions in a pseudo-randomized order [1]. Depending on the condition,
the subject received either no support (Con1), visual rhythmic support (Con2), auditory
nonrhythmic support (Con3) or visual rhythmic and auditory support (Con4), as shown in
Figure 1b. This added up to a total of 120 sequences shown to the subject. In conditions
with auditory support (Con3 and Con4), targets were accompanied by a 500 Hz tone
burst, which lasted 50 ms. In conditions with rhythmic support, targets were presented
with a fixed time interval of exactly 1.25 s between them. In these rhythmic conditions,
the sequence of digits was preceded by five rhythms inducing stimuli to induce the subject
with the rhythm. In Con2, this was achieved using empty black circles, while in Con4
auditory, tone bursts were used to induce the rhythm. For more detailed information about
the experiment, we refer the reader to the original paper that describes the experiment and
behavioral analysis [1].

Table 1. An example of a sequence of stimuli shown to the subject, with the targets in black and
distractors in gray. In conditions with rhythm (Con2 and Con4), this sequence was preceded with
five empty circles to induce the rhythm. The subject was expected to report the target digits and
ignore the distractors.

Sequence Targets Distractors

3 9 2 4 3 3 1 2 8 39432 23 18

Fp1
AF7 AF3

F1F3F5F7

FT7FC5 FC3 FC1

C1C3C5T7

TP7CP5 CP3 CP1

P1P3P5P7P9
PO7 PO3

O1
Iz
Oz
POz

Pz

CPz

Fpz Fp2
AF8AF4AFz

Fz F2 F4 F6 F8

FT8FC6FC4FC2FCz

Cz C2 C4 C6 T8

TP8CP6CP4CP2

P2 P4 P6 P8P10
PO8PO4

O2

(a)

NO RHYTHM

YE
S

N
O
AUDIO

YES

Con3 Con4

Con1 Con2

(b)
Figure 1. (a) The WithMe experiment used 64 electrodes, organized according to the 10-10 system.
Figure made using [55]. (b) Depending on the condition, the subject received no support (Con1),
visual rhythmic support (Con2), auditory nonrhythmic support (Con3), or visual rhythmic and
auditory support (Con4).

2.2. Dataset and Preprocessing

During this experiment, EEG data were sampled at 2048 Hz using the standard 64-
electrode EEG 10-10 system, as shown in Figure 1a. Thereafter, standard EEG preprocessing
techniques were applied. The data were re-referenced to the average of both earlobes, just
one earlobe if the other one was too noisy, or another pair of channels if both earlobes
were badly recorded or too noisy. In the case of bad channels, these were identified and
removed. EEG data were notch-filtered at the line frequency (50 Hz) and its multiples,
after which a bandpass filter from 0.2 Hz to 100 Hz was applied. The data were split into
epochs, ranging from 0.2 s prestimulus to 1.0 s poststimulus, resulting in 1.2 s epochs.
Independent component analysis (ICA) was applied to the epoched data. Any components
that represented artifacts were removed through visual inspection of the ICA components.
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During the previous steps, some channels were marked as bad channels. Instead of
dropping these channels, we chose to interpolate them using their neighboring channels,
as the former would result in an inconsistent number of channels across sequences and
subjects. The interpolation was performed using the MNE-Python package (All Python
packages that were used in this work can be found in Table A1, together with their version
number and citation.) [55]. Finally, the data were downsampled to 50 Hz, as this reduced
computation time, decreased file read/write time, and saved memory, while generally
leading to little or no loss of information [56]. We should however note that, based on
the Nyquist theorem, this limits the highest frequency that can be accurately represented
to half of the sampling frequency, i.e., 25 Hz. This preprocessing routine ideally resulted
in 600 target epochs, 600 distractor epochs, and 300 induction epochs for each of the
42 subjects. However, during preprocessing, some epochs were rejected for various reasons,
for example, an excessive number of bad electrodes or too much noise. On average, less
than 0.6% of the epochs were rejected per subject.

As mentioned in Section 1, we expected to observe a P3a ERP when subjects saw a
target stimulus. The P3a ERP is characterized by a positive voltage deflection between
250 ms and 280 ms after the stimulus, although the exact timing can vary [16,57,58]. As our
experiment used visual stimuli, we expected the P3a ERP to be the most pronounced in
the parietal-occipital region of the brain [56]. Figure 2 shows the evoked response for one
subject, averaged over all parietal-occipital electrodes, as indicated in the figure inset. We
observed a clear positive deflection between 200 ms and 300 ms after the stimulus, in line
with our expectations.

0.2 0.0 0.2 0.4 0.6 0.8 1.0
Time (s)

3

2

1

0

1

2

3

4

Am
pl

itu
de

 (
V)

×10 6
Evoked response averaged across parietal-occipital electrodes

Target
Distractor

Figure 2. The evoked response for targets and distractors for one subject. The data were averaged
over all electrodes of the parietal-occipital region in the brain, as indicated in the figure inset.

2.3. Classification Problem

The models trained in this study considered a two-class classification problem (target
versus distractor) and took single-trial EEG epochs as input to predict a binary label. As the
data were downsampled to 50 Hz, one epoch contained 60 time steps, for 64 electrodes.
This means that the input was of shape (N, 64, 60), with N being the number of epochs. It
is important to note that it was impossible to obtain 100% accuracy for this model. Indeed,
the model made a prediction based on the subject’s assessment of a stimulus, and it is
possible that a subject did not correctly recognize all targets and distractors. As the ground
truth labels were based on the predefined labels of the experiment, it is possible that there
was a slight mismatch between the labels and the subject’s perceived class. Nevertheless,
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we assumed that this problem was rare, meaning that commonly used metrics, for example,
accuracy, provided a valid interpretation.

Ideally, the models should be able to generalize to previously unseen subjects. To in-
vestigate this, we trained the models in two ways: models trained on IS and models trained
on (nearly) all subjects, also called CS models. The former was evaluated using a randomly
sampled test set with a standard 80% train and 20% test set split, while the latter were
evaluated using a leave-one-out (LOO) methodology. In general, models perform better
when trained and tested on individual subjects [59]. This can be attributed to the variability
in subject’s EEG data elicited by the same stimuli. However, in practice, EEG classifica-
tion models should ideally extrapolate to previously unseen subjects. For example, BCIs
often need to be calibrated for new end users, which usually takes 20 to 30 min [60–62].
Therefore, it is interesting to investigate which model architectures are best suited to build
subject-independent classifiers.

2.3.1. Classifiers

To solve this classification problem, we trained and evaluated different existing ML
models. Different methodologies for classifying EEG data exist. For example, we can extract
features from EEG data and use these extracted features as the input to a classifier. These
features can, among others, be extracted from the time domain, frequency domain, or the
time–frequency domain, or through methods such as principal component analysis [63,64].
Such methods are referred to as feature-based methods. Another common approach uses
raw or preprocessed EEG data as the input to the classifier. In this approach, commonly
referred to as end-to-end methods, the classifier itself extracts relevant features from the
data during training and uses these features to classify a sample. As both methodolo-
gies are interesting approaches, we used methods belonging to both approaches. In this
study, we applied four distinct classifiers and compared the results on a novel data set.
An overview of the classifiers and their methodologies is presented in Table 2. First, we
applied the xDAWN pipeline, which has demonstrated significant success in several EEG
classification tasks [29,30]. For example, the BCI challenge organized as part of the IEEE
Neural Engineering Conference 2015 was won by an xDAWN-based approach [30]. In this
study, we employed a similar approach, consisting of first estimating two sets of xDAWN
spatial filters, one for each class (target and distractor) [29]. Subsequently, the grand aver-
age evoked potential of each class iwass filtered using the corresponding filters, after which
they were concatenated to each of the trials. Then, the covariance matrix of each resulting
trial was used as a feature for the next steps in the pipeline [65,66]. The next step was to
project the covariance matrices on the tangent space using a Riemannian metric, as de-
scribed in [31,32]. After these feature extraction steps, a classifier was used to make the
final predictions. Based on [30,67], we used logistic regression [68]. For the remainder of
this paper, we refer to this method as xDAWN + RG (xDAWN + Riemannian Geometry).
Calculating the xDAWN covariance matrices and projection to the tangent space were
performed using the PyRiemann package [67].

Table 2. Overview of the methods that were used in this study, together with their original target
domain and methodology.

Model Target Domain Methodology

xDAWN + RG [29] EEG feature-based
MiniRocket [40] time series feature-based

Rocket [39] time series feature-based
EEGNet [33] EEG end-to-end

The second method we used was EEGNet [33]. EEGNet exhibits strong performance
on a variety of EEG-based classification tasks, such as P300 ERP classification [33,53] and
motor imagery classification [69]. Whereas the previous method used extracted features as
the input to the classifier, EEGNet performs both the feature extraction and classification.
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EEGNet is a deep learning model, more specifically, a CNN. As its name suggests, EEGNet
is optimized for classifying EEG data by employing a set of specific design choices. First,
it uses temporal convolutions to learn frequency filters [33]. As suggested by the authors,
the length of the temporal kernel used in these convolutions is set to half the sampling
rate, which allows the model to capture frequency information at frequencies of 2 Hz and
higher [33]. Second, depthwise convolutions are used to learn frequency-specific spatial
filters. In this context, depthwise convolutions have two main advantages. First, they
noticeably reduce the number of trainable parameters, since these convolutions are not
fully connected to the previous layer; instead, they are connected to each feature map
individually. This induces the second, EEG-specific advantage: the model learns spatial
filters for each temporal filter, which enables the efficient extraction of frequency-specific
spatial filters [33]. The last convolutional part consists of a separable convolution, which is a
combination of depthwise and pointwise convolution. The former learns how to summarize
individual feature maps in time, while the latter learns how to optimally combine the feature
maps [33]. Finally, all features are passed to a dense layer for classification. More details on
the EEGNet architecture can be found in [33]. We used the standard EEGNet-8,2 layout,
which means that the model learns 8 temporal filters and 2 spatial filters per temporal filter.

The first two methods were designed for EEG specifically. However, since EEG data
are essentially heavily correlated multivariate time series, it was interesting to study the
results of a more general method designed to classify such time series. To this end, we
applied random convolutional kernel transform (Rocket) [39]. Based on the success of
CNNs for time series classification, Rocket uses random convolutional kernels combined
with simple linear classifiers. This novel combination achieved state-of-the-art performance
on the UCR time series archive using only a fraction of the computational cost of existing
methods [39,70]. As a follow-up to Rocket, the authors also designed MiniRocket [40]. They
claimed that MiniRocket can be trained up to 75 times faster than Rocket, while achieving
nearly the same performance. MiniRocket distinguishes itself from Rocket primarily by
reducing the degree of randomness that Rocket generates, resulting in MiniRocket being
almost deterministic [40]. Since methods used to classify EEG data, such as EEGNet,
can be very computationally expensive, it was worth exploring the effectiveness of less
computationally expensive methods. We used the Rocket and MiniRocket implementations
in the sktime package and combined them with the ridge regression classifier implemented
in scikit-learn, as suggested by the authors [39,40,68,71].

2.3.2. Metrics

To allow the comparison of various approaches, it is essential to have predetermined
performance metrics. We focused on three metrics that are widely used in the EEG classifi-
cation literature: accuracy, F1 score, and area under the receiver operating characteristic
curve (ROC AUC) [72]. First, the accuracy states the number of correctly classified samples
across both classes. Second, the F1 score assesses the predictive performance of a model via
calculating the harmonic mean of the precision and recall metrics. The equations used to
calculate the accuracy and F1 score are given in Equations (1) and (4), respectively, where we
use the following abbreviations: true positive (TP), false positive (FP), true negative (TN),
and false negative (FN). Third, by plotting the true positive rate against the false positive
rate for different classification thresholds, we obtained the ROC curve. The ROC AUC
is defined as the area under this curve and provides a measure for how well a classifier
can distinguish between true and false samples or, in our case, targets and distractors,
respectively. Finally, we also assessed the required training time and model complexity of
all models.

accuracy =
TP + TN

TP + TN + FP + FN
(1)

precision =
TP

TP + FP
(2)
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recall =
TP

TP + FN
(3)

F1-score = 2 · precision× recall
precision + recall

=
2TP

2TP + FP + FN
(4)

3. Results and Discussion
3.1. Individual Subject Models

The performance of the models, assessed using the metrics introduced in Section 2.3.2,
is shown in Table 3 and Figure 3. Using an EEG-specific model architecture benefits the
performance of IS models. While xDAWN + RG and EEGNet perform equally well, they
demonstrate superior accuracy, F1 score, and area under the curve (AUC) in comparison to
MiniRocket and Rocket. As expected, MiniRocket achieves slightly inferior performance
compared to Rocket. However, MiniRocket’s training time was 15 times faster on our
dataset. Notably, while xDAWN + RG and EEGNet exhibit equal performance, xDAWN +
RG is significantly less computationally expensive than EEGNet. On central processing
units (CPUs) alone, EEGNet’s training time is nine times longer. Although training times
can be accelerated for EEGNet using (expensive) graphics processing units (GPUs), even
when using an NVIDIA GTX 1080 GPU, EEGNet still requires 2.5 times as long to train as
xDAWN + RG.

Table 3. Classifier test performance for individual subject models, averaged across the 42 subjects.
The best performances are indicated in bold.

Model Accuracy F1 Score AUC

xDAWN + RG 0.76± 0.04 0.76± 0.04 0.84± 0.05
MiniRocket 0.69± 0.05 0.70± 0.05 0.76± 0.06

Rocket 0.72± 0.05 0.72± 0.05 0.79± 0.06
EEGNet 0.76± 0.04 0.76± 0.04 0.83± 0.04

xDAWN+RG Rocket MiniRocket EEGNet
Classifier

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Ac
cu

ra
cy

Classification accuracy (individual subjects)

xDAWN+RG Rocket MiniRocket EEGNet
Classifier

0.55

0.60

0.65

0.70

0.75

0.80

0.85

F1
 s

co
re

Classification F1 score (individual subjects)

xDAWN+RG Rocket MiniRocket EEGNet
Classifier

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

AU
C

Classification AUC (individual subjects)

Figure 3. Violin plots of the test accuracy, F1 score, and AUC for models trained on individual subjects.

3.2. Cross-Subject Models

Similar results were obtained for the CS models, where EEG-specific approaches
perform better than Rocket and MiniRocket, as shown in Table 4 and Figure 4. However,
in this scenario, EEGNet outperforms xDAWN + RG. We hypothesized that this can be
attributed to EEGNet’s added complexity and its greater number of parameters compared
to xDAWN + RG. This additional capacity is more likely to be able to learn features that
extrapolate well to previously unseen data points.



Sensors 2023, 23, 9588 9 of 17

Table 4. Classifier performance for cross-subject models. Every subject was used as a test subject
once; we report the average across all test sets. The best performances are indicated in bold.

Model Accuracy F1 Score AUC

xDAWN + RG 0.73± 0.04 0.72± 0.06 0.81± 0.05
MiniRocket 0.69± 0.04 0.69± 0.05 0.76± 0.05

Rocket 0.72± 0.05 0.71± 0.06 0.79± 0.05
EEGNet 0.76± 0.04 0.76± 0.05 0.84± 0.05
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Figure 4. Violin plots of the test accuracy, F1 score, and AUC for cross-subject models.

3.3. Individual-Subject Models vs. Cross-Subject Models

As we discussed in Section 2.3, we expected the performance of the IS models to be
better than that of the CS models. Despite having access to a significantly larger amount
of data, constructing a CS model is a considerably more challenging task. To illustrate the
performance disparity between the two, refer to Table 5 and Figure 5, which showcase
the performance difference by subtracting the CS model’s performance from that of the
IS model. EEGNet, MiniRocket, and Rocket exhibit similar performance for both IS and
CS models. However, the xDAWN + RG model demonstrates a noticeable decrease in
performance. Given the lower absolute performance of the (Mini)Rocket models compared
to EEGNet and xDAWN + RG, we focus on the latter for the remainder of this discussion.
We hypothesize that the inferior performance on CS models when using xDAWN + RG can
be attributed to its simpler and lightweight nature. Furthermore, xDAWN + RG works by
first calculating the evoked responses for all classes. These can differ significantly from
subject to subject, both in P3a peak height and in time [27,73,74]. The convolutional nature
of EEGNet likely enables it to capture the temporal dynamics of the elicited responses more
effectively across different subjects. It is important to note that the CS models have access
to a significantly larger corpus of training data than the IS models, which is part of the
reason that they keep up reasonably well with the IS models.

3.4. Analysis of the EEGNet Cross-Subject Model

We then conducted further investigation into the CS EEGNet model. We conducted
this analysis for the EEGNet model, as it performed the best in both the IS and CS scenarios.
Furthermore, we included this analysis only for the CS models, as they are the most useful
in practice due to their generalization capabilities. However, the conclusions are similar for
the IS models.

Table 5. Drop in performance, calculated by subtracting the test performance of cross-subject models
from that of individual subject models. The best performances are indicated in bold.

Model Accuracy F1 Score AUC

xDAWN + RG 0.03 ± 0.02 0.04 ± 0.04 0.03 ± 0.02
MiniRocket 0.00 ± 0.03 0.01 ± 0.03 −0.00 ± 0.03

Rocket 0.00 ± 0.02 0.01 ± 0.04 −0.00 ± 0.03
EEGNet 0.00 ± 0.02 0.00 ± 0.02 −0.01 ± 0.03
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Figure 5. Violin plots of the drop in performance, calculated by subtracting the test performance of
cross-subject models from that of individual subject models.

3.4.1. Confusion Matrices

First, we investigated whether the model focused on the correct features to make
a prediction. For example, it is possible that we trained a sound detector instead of a
target/distractor model. Indeed, conditions Con3 and Con4 contained auditory clues for
the target. Theoretically, the model could rely solely on the activation in the auditory
stimuli processing region of the brain and achieve acceptable performance. For example,
if the model performs perfectly on Con3 and Con4, while predicting all trials belonging
to Con1 and Con2 to be distractors (due to the absence of auditory stimuli), it would
achieve an accuracy of approximately 75%. The confusion matrices in Figure 6 negate this
assumption. The model performs comparably in detecting distractors under all conditions.
However, the model performs slightly better at identifying targets correctly for Con3 and
Con4. The accuracies for specific conditions, shown in Table 6, also reflect this. Indeed,
the accuracies for conditions Con3 and Con4 are higher than the accuracies for Con1
and Con2. We hypothesized that the inclusion of auditory support causes an additional
signature in the EEG data, making it easier for the model to recognize targets. Additionally,
it was already confirmed through a previous analysis that the subjects were able to recall
the targets better in conditions with auditory support [1].
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Figure 6. Confusion matrices for the cross-subject EEGNet model, split across the four conditions
defined in Figure 1b. The confusion matrices were obtained by aggregating all the test predictions of
the CS models.
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Table 6. The test accuracies of the CS EEGNet model for the different conditions.

Condition Accuracy

Con1 0.74
Con2 0.71
Con3 0.81
Con4 0.77

3.4.2. Saliency Maps

Next, we explored the electrodes and timings that are predominantly used by our
models for making predictions. Trivially, we expected that the model would not use the
prestimulus (t < 0) EEG data. As deep learning methods such as EEGNet are inherently
black box models, we resorted to xAI methods to obtain (interpretable) insights into the
model. A possible technique is a saliency map, which is a visual representation that
highlights the degree of importance of regions or features in an input sample in the
model prediction [52]. To generate a saliency map, the gradient of the model output
with respect to the input sample is computed using backpropagation [53]. More specifically,
this process involves fixing the weights of the trained model and propagating the gradient
with respect to the layer’s inputs back to the first layer that receives the input data. Figure
7 shows such a saliency map. This saliency map illustrates the electrodes and timings
that had the greatest average impact on the model prediction when identifying a sample
as a target. It was computed by first calculating the average saliency map for each test
subject individually, then normalizing these saliency maps, and ultimately taking the
average across all 42 subjects. In Figure 8, the same information is repeated, displayed as
a topographic map at five time points. From Figures 7 and 8, we can see that our model
predominantly used the parietal-occipital electrodes and time points between 200 ms
and 300 ms after the stimulus to make its prediction, which is what we expected. We
also investigated the saliency maps under different conditions but noticed no significant
difference between the conditions.
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Figure 7. Saliency map for epochs labeled as targets using the cross-subject EEGNet model. We
averaged normalized saliency maps over all 42 test subjects for the CS model.
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(a) −0.200 ms (b) 0.200 ms (c) 0.300 ms (d) 0.400 ms (e) 0.700 ms

Figure 8. The saliency map from Figure 7, shown as a topographic map at five different times. A deeper
shade of red indicates a larger gradient. At t = −0.200 ms and t = 0.700 ms, the gradients are near
zero, indicating that the model does not use these timings. Contrary, for t ∈ {0.200, 0.300, 0.400}ms,
there is a large gradient in the parietal-occipital region of the brain.

4. Conclusions and Future Work

The WithMe project has led to the collection of a large, novel EEG dataset that can be
used to create ML methods to automatically detect attention using P3a ERPs in single-trial
data. This is of great importance to BCIs, as they often rely on the P3a, r, more broadly,
the P300 ERP and have a wide range of applications.

We successfully achieved the goal in this study, which was to classify target and
distractor stimuli based on the subject’s EEG data. To achieve this goal, we studied four
classification methods that differed significantly in origin and complexity. We investigated
the performance of these methods both as IS and CS models, with the latter being the
most practically relevant due to its generalization capabilities. For the IS models, xDAWN
+ RG and EEGNet obtained an accuracy of 76%, outperforming MiniRocket and Rocket.
While EEGNet was able to obtain the same accuracy of 76% in the CS case, the accuracy of
xDAWN + RG dropped to 0.73%. We attribute this difference to the larger complexity of
EEGNet, which likely enables it to generalize better to previously unseen subjects. The drop
in performance between IS and CS models was not as pronounced as we expected it to be
and was even nonexistent for EEGNet. We attributed this to the fact that the CS models had
approximately 42 times more training data available. The EEGNet CS model performed
slightly better on samples recorded under conditions Con3 and Con4, which were the
conditions that included auditory support. While EEGNet achieved the best performance
overall, it also had the highest model complexity (highest number of trainable parameters)
and took the longest time and most computing resources to train. However, all four
models were able to make predictions in real time. This property is essential for real-world
human–AI interaction experiments and applications.

Finally, the application of xAI enabled us to investigate which EEG channels and time
points were used by the otherwise black box EEGNet CS model to make its predictions.
Indeed, using saliency maps, we concluded that the model primarily based its prediction on
the values of the electrodes in the parietal-occipital region between 200 ms and 300 ms after
the stimulus. This is in line with our hypotheses, as we expected to elicit an attention-related
P3a ERP in the parietal-occipital region of the brain when the subject saw a target digit.

In conclusion, we achieved the goal of accurately classifying targets and distractors
based on a subject’s EEG data. At the same time, our work contributes to the development
of more effective BCIs and their applications. Finally, we validated the EEG data collected
in the WithMe experiment.

While this study provides valuable insights into attention detection using EEG data, it
is important to acknowledge some limitations. For example, as mentioned in Section 2.3,
part of the data used to train the model were labeled incorrectly, as the ground truth labels
were based on the predefined labels of the experiment rather than the subject’s perceived
class. A possible solution is to limit the data to samples where the entire sequence is
reported correctly. However, this means that we would lose a lot of data, which would
in turn decrease the performance of the models. Alternatively, we could remove all “bad
sequences”, where a bad sequence is defined as a sequence in which none of the targets
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were remembered correctly. This could be caused by either incorrectly identifying the
stimuli or by bad memory management, despite correctly identifying the targets and
distractors. However, the number of answers that did not include at least one of the target
digits (regardless of its place in the sequence) is negligible.

In future work, an experiment dedicated to attention should be used to circumvent
the limitations regarding bad labels, as described in Section 4. This would allow for labels
that exactly correspond to the subject’s perception of a stimulus, which would in turn lead
to more accurate attention detectors. The ultimate goal could then be to use this attention
detector in a BCI to detect whether a subject paid attention. In case they did not, the BCI
could repeat the sequence or stimulus to make sure that the subject can act accordingly. This
could also improve learning systems, that is, systems that know whether a student actually
paid attention to the provided information [75,76]. Regarding the training and optimization
of ML models, it would be interesting to include an exhaustive feature selection procedure
to allow the ML model to focus on the (most) relevant features. Additionally, we want to
explore other ways to enable CS generalization, for example, using transfer learning [77,78].
This could further increase the generalization performance of all methods. In particular,
this has the potential to elevate the performance of lightweight models such as xDAWN
+ RG to that of the computationally expensive EEGNet. While this work focuses on
the detection of attention using epoched EEG data, the experiment can also be used to
study working memory [1]. Indeed, the complete sequence EEG data should permit an
investigation regarding working memory and whether it is influenced by auditory and/or
rhythmic support.
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CPU Central processing unit
CS Cross-subject
EEG Electroencephalography
ERP Event-related potential
FN False negative
FP False positive
GPU Graphics processing unit
ICA Independent component analysis
IS Individual subject
LIME Local interpretable model-agnostic explanations
LOO Leave-one-out
ML Machine learning
RG Riemannian geometry
ROC AUC Area under the receiver operating characteristic curve
TN True negative
TP True positive
xAI Explainable AI

Appendix A. Package Versions

Table A1. The versions of the Python packages used in the project.

Package Version Reference

python 3.9.13 [80]
MNE 1.2.1 [55]

pyriemann 0.3 [67]
torch 1.13.1 [81]

sktime 0.17.1 [71]
scikit-learn 1.1.3 [68]
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