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A B S T R A C T   

Introduction: With increasing use of robotic surgical adjuncts, artificial intelligence and augmented reality in 
neurosurgery, the automated analysis of digital images and videos acquired over various procedures becomes a 
subject of increased interest. While several computer vision (CV) methods have been developed and implemented 
for analyzing surgical scenes, few studies have been dedicated to neurosurgery. 
Research question: In this work, we present a systematic literature review focusing on CV methodologies spe-
cifically applied to the analysis of neurosurgical procedures based on intra-operative images and videos. Addi-
tionally, we provide recommendations for the future developments of CV models in neurosurgery. 
Material and methods: We conducted a systematic literature search in multiple databases until January 17, 2023, 
including Web of Science, PubMed, IEEE Xplore, Embase, and SpringerLink. 
Results: We identified 17 studies employing CV algorithms on neurosurgical videos/images. The most common 
applications of CV were tool and neuroanatomical structure detection or characterization, and to a lesser extent, 
surgical workflow analysis. Convolutional neural networks (CNN) were the most frequently utilized architecture 
for CV models (65%), demonstrating superior performances in tool detection and segmentation. In particular, 
mask recurrent-CNN manifested most robust performance outcomes across different modalities. 
Discussion and conclusion: Our systematic review demonstrates that CV models have been reported that can 
effectively detect and differentiate tools, surgical phases, neuroanatomical structures, as well as critical events in 
complex neurosurgical scenes with accuracies above 95%. Automated tool recognition contributes to objective 
characterization and assessment of surgical performance, with potential applications in neurosurgical training 
and intra-operative safety management.   

1. Introduction 

1.1. Background 

The digital revolution is a well-known phenomenon that emanated 
from the introduction of computers in healthcare in the late 80’s 
(DeTore, 1988; Giudice and Famà, 2020). At present, zettabyte is the 
scale on which healthcare data is expressed (Raju et al., 2020). In 2020, 
the total capacity of medical data was estimated at 2.314 zettabytes, 
equivalent of 2,314,000,000,000 gigabytes (Alsuliman et al., 2020a). At 

present, we have come to enter the era of big healthcare data. Despite 
the numerous prospects such data endows, there are also considerable 
hurdles associated with it’s processing (Panesar et al., 2020; Davenport 
and Kalakota, 2019). To this end, machine learning (ML), a subfield of 
artificial intelligence, and more recently, deep learning (DL), a specific 
type of ML, have gradually found their way into the healthcare system. 
These methods have the potential to improve diagnostic and prognostic 
operations, facilitate clinical decision-making, and improve the opera-
tive workflow (partial automation, intelligent robots, etc) (Dagi et al., 
2021). 
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Since the improvements of ML and DL-based data processing tech-
niques have made analysing the exponentially growing volume of 
medical data possible, this has sparked an increased interest in analysis 
of medical images such as magnetic resonance, computed tomography 
and ultrasound imaging but also of digital images and videos acquired 
from the surgical scene. 

1.2. Computer vision in the operating room 

Despite the numerous applications in non-interventional tasks (Raju 
et al., 2020; Senders et al., 2018a, 2018b, 2018c; Danilov et al., 2020a, 
2020b), the clinical implementation of ML in surgical care remains 
sparse, particularly in neurosurgery. Notwithstanding, there are 
numerous opportunities for ML within this sector of healthcare. One 
possible application includes the analysis of the surgical scene for the 
purpose of quality assessment. Variance in the provided medical care 
was shown to be a substantial source of errors and complications and 
may entail a significant physical, mental and economic burden to the 
patient (Stopa et al., 2019; Meyer et al., 2022; Rolston and Bernstein, 
2015; Rolston et al., 2014; Dewan et al., 2018). In this context, it is 
estimated that approximately 20% of medical errors in neurosurgery 
occur during an intervention, of which 18–28% emanate from technical 
or procedural errors (Meyer et al., 2022; Rolston and Bernstein, 2015; 
Rolston et al., 2014). Surgical videos have proven to be a valuable 
resource in procedural complication management and neurosurgical 
training (Sarkiss et al., 2016; Knopf et al., 2020). However, due to the 
unstructured nature of the data and lack of time and resources, quali-
tative and quantitative analysis proves cumbersome, ultimately leaving 
a large amount of this valuable data unused. Computer vision (CV), also 
known as machine vision, was gradually introduced with the aim of 
enabling automated surgical assessment. 

CV is the computer science which focuses on the use of algorithms 
that enable computers to analyse and understand graphic data by 
deriving meaningful information from digital images, videos and other 
visual inputs20–22. This offers different ways to identify and classify 
visual features, that may in turn serve as an objective and reproducible 
frame of reference for surgical performance evaluation and even in 
neurosurgical training. The comprehension of visual data is established 
through the use of image processing and pattern recognition (Wiley and 
Lucas, 2018). Depending on the sensor used, digital images are consti-
tuted by pixels which represent the color intensity (red/green/blue pixel 
values), grayscale intensity, infra-red reflectivity intensity, depth esti-
mation, etc. While these pixels may not carry much meaning individu-
ally, structures in an image take shape by looking at groups of pixels and 
can be detected by considering the patterns and relationships that 
neighboring pixels form with one another. Traditional CV techniques 
apply image processing algorithms on the matrix of pixel values to 
extract features such as edges, corners and textures that allow computer 
systems to recognize objects within a digital image (What Is Computer 
Vision). These handcrafted feature extraction techniques are nowadays 
successfully replaced by convolutional neural networks (CNN) ap-
proaches, a type of deep learning networks that works through a hier-
archy of interconnected neural network layers. These networks show 
state-of-the-art performance in CV, have a strong ability to extract 
complex features that express the image in more detail, and importantly, 
allow for learning the set of features directly from training data. 

In this paper we will not go into detail on the topic of the different 
learning techniques nor the specifics of various machine or deep 
learning models that can be applied. Instead, this paper addresses the 
current status, prospects and challenges in the development of CV 
models for video analysis in the neurosurgical field and feasibility of CV- 
assisted surgical performance evaluation. 

1.3. Fundaments of computer vision 

To further understand the basic principles of CV and interpretation of 

results we must first elucidate the 4 fundamental tasks that can be 
performed with CV-based image analysis. More precisely i) Classifica-
tion ii) Detection iii) Semantic segmentation and iv) Instance segmen-
tation (Fig. 1). 

1.3.1. Classification 
Classification involves the attribution of one or multiple labels to an 

image, for example: “there is a scalpel in this image”. Objects or struc-
tures are thus recognized in a categorical fashion at frame-level. 

1.3.2. Detection 
Contrary to classification, detection involves the attribution of one or 

multiple labels to a region of interest rather than the complete image. 
This localization remains rudimentary, given that the output is often a 
rectangular bounding box encompassing the object which may also 
include background areas that do not correspond to that structure. 

1.3.3. Semantic segmentation 
Segmentation is similar to detection in the sense that objects are 

classified as well as localized. However, in this case labels are attributed 
on a pixel-level. The resulting delineation of object only includes rele-
vant areas contained within the borders of an object and is therefore 
more precise than bounding-boxes. 

1.3.4. Instance segmentation 
It is important to note that semantic segmentation does not 

discriminate between different objects belonging to the same class. 
Instance segmentation differs from semantic segmentation in the sense 
that the process allows for recognition of multiple instances of same 
class, which are delineated separately. 

Essentially, the performance of any CV algorithm can be evaluated 
using a confusion matrix, in which the number of predicted labels is 
compared against the ground truth. The table shows the number of true- 
positive, false-positive, true-negative, and false-negative predictions, 
from which various system performance metrics can be derived. The 
situation becomes more complex when considering that some algo-
rithms typically output a number between 0 and 1, and that a user- 
chosen treshold is applied to assign the final label. Every threshold 
will lead to a new confusion matrix and therefor a new compromise 
between false positives and false negatives. Similarly, for algorithms 
aiming at localization, the performance can be evaluated by considering 
various cut-offs for the vicinity of the prediction and the ground truth. 

To ensure adequate measurement of the model performance, it is 
crucial to report suitable performance metrics, selected in accordance 
with the image analysis task. Adhering to the recommended terminology 
outlined within the report concerning the application of image pro-
cessing metrics by the international multidisciplinary consortium 
(Maier-Hein et al., 2022), one can distinguish six groups of performance 
metrics across the different CV functions:  

• Per-class counting metrics: a group of validation metrics capturing 
the performance of each class individually.  

• Multi-class counting metrics: a group of validation metrics capturing 
the performance of all classes as one performance metric value.  

• Multi-threshold metrics: On an operator curve, metrics are calculated 
as a function of a specific value or condition, characterising the 
trade-off or relationship between different evaluation metrics at 
specific thresholds. Rather than being based on a static threshold (e. 
g. for generating the confusion matrix), multi-threshold-based met-
rics integrate over a range of thresholds, allowing for an in-depth 
characterization of the systems performance.  

• Localization metrics: permit to quantify the correctness of object 
detection in an image interpretation results, measuring the corre-
spondence between predicted labels and the ground truth. 
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• Overlap-based metrics: permit to quantify the extent of overlap be-
tween predicted object map and the ground truth in object 
segmentation. 

• Boundary-based metrics: permit to quantify distance intervals be-
tween predicted object map and the ground truth in object 
segmentation. 

The recommended assessment metrics per function are summarized 
in Table 1 as described in the “metrics reloaded” framework (Maier-Hein 
et al., 2022). 

Table 1: Recommended performance metrics per function (adapted 
from Maier-Hein et al. (Maier-Hein et al., 2022). Note that the symbol 
"@" in the multi-threshold metrics is used to indicate a specific value or 
condition for a specific metric, thereby characterizing the trade-off or 
relationship between different evaluation metrics at specific probability 
threshold points on the Receiver Operating Characteristic (ROC) curves. 
For example, the term "Sensitivity@Specificity" means the value of 
Sensitivity when the Specificity reaches a specific threshold or value (e. 
g. specificity of 0.9). For a graphical explanation of the abovementioned 
metrics, please refer to the work of Maier-Hein et al. (Maier-Hein et al., 
2022). 

As the elementary tasks of classification, detection and segmentation 
provide a basic understanding of visual data, they also form the basis for 
higher-level image analysis. In surgery, recognition and localization of 
objects can serve for motion analysis of surgical instruments. Tool ve-
locity, acceleration and jerk are some common examples of handling 
metrics that can be derived from the localization of surgical instruments. 
Other functionalities include tool tip recognition, tool positioning and 
tool interactions. Similarly, recognition of anatomical structures can 
provide information on their shape (deformation, movement, interrup-
tion, etc). On a higher level, image analysis may also contribute to 
surgical task analysis by means of phase or step recognition. 

This could also allow to assess and appraise the surgical perfor-
mance, thereby facilitating efficient and deliberate surgical training. 

1.4. Surgical scene interpretation 

The potential of surgical data has already been confirmed by several 
studies in bariatric surgery, urology and ophthalmology, where CV was 
applied for the identification of human presence, instruments and crit-
ical anatomical structures. Understanding of the surgical scene served as 
an objective tool for surgical performance assessment, prediction of 
postoperative outcomes, improvement of the operative workflow (in the 
operating room as well as the operator) and detection of adverse events 
(Mascagni et al., 2021; Baghdadi et al., 2019; Rahbar et al., 2020; Ward 
et al., 2021b, 2021c; Hashimoto et al., 2019; Chadebecq et al., 2020; 
Shimizu et al., 2021; Padoy, 2019; Bamba et al., 2021a; Morita et al., 
2019a, 2019b; Zhang et al., 2020; Gong et al., 2021). Despite ample 
research in other surgical fields, studies of CV in neurosurgery have been 
limited, especially with regard to the analysis of operative videos. 
Possible explanations for this include the reduced availability of surgical 
videos, the lack of imminently deployable clinical applications and the 
high complexity of the neurosurgical scene and applied instruments. 

Although previous papers (Raju et al., 2020; Panesar et al., 2020; 
Senders et al., 2018a, 2018b, 2018c; Danilov et al., 2020a, 2020b; 
Alsuliman et al., 2020b; Layard Horsfall et al., 2021) have covered the 
different ML modalities in neurosurgery, none have provided an over-
view of these newly emerging CV models. Whether or not CV may 
adequately assess and reflect the quality of surgical performance in 
neurosurgery remains unclear. Moreover, as the field of ML continu-
ously evolves it becomes increasingly difficult to keep up with ad-
vancements, understand the significance of results or pitfalls of the 
applied technologies from a neurosurgeon’s perspective. 

Thus, the primary aim of this systematic study was to provide an 
overview of the state-of-the-art methodologies in CV, specifically 
focused on analysis of neurological images or videos. The secondary aim 
was a systematic comparison of the different model functions, training 
methods and performances so as to provide recommendations for the 
development of CV models for the neurosurgical field. Finally, we 
explore the feasibility and reliability of CV-based surgical performance 
assessment specificcally. 

Fig. 1. Fundamental outcomes of computer vision: A. (top left) illustrates how two micro forceps are recognized through classification of images on a frame-wise level. B. 
(top right) illustrates the coarse localization of the two micro forceps with bounding boxes through object detection. C. (down left) illustrates the detailed localization and 
mapping of the two micro forceps (green) by labelling all pixels pertaining to microforceps and background (purple) using semantic segmentation. D. (down right) illustrates the 
detailed localization of the two micro forceps (green & blue) as separate instances with respect to the background using instance segmentation. (For interpretation of the 
references to color in this figure legend, the reader is referred to the Web version of this article.) 
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2. Methods 

2.1. Search Strategy 

We performed a literature search on Web of Science, PubMed, IEE 
Xplore, Embase and SpringerLink up until March 31, 2023. Inclusion 
and exclusion criteria were established in accordance to the Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 
guidelines (Page et al., 2021). The goal of this literature review was to 
identify studies applying CV algorithms on any type of neurosurgical 
videos or images, for the purpose of achieving automatic recognition of 
surgical instruments, workflow, critical events and other possible 
derived functions. The key elements that were actively sought out 
included “neurosurgery”, “computer vision”, “instrument detection”, 
“phase detection”, “critical event detection”, “image analysis” and their 
respective synonyms. Papers were excluded if they contained no full 
text, the included data did not relate to neurosurgery, or if their objec-
tive was not related to the assessment of the surgical scene. Importantly, 
studies were omitted if analysis was not carried out automatically or 
performance metrics were not specified. 

Once search results were retrieved from all databases mentioned 
above, potential eligible papers were screened on their title and abstract 
and duplicates were removed concurrently. Articles that met all inclu-
sion criteria were subsequently reviewed in full before final inclusion. 

2.2. Data analysis and Synthesis 

The following data was extracted from the included papers: [1] 
Objective of the reported trial [2] Type of footage [3] Type of surgery 
[4] Subjects [5] Dataset size and accessibility [6] Tool types [7] Tool 
characterization features [8] Anatomical structures [9] Phases and steps 
[10] Model architecture [11] Annotation method [12] Data allocation 
[13] Hyperparameters [14] Model pre-training [15] Output perfor-
mance. Additionally, the availability of the model code was sought out 
for each study. 

We established an ad hoc 3-point scale to assess the overall quality of 
the study description with respect to the information given to reproduce 
the results, regardless of the quality of the model output results, 
underpinned by the completeness (complete/incomplete/unspecified) 
of reporting of [1] Data [2] Model architecture [3] Model hyper-
parameters and [4] Performance metrics.  

- High quality = all 4 topics fully reported  
- Moderate quality = 2 or 3 topics fully reported  
- Low quality = 1 or no topic fully reported, 4 topics incompletely 

reported, 1 or more topics unspecified 

Four essential performance metrics were compared (Sidey-Gibbons 
and Sidey-Gibbons, 2019; Khan et al., 2021a): Accuracy, Precision, 
Recall and Intersection over Union.  

Accuracy: used for classification and detection models   

- Definition Measures the ratio of correctly classified/detected frames/objects to all 
predictions.  

- Formula 
TP + TN

TP + TN + FP + FN
. 

Precision (= Positive Predictive Value): used for classification and detection models   

- Definition Measures the probability of a predicted classification/detection 
corresponding to the right frame/object.  

- Formula 
TP

TP + FP
. 

Recall (=Sensitivity): used for classification and detection models   

- Definition Indicates the model’s ability to correctly classify/detect all the frames of a 
phase/object.  

- Formula 
TP

TP + FN
. 

Intersection over Union: used for detection and segmentation models   

- Definition Measures the degree of correspondence between the predicted detection 
region and the ground truth.  

- Formula 
|ground truth ∩ bounding box|

|ground truth| + |bounding box| − |ground truth ∪ bounding box|
. 

Determining the outcome [TP, FP, TN, FN]:  
- In case of classification, the outcome of output labels is obtained by applying a 

specific descision threshold to the model output that determines whether or not a 
class label is assigned to an image.  

- In case of detection/segmentation, the outcome of the predicted bounding boxes/ 
regions is determined by means of a specific threshold for intersection over union of 
the prediction framework with the ground truth framework is used.  

The goal of the performance comparison was to examine how well 
CV models perform in recognizing objects in surgical images/videos at 
frame/object/pixel-wise level. However, as will be shown, the review of 
the collected studies revealed considerable heterogeneity in the data-
sets, model tasks and reported performance metrics used, impairing 
proper statistical analysis. Therefore, studies were compared in a 
descriptive manner per task type with respect to one specific perfor-
mance metric. 

3. Results 

The literature search (Fig. 2) across the different databases yielded a 
total of 941 results (Web of Science: 370, PubMed: 506, IEE Xplore: 161, 
Embase: 72, SpringerLink: 42). After discarding duplicate studies from 

Table 1 
Recommended performance metrics per function.  

Classification Detection Semantic 
segmentation 

Instance 
segmentation 

Multi-class counting 
metrics:  

Accuracy 
BA 
MCC 
WCK  

Per-class counting 
metrics:  

Sensitivity@PPV 
PPV@Sensitivity 
Specificity@Sensitivity 
Sensitivity@specificity 
Fβ score 
LR+

Multi-threshold metrics:  

AP 
AUROC 

Localization 
metrics:  

IoU 
IoR 
Centroid distance 
Point inside box/ 
mask/approx  

Per-class counting 
metrics:  

Sensitivity@PPV 
PPV@Sensitivity 
FPPI@Sensitivity 
Sensitivity@FPPI 
Fβ score  

Multi-threshold 
metrics  

AP 
FROC 

Overlap-based 
metrics  

DSC 
clDice 
Fβ score 
IoU  

Boundary- 
based metrics  

ASSD 
IoU 
HD 
MASD 
NSD 

Overlap-based 
metrics  

DSC 
clDice 
Fβ score 
IoU  

Boundary-based 
metrics  

ASSD 
IoU 
HD 
MASD 
NSD  

Per-class counting 
metrics:  

Sensitivity@PPV 
PPV@Sensitivity 
FPPI@Sensitivity 
Sensitivity@FPPI 
Fβ score 
Panoptic quality  

Localization 
metrics  

IoU 
IoR  

Multi-threshold 
metrics  

AP 
FROC 

Abbreviations | Balanced accuracy (BA); Matthews correlation coefficient 
(MCC); Weighed cohen’s kappa (WCK); Positive likelihood ration (LR+); 
Average precision (AP); Area under the receive operating characteristic curve 
(AUROC); Free-response receiver operating characteristic score (FROC); Inter-
section over union (IoU); Intersection over reference (IoR); Dice similarity 

F. Buyck et al.                                                                                                                                                                                                                                   



Brain and Spine 3 (2023) 102706

5

the respective sources, 416 records remained. A total of 126 papers were 
screened for the title and abstracts of which 84 records were further 
inspected in terms of their full text for potential eligibility. Through the 
process of proof-reading, 6 additional eligible studies were identified. In 
5 instances, papers were omitted from analysis because studies origi-
nated from an identical research project (Pangal et al., 2021a, 2022; 
Lalys et al., 2010; Philipp et al., 2021; Deepika et al., 2022). In final, 17 
studies were included, of which characteristics are summarized in 
Table 2. Qualitative assessment revealed that the quality of description 
was “low” in 2 studies, “moderate” in 12 studies and “high” in 3 studies 
(Fig. 3). 

3.1. Study descriptive 

The most common (53%) application of CV was the detection 
(Markarian et al., 2022; Philipp et al., 2022; Unadkat et al., 2022; 
Ramesh et al., 2021; Lee et al., 2021) or segmentation (Kalavakonda 
et al., 2019; Bouget et al., 2015; Deepika et al., 2023; Davids et al., 
2021a) of neurosurgical tools. In 40% of those studies, additional 
characterization of tool characteristics were determined to calculate 
surrogate metrics of surgical performance. In turn, these automated 
performance metrics served as a tool for automatic prediction of 
neurosurgical skills, task success, bloodloss and dynamic brain 

retraction. (Markarian et al., 2022; Philipp et al., 2022; Unadkat et al., 
2022; Ramesh et al., 2021; Lee et al., 2021; Kalavakonda et al., 2019; 
Bouget et al., 2015; Deepika et al., 2023; Davids et al., 2021b; Martin 
et al.). On the other hand, detection (Pangal et al., 2022; Zhou et al., 
2023; Tang et al., 2022; Staartjes et al., 2021) and segmentation (Martin 
et al.; Witten et al., 2022) of neuroanatomical structures was the second 
most (35%) common application of CV. Surgical workflow analysis by 
phase and step classification was established in only two (12%) studies 
(Khan et al., 2021b; Lalys et al., 2011). 

CV models were either trained on microscopic (47%) or endoscopic 
(30%) footage. In one study the model was trained on both microscopic 
and endoscopic footage. Only one study analyzed images from the 
neuroanatomical collection of The Neurosurgical Atlas (Witten et al., 
2022). In two studies the type of images was not specified. The most 
frequently analyzed procedures were cranial (ca. 56%) and endonasal 
(ca. 33%) interventions. Only 1 study included footage from spinal 
surgery (Philipp et al., 2022). In one studie the type of procedure was 
not specified. 

The median size of datasets was 19 videos (Q1 = 16, Q3 = 50). In the 
majority of cases, private datasets were established for model develop-
ment, except for the study by Pangal et al. (2022)), Bouget et al. (2015) 
and Zhou et al. (2023), who published the Simulated Outcomes 
following Carotid Artery Laceration (SOCAL) (Pangal et al., 2021), 

Fig. 2. Study selection according to PRISMA guidelines.  
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NeuroSurgicalTools (Bouget et al., 2016) and Microsurgical Aneurysm 
Clipping Surgery (MACS) (Weiss Open Data Server |) dataset, 
respectively. 

3.2. Algorithms and functionalities 

Having collected all data, applied algorithms and performances were 
assessed (Table 3). In terms of applied methods, our findings show that 
convolutional neural networks (CNN) were most frequently (65%) 
applied. This is a type deep learning network frequently used in image 
analysis tasks, in which visual information is processed by a sequence of 
convolutional kernels. Several different CNN architectures were applied 
in the reviewed studies, including Mask Region-CNNs (R–CNN) (Deep-
ika et al., 2022; Lee et al., 2021; Davids et al., 2021a; Tang et al., 2022), 
Faster R-CNNs (Philipp et al., 2022; Lee et al., 2021) or 
Uncertainty-based Dynamic CNNs (Philipp et al., 2022) for object 
detection and segmentation. In some instances, Recurrent Neural Net-
works (RNN) (Khan et al., 2021a; Pangal et al., 2022) were implemented 
in conjunction with a CNN to enhance the temporal resolution of the 
model through the integration of temporal relations between frames. 

Whereas these are all examples of two-stage object detectors of CNN, 

one-stage detectors included YOLO (Unadkat et al., 2022; Ramesh et al., 
2021) and SSD (Lee et al., 2021). As the name implies, one-stage 
detection models perform object classification and localization in a 
single stage, essentially through the mechanism of 
foreground-background discrimination (Zhang and Cloutier, 2022; Liu 
et al., 2016). Two-stage detection models on the other hand will boost 
their overall accuracy by first performing a region proposal procedure, 
where the image is scanned for regions of interest (ROI) that harbor 
potential relevant objects. In a second stage, object classification and 
localization is performed on the pre-defined ROI’s (Carranza-García 
et al., 2021). 

Other methods that were employed for image analysis, other than 
CNNs, included Support-Vector-Machines (SVM) (Bouget et al., 2015; 
Lalys et al., 2011) and Hidden Markov Models (HMM) (Lalys et al., 
2011), which are typically used for classifying tasks. The latter method is 
particularly relevant in cases where the temporal considerations hold 
significance (e.g. phase recognition). In contrast to the former studies, 
the more recent study of Zhou et al. (2023) utilized a Transformer model 
that, despite its conventional application in natural language processing 
(NLP), has recently gained interest in the field of CV (Liu et al., 2021; 
Dosovitskiy et al., 2020). 

Table 2 
Baseline characteristics of studies using CV for surgical scene analysis.  

Author Objective Type of 
footage 

Type of 
surgery 

Subject Dataset Tools Anatomical 
structures 

Phases 
(Steps) 

Dataset access 

Analysis of surgical Instruments 
Deepika et al., 

2023 
Recognition & 
characterization of 
neurosurgical tools 

Microscope Cranial Human 7 videos 5 – – – 

Markarian et al., 
2022 

Detection of neurosurgical 
tools 

Microscope 
Endoscope 

Cranial 
Endonasal 
Cataract 
Bariatric 

Human 39 693 
frames 

Undefined – – SOCAL 
NeuroSurgicalTools 
CaDISv2 
M2CAI16- 
toollocation 

Philipp et al., 
2022 

Recognition of 
neurosurgical tooltip 

Microscope Cranial 
Spinal 

Human 
Phantom 

16 
videos 

6 – – – 

Unadkat et al., 
2022 

Recognition & 
characterization of 
neurosurgical tools 

Endoscope Endonasal Cadaver 143 
videos 

4 1 – SOCAL 

David et al., 
2021 

Recognition & 
characterization of 
neurosurgical tools 
Classification of surgical 
skill level 

Microscope Cranial Phantom 19 
videos 

3 – – – 

Ramesh et al., 
2021 

Recognition & 
characterization of 
neurosurgical tools 

Microscope Cranial Human 32 
videos 

6 – – – 

Lee et al., 2021 Recognition & 
characterization of 
neurosurgical tools 

Undefined Undefined Undefined 950 
videos 

14 – – – 

Kalavakonda 
et al., 2019 

Recognition of 
neurosurgical tools 

Undefined Cranial Human 5 videos 4 – – – 

Bouget et al., 
2015 

Recognition of 
neurosurgical tools 

Microscope Cranial Human 14 
videos 

7 – – NeuroSurgicalTools 

Analysis of anatomy and critical events 
Zhou et al., 

2023 
Recognition of cerebral 
aneurysms 

Microscope Cranial Human 16 
videos 

– 1 – MACS 

Martin et al., 
2023 

Quantify retraction of brain 
tissue 

Microscope Cranial Human 37 288 
frames 

3 4 – – 

Pangal et al., 
2022 

Prediction of blood loss and 
hemorrhage control success 

Endoscope Endonasal Cadaver 143 
videos 

4 1 – SOCAL 

Tang et al., 2022 Recognition of blood loss Microscope Cranial Human 
Porcine 

12 600 
frames 

– 1 – – 

Witten et al., 
2022 

Neuroanatomical 
segmentation 

Still images – Cadaver 879 
images 

– 5 – – 

Staartjes et al., 
2021 

Recognition of anatomical 
structures 

Endoscope Endonasal Human 23 
videos 

– 3 – – 

Analysis of workflow 
Khan et al., 

2021 
Phase & step recognition Endoscope Endonasal Human 50 

videos 
– – 3 (7) – 

Lalys et al., 
2011 

Phase recognition Endoscope Endonasal Human 16 
videos 

– – 6 (0) –  
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Among the different studies, there was a wide variation in data 
allocation for training (50–90%), validation (7–12.5%) and testing 
(10–50%). Just under half of the models were pre-trained with (non- 
surgical) public datasets such as COCO and ImageNet. Only 6 studies 
included a cross-validation step in their model development. Model 
hyperparameters used for model training, were rarely mentioned and 
were therefore not further assessed. 

3.3. Model performances 

Following comparison of the model frameworks, study results were 
examined in more detail (Fig. 4). With regards to model performances, 
there was an important heterogeneity in the way authors reported out-
comes. Accuracy and precision was disclosed in resp. 9 and 10 out of 17 
studies, whereas Recall and IoU only in resp. 5 and 7 out of 17 studies. 
The remaining performance metrics (Dice coefficient, F1-score, AUC, 
etc.) were significantly underrepresented. 

3.3.1. Classification models 
In terms of phase & step classification accuracy, Lalys et al. (2010) 

(93%) demonstrated the highest performance, compared to Khan et al. 
(2021a) (phase: 91.25%, step: 75.69%). On the other hand, Khan et al. 
(2021a) demonstrated a precision ranging from 91.49% to 82.09% with 
the recall ranging from 89.23% to 71.98% with respect to phase and step 
detection. Lalys et al. (2010) did not provide any precision nor recall 
scores. 

3.3.2. Detection models 
In terms of accuracy, Tang et al. (2022) (89.60%) demonstrated 

slightly higher performances, compared to Zhou et al. (2023) (87.1%) 
and Pangal et al. (2022) (85.00%) for the detection of anatomical 
structures and critical events. On the other hand, the reported accuracies 
of Lee et al. (2021) (98.74–99.57%) for instrument detection surpasses 
the former results. 

With regard to anatomical structure and critical event detection, 
Zhou et al. (2023) demonstrated a precision of 79.40% at a recall of 
48.9% and Pangal et al. (2022) reported a precision of 79.00% at a recall 

Fig. 3. Quality assessment 
Stacked bar plots displaying the quality of the included studies according to the degree (complete = white; incomplete = light gray; unspecified = dark gray) of 
reporting data, model architecture, model hyperparameters and performance metrics. 
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Table 3 
Model architecture, development and performance metrics.  

Author Algorithm Annotation Allocation Hyperparameters Pre- 
training 

Cross- 
Validation 

Performance metrics 

Classification models 
Analysis of workflow 
Khan et al., 

2021 
CNN 
RNN 

Frame 
labelling 

Training: 80% 
Testing: 20% 

Undefined – – Accuracy: 91.25% 
(Phase) | 75.69% (Step) 
Precision: 91.49% (Phase) 
| 82.09% (Step) 
Recall: 89.23% (Phase) | 
71.98% (Step) 
F1 score: 91.25% (Phase) 
| 75.69% (Step) 

Lalys et al., 
2011 

SVM 
HMM 

Undefined Undefined Undefined – 10-fold cross 
validation 

Accuracy 93% 
Mean ER 7.1 ± 5.3% 

Detection models 
Analysis of anatomy and critical events 
Zhou et al., 

2023 
Shifted Windows 
Transformer Model (SWIN- 
T) 

Frame 
labelling 

Training: 87.5% 
Validation & 
testing: 12.5% 

Learning rate: 0.0003 and 
0.00003 
Epoch: 30 
Batchsize: 64 

ImageNet 4-fold cross- 
validation 

Accuracy 87.1% 
Precision 79.4% 
Recall 48.9% 
F1 score 58.9% 

Pangal et al., 
2022 

CNN (ResNet) 
RNN (LSTM) 

Bounding- 
box 

Training: 86% 
Testing: 14% 

Undefined ImageNet – Accuracy: 85% 
Sensitivity (Recall) 100% 
| Specificity 66% 
PPV (Precision) 79% | 
NPV 100% 
RMSE 295 ml (mean error 
− 57ml, R2 74%) 

Tang et al., 
2022 

Mask R–CNN 
Residual network 
backbone (ResNet50) 
FPN 
RPN 

Undefined Training: 80% 
Testing: 20% 

Learning rate: 0.001 
(− 0.0001 at i50) 
Iterations: 1000 
Weight decay: 0.0001 
Momentum 0.9 

COCO – Accuracy: 89.6 
Generalised IoU: 94.4% 
Precision: 
Porcine model: 94.40% 
Scalp incision: 84.44% 
Skull incision: 89.48% 
Dura matter-incision: 
90.46% 

Staartjes et al., 
2021 

CNN (U-Net) Centroid Training: 78% 
Validation & 
testing: 22% 

Learning rate: 0.001 
Epoch: 500 

– – Complete overlap: 36.1% 
Incomplete overlap: 
19.2% 
Incorrect overlap: 44.7% 

Analysis of surgical Instruments 
Markarian 

et al., 2022 
One-stage object detection 
model (RetinaNet) 

Bounding- 
box 

Undefined Undefined – – mAP 74% 

Philipp et al., 
2022 

Uncertainty-based 
Dynamic CNN 

Bounding- 
box 

Training: 38% 
Validation: 12% 
Testing: 50% 

Learning rate: 0.01 
Weight decay = 0.1 
Epoch: 500 

– – SIM 80.1%  

Author Algorithm Annotation Allocation Hyperparameters Pre- 
training 

Cross-Validation Performance metrics 

Unadkat et al., 
2022 

AutoMl Google 
One-stage object detection model 
(RetinaNet, Yolov3) 

Bounding- 
box 

Training: 87% 
Validation: 7% 
Testing: 6% 

Undefined – – mAP 
AutoMLGoogle: 70.80% 
RetinaNet: 66.9% 
YOLOv3: 52.7% 
Recall: 52.63% 

Ramesh et al., 
2021 

One-stage object detection model 
(Yolov5) 

Bounding- 
box 

Training: 80% 
Testing: 20% 

Epoch: 150 COCO – mAP 74.4% 
Recall 93.6% 

Lee et al., 2021 Mask R–CNN 
Faster R–CNN 
One-stage object detection model 
(SSD) 

Bounding- 
box 

Training: 70% 
Testing: 30% 

Undefined COCO – Accuracy: 
Mask R–CNN: 99.53% 
Faster R–CNN: 99.57% 
SSD classifier 98.92% 
Pre-trained Faster R–CNN 
98.74% 
Precision: 
Mask R–CNN: 98.96% 
Faster R–CNN: 97.27% 
SSD classifier 90.96% 
Pre-trained Faster R–CNN 
90.55% 
Recall: 
Mask R–CNN: 99.24% 
Faster R–CNN: 97.54% 
SSD classifier 93.76% 
Pre-trained Faster R–CNN 
91.35% 

Segmentation models – Semantic 
Analysis of anatomy and critical events 

(continued on next page) 
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of 100%. On the other hand, Tang et al. (2022) demonstrated a precision 
of 89.7%, however their recall was not specified. 

With regard to instrument detection, Lee et al. (2021) displayed high 
precision of 90.55–98.96% at a recall of 91.35–99.24%. Ramesh et al. 
(2021) reported a precision of 74.40% at a recall of 93.60% and Unadkat 
et al. (2022) 70.80% at a recall of 52.63. Markarian et al. (2022) 
demonstrated a precision of 74.00%), however their recall was not 
specified. 

3.3.3. Segmentation models 
In terms of degree of correspondence between the predicted regions 

of anatomical structures and ground truth, Witten et al. (2022) (82.60%) 
displayed a higher IoU compared to Martin et al. (Martin et al.) 
(73.00%). With regard to instrument segmentation, Kalavakonda et al. 
(2019) (74.80%) displayed a higher IoU compared to Deepika et al. 
(2022) (50.00%). 

The work of Staartjes et al. (2021) was not included in the class-wise 
performance comparison since standardized performance metrics were 
not applied to describe their model output. Their model displayed a 
complete overlap between the predicted anatomical structure and 
ground truth in 36.1%, whereas the remaining predictions were either 
partially overlapping (19.2%) or incorrect (54.6%). 

Clustered bar plots displaying the performance of the different 
studies with respect to accuracy (blue), precision(green), recall (tur-
quoise) and IoU (purple). Studies are divided into classification, 

detection and segmentation models. 

3.4. Automatic skill assessment 

Two studies utilized surrogate performance metrics, derived from 
CV-based recognition of instruments in surgical images/videos, for 
automatic assessment and characterization of surgical skills. A first 
study examined suturing segments of surgical videos to assess surgical 
skillfulness by means of tool handling metrics and microscope handling 
metrics (Deepika et al., 2023). They reported a significant lower ve-
locity, acceleration and jerk of surgical tools amongst experienced sur-
geons as opposed by novice surgeons. Moreover, more experienced 
surgeons displayed a higher fluency and efficiency of movements 
expressed by a reduction in pathlength, inter tool-tip distance and 
increased bimanual tool usage. In terms of time usage, analysis revealed 
a significant reduction in the idle time amongst experienced surgeons. 
Additional skill characterization was established through examination 
of the microscope application, revealing a reduction of microscope ad-
justments with the surgeon’s experience. These findings are in line with 
results from an earlier study which assessed the performance of surgeons 
with varying experience on arachnoid dissection in a brain phantom 
model (David et al., 2021). Here, increasing surgical experience was 
associated with a reduction of the average velocity, jerks, inter tool-tip 
distance and the total time of tool absence yet an increase in bimanual 
tool handling. Their model was capable of differentiating expert from 

Table 3 (continued ) 

Author Algorithm Annotation Allocation Hyperparameters Pre- 
training 

Cross-Validation Performance metrics 

Martin et al., 
2023 

CNN (U-Net) Polygon Training & 
validation: 90% 
Testing: 10% 

Undefined – 5-fold cross- 
validation 

IoU: 72.64% (Stage 1) 
Mean Reprojection error: 
4.06 
Mean Scaling error: 1.01 
Mean center error: 
Microforceps 17.71 
Suction 5.42 
Dissector 11.74 

Witten et al., 
2022 

CNN (ResNet) 
Backbone (PSPNet) 

Undefined Undefined Learning rate: 
- ResNet: 0.00001 
- PSPNet: 0.0001 
Epoch: 300 

– – Accuracy 91.8% 
Precision 85.3% 
Recall 77.6% 
IoU 82.6% 
Dice coefficient 90.4% 
F1 score 85.3%  

Author Algorithm Annotation Allocation Hyperparameters Pre- 
training 

Cross-Validation Performance metrics 

Analysis of surgical Instruments 
Kalavakonda 

et al., 2019 
CNN (Vanilla U-Net, 
VGG16, MobileNetV2) 

Polygon Training: 
87.5% 
Testing: 
12.5% 

Learning rate: 
0.001 
Epoch: 20 

ImageNet K fold cross- 
validation 

IoU 74.8% 
Dice coefficient 76.9% 

Bouget et al., 
2015 

SMV Polygon Training: 
51% 
Testing: 49% 

Undefined – – Accuracy: 85.8% 
Detection miss-rate: 15% (10− 1 

false positives per image) 
Segmentation models – Instance 
Analysis of surgical Instruments 
Deepika et al., 

2023 
Mask R–CNN Polygon Training: 

62% 
Validation: 
8% 
Testing: 30% 

Undefined COCO – mAP 96.7% 
mAP for each tool class 
Suction: 99.3% 
Bipolar Forceps: 99.8% 
Straight Micro Scissor: 100% 
IoU 50% 

David et al., 2021 Mask R–CNN Polygon Undefined Undefined COCO “Leave One User Out" 
cross validation 

Accuracy: 84.21% 
AUC: 97.7% 

CNN = Convolutional Neural Network; R–CNN = Region Convolutional Neural Network; RNN = Recurrent Neural Network; SVM = Support Vector Machine; HHM =
Hidden Markov Model; FPN = Feature Pyramid Network; RPN = Region Proposal Network; i50 

= 50th iteration; mAP = Mean Average Precision; SIM = Similarity 
Intersection; IoU = Intersection over Union; RMSE = Root Mean Square Error; ER = Error Rate. 
CNN = Convolutional Neural Network; R–CNN = Region Convolutional Neural Network; mAP = Mean Overall Precision; AUC = Area Under ROC Curve, IoU =
Intersection over Union. 
SMV = Support Vector Machine; R–CNN = Region Convolutional Neural Network; mAP = Mean Overall Precision; AUC = Area Under ROC Curve, IoU = Intersection 
over Union. 
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novice surgeons with an accuracy of 84.2% and an AUC of 0.977. 
Apart from automatic assessment and characterization of surgical 

skills, the correlation of the abovementioned surrogate performance 
measures and surgical outcomes remains to be investigated. 

4. Discussion 

4.1. New era of surgical intelligence 

To our knowledge this is the first systematic review that summarizes 
and compares all studies using CV for automatic analysis of neurosur-
gical videos/images. Despite the fact that CV is already well established 
in other surgical domains, the field is currently only in its early devel-
opment in neurosurgery. Therefore, it is interesting to consider the 
evolution of the performances as well as the evolution of the applica-
tions and functionalities of the models. 

While most studies report on basic scene understanding, in terms of 
tool or phase detection, others were aimed at more advanced analysis. 
This includes automated surgical skill assessment, calculated by means 
of instrument handling metrics such as position, usage time, motion 
trajectory etc. Ramesh et al. (2021). and Deepika et al.57 34demonstrated 
how these metrics help to provide insight into the intricacies of surgical 
manipulations. Furthermore, Davids et al. (2021a) managed to auto-
matically classify the level of microsurgical skills purely on the basis of 
automatic analysis of a surgeon’s instruments. 

More recently, Martin et al. (Martin et al.) integrated instrument and 
anatomical features to tackle the aspect of brain tissue deformation 

resulting from surgical instruments. As such they could provide opera-
tors with artificial haptic feedback on their tool employment. On the 
other hand, studies by Pangal et al. (2021a) and Kugener et al. (2022) 
focused more on task-effectiveness and outcome prediction in compli-
cation management. They established a deep learning model (SOCAL-
Net) able to predict the amount of blood loss and task success in the 
event of a carotid artery laceration during endonasal endoscopic surgery 
(Pangal et al., 2022). 

Our findings show that CV models can identify and assess discrep-
ancies in neurosurgical performance with high accuracy (84.2%). Above 
all, the performance grading is established in an objective manner, 
contrary to existing assessment models (e.g. OSATS, GRS, etc.) that are 
prone to subjectivity due to involvement of a human evaluator. More-
over, evaluation may cover a wider range of performance criteria, thus 
providing a more adequate representation of the operator’s perfor-
mance. In terms of time investment, automatic assessment may facilitate 
the work of the examiner, allowing for more time to be spent on edu-
cation itself rather than assessment. 

As such, automatic assessment of the quality of a surgical perfor-
mance paves the way for proficiency-based surgical progression at hand 
of precise directives, tailored to an operator, with respect to a specific 
benchmark to ensure deliberate surgical training. Moreover, the recog-
nition of premonitory signs of complications or acquiring haptic feed-
back could enhance surgical practice, reducing errors by adjustments of 
the surgeons actions. 

Fig. 4. Model performances per task.  
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4.2. Performance 

Although all studies reported quantitatively on the obtained result, a 
true comparison between the different studies was challenging due to 
inter-study variation of used data and reported performance metrics. 
This observation stresses the importance of a standardized application of 
metrics to evaluate CV models. 

Classification models were only applied by studies analyzing surgical 
workflow, namely phase and/or step recognition. This is related to the 
fact that phase and step analysis focusses on time efficiency and pro-
cedural order rather than detailed surgical features such as tool 
handling. Given that no object localization is required, detection or 
segmentation models are not necessary. 

Lalys et al. (2011) showed slightly better results in terms of phase 
detection accuracy in comparison to Khan et al. (2021a). However, they 
did not mention any precision nor recall. Hence true superiority could 
not be assessed. Regardless of the performance results, the framework of 
Khan et al. (2021a) demonstrates a higher functional resolution in the 
sense that they provided the possibility for identification of the surgical 
step in addition to the phase classification. They achieved this by 
implementing a CCN architecture in conjunction with an RNN. 

Contrary to classification models, detection models were principally 
used for characterization and localization of surgical tools. Since mul-
tiple types of tools are applied in surgery, accuracy is of great impor-
tance given that each tool has a different function and connotation (e.g. 
bipolar is often used to stop surgical bleeding). The second most appli-
cation was the detection of surgical hemorrhages. 

Overall, Lee et al. (2021) demonstrated the highest overall perfor-
mance, which stand in contrast to the results reported by Philipp et al. 
(2021), Ramesh (Ramesh et al., 2021) et al. and Unadkat et al. (2022) A 
notable difference with other studies was that the size of their dataset 
was considerably larger (950 videos), which may have contributed to 
the higher accuracy, precision and recall. Interestingly, they performed 
a case comparison between different model architectures, of which the 
Mask R–CNN yielded the best overall results. 

Studies analyzing critical events (Pangal et al. (2022) and Tang et al. 
(2022)) and anatomical structures (Zhou et al., 2023)) displayed supe-
rior precision as opposed to Philipp et al. (2021), Ramesh (Ramesh et al., 
2021) et al. and Unadkat et al. (2022), which focused on surgical tool 
detection and localization. In this framework, precision is of utmost 
importance given that the localization of a hemorrhage or an aneurysm 
will determine how or where a surgeon must act upon. The reported 
accuracies amongst the studies analyzing adverse events and anatomical 
structures are fairly similar. Although inferior accuracies are reported 
compared to Lee et al. (2021), one must take into account that 
anatomical structures and especially adverse events show a vast varia-
tion from one patient to another. Surgical tools on the other hand display 
similar sizes, shapes, colors and textures which makes them an easier 
target for automatic recognition. Thus, lower outcomes must be 
nuanced. In terms of model preferences, CNN’s were applied in the 
majority of the above mentioned studies. 

Similar to detection models, segmentation models were used pri-
marily for characterization and localization of surgical tools. However, 
the function of the segmentation models differ in the sense that infor-
mation about the pose of instruments can be provided in addition to its 
location. As mentioned earlier, instance segmentation differentiates 
multiple instances whilst semantic segmentation only differentiates 
objects of interest from the background. In this regard surgical skill 
assessment was solely analyzed in the instance segmentation models, 
which allows for tool/hand specific metrics. Once more, R-CNNs were 
the algorithm of preference. 

While no model can be classified as the absolute best, there are 
noteworthy observations regarding the utilization of models and their 
respective results. For instance, we noticed a predominant use (65%) of 
CNN architectures across all 3 task modalities. In tool detection and 
segmentation, CNNs displayed highest performances. Especially Mask R- 

CNNs, which were the most frequently employed CNN framework. 
Similarly, in the models that focused on anatomical structures, Mask R- 
CNNs was at the higher end of the reported performances. Studies re-
ported the use of largely varying auxiliary strategies to improve per-
formance, including pre-training, data-cross validation, image pre/post- 
processing, and so forth (Ikeuchi and Ikeuchi, 2014). 

4.3. Machine vs. Human 

Whilst analyses often revolve around the absolute values of the 
outcome result of a model, we often fail to provide insight in the relative 
performance of the CV algorithms against that of human operators. A 
common misconception is that de values we strive to obtain, 100% ac-
curacy/precision/recall/ …, are the representations of the performance 
of the human visual system. This is incorrect in the sense that these 
absolutes merely are in accordance to the ground truth, i.e. labels that 
are given by one or more human experts in a controlled setting. Thus, 
they are not equivalent to the average performance of neurosurgeons. To 
truly capture the benefit of an automated system, comparison must be 
made between human and machine, both in terms of accuracy and time 
investment. 

For instance, Pangal et al. (2022) assessed the task success and blood 
loss prediction of their model against 4 neurosurgeons. Results demon-
strated that expert surgeons were less successful (sensitivity 82%, 
specificity 55%, PPV 69% and NPV 71%) in predicting the outcome of 
surgical hemorrhage from 1 min of video as opposed to the CV model 
(sensitivity 100%, specificity 66%, PPV 79% and NPV 100%). The most 
notable observation was that expert surgeons displayed poorer perfor-
mance at the intermediate skill levels as opposed to the SOCALNet 
model, while their performances at the low and high skill levels was 
highest. As such, Pangal et al. draw notice to the notion that CV models 
may possess superior aptitude for the assessment of surgical videos that 
involve more ambiguous levels of skillfulness, thus allowing for a more 
consistent assessment across a varying degrees of skillfulness. 

So how do these findings translate to the clinical practice? As was 
discussed earlier, physicians are increasingly experiencing difficulties in 
analyzing the vast amount of data presented upon the treatment of a 
patient. An issue which is amplified by the never-ending shortage of 
time. Our hunger for knowledge has surpassed our own capacities, 
leaving behind a vast amount of data untapped. In this respect, CV has 
shown to offer possibilities to assimilate the information that resides 
within this data. As such CV models are implemented for diagnostic 
purposes, pre-operative planning, outcome prediction (Panesar et al., 
2020; Senders et al., 2018a, 2018b; Danilov et al., 2020a, 2020b). Given 
the proficient data analysis capabilities of CV, the utilization of auto-
matic analysis may facilitate context awareness of surgeons through live 
feedback on surgical workflow, recognition of hazardous areas, 
impending complications. Essentially, the benefit of CV is substantiated 
by the consistency, objectiveness, tirelessness of the system and most 
importantly by the ability to assimilate multiple proc-
esses/activities/objects simultaneously during analysis. 

In this regard, the surgeon might seem obsolete. However, in the 
prospect of creating computer-vision systems for the automatic analysis 
of surgical data, it is important to underline that the implementation of 
the technology ought to be regarded as an adjuvant or an extension of 
the human operator rather than a replacement. Whilst the technology 
may display higher accuracies or precision, humans will inherently 
show higher understanding of the surgical circumstances or the clinical 
relevance of the observation, which is indispensable for interpreting the 
predictions generated by these models. The most evident example of this 
is the lack of quality control mechanisms within computing technologies 
that can verify the logical consistency of their outputs. In light of these 
elements we should strive collaborative relationship between humans 
and machines, rather than a man-versus-machine paradigm. This is due 
to the reason that human control remains critical as apparently flawless 
software remains susceptible to producing errors at some point in time. 
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4.4. Pitfalls 

4.4.1. Data annotation 
As the expression “garbage in, garbage out” elegantly states, the use 

of high-quality data is paramount in the development of CV models. 
Although we produce significant amounts of data, the vast majority (ca. 
90%) of it is unstructured (medical notes, medical images, etc.) and 
require some form of encoding or characterization prior to any exami-
nation (Raju et al., 2020). Moreover, for some data types such as vid-
eos/images, additional labeling is required in order for them to be 
analyzed (Senders et al., 2018c), which often is the bottleneck for model 
development as result of lack of time and/or qualified personnel (Mar-
karian et al., 2022; Bydon et al., 2020). 

Objects can be annotated through the process of placing bounding- 
boxes as closely as possible around a target object instances, thereby 
providing localization and ground truth label. An alternative approach is 
segmentation, where objects are delineated by manually tracing the 
outline of the structure (Pangal et al., 2021b; Ward et al., 2021d). 
Although bounding boxes are easy to use and therefore often applied, 
literature suggests that segmentation could contribute to better detec-
tion performances (Pangal et al., 2021b; Mullen et al., 2019). For phase 
classification, annotation is performed through frame-wise labeling. 
Strategies that may facilitate the process of annotation and improve the 
fidelity of annotations are: down-sampling the annotated data, 
outsourcing the annotation process to specialized firms who possess 
dedicated tools, use of software that enable interpolation and 
copy-pasting of annotations and the use of an annotation protocol (Ward 
et al., 2021a, 2021d; Pangal et al., 2021b). 

4.4.2. Dataset 
Apart from the quality of the data, the model robustness also relies on 

the quantity and variability of the data. The larger and the more 
heterogenous the dataset, the better the model performs when presented 
with new data (Panesar et al., 2020; Senders et al., 2018a; Bamba et al., 
2021b). Generally, the rule of thumb is to obtain around 1000 images 
per class (Ikeuchi and Ikeuchi, 2014). For model training, videos/images 
of real operations are preferably used instead of phantom or cadaver 
experiments, as they are less likely to mimic all the properties of real 
operating conditions. The performance of the model can be additionally 
improved using data augmentation techniques, which allow to artifi-
cially increase the size of train data set by introducing geometrical or 
intensity distortions, such as the adjustment of brightness or image 
contrast, flipping, random rotations or affine geometrical trans-
formations. Data augmentation allows to improve the accuracy and 
robustness of the model by enhancing the ability of your model to 
recognize new variants of the training data (Shorten and Khoshgoftaar, 
2019). 

To set up an experimental design of a CV model, data is conven-
tionally split into a training, testing and ideally a validation set. As per 
definition, the training set allows the model to learn from the data. A 
validation set allows a model to optimally adapt its hyperparameters 
with purpose of increasing its prediction performance. Conventionally, 
testing data consists of entirely novel data, not yet seen during training, 
with purpose of performing an unbiased evaluation of the final model 
performance (Tarang, 2017). In terms of data allocation a 2-1 distribu-
tion is recommended for training and testing, respectfully (Senders 
et al., 2018a), albeit in scenarios of limited data a 6-1 distribution has 
also been suggested (Ross et al., 2018). 

4.4.3. Model 
There are multiple factors that may cause interference in the func-

tioning of ML models such as smoke, image blurring, reflection and so 
on. Implementation of CNNs, appears to cope better with such image 
distortions than other algorithms. On this account, CNNs have displayed 
the best result in the literature so far when it comes down to object 
detection. This finding is also reflected in our results. However, a 

problem CV currently struggles to account for is the lack of temporal 
context. Often, the integration of a RNN (Khan et al., 2021a; Lee et al., 
2021; Deepika et al., 2023; Davids et al., 2021a; Tang et al., 2022) or a 
long-short term memory (LSTM) (Pangal et al., 2022) network helps to 
perceive this temporal context, which improves model performances. 

4.5. Limitations 

First, since our search syntax consisted of English terms, this sys-
tematic review may include a potential bias towards English language 
publications. As a result, it is possible that relevant studies published in 
languages other than English, were not included in the review. However, 
the majority of studies in the field of image computing are published in 
English, thus the potential impact of this limitation on the overall 
findings is likely to be minimal. 

A second limitation of our study was that we were unable to provide 
a one-on-one comparison between models as consequence of differences 
in datasets and discordant use of performance metrics. Despite this 
limitation, a descriptive analysis was conducted to elucidate the mech-
anisms, benefits and functionalities of various CV models with respect to 
their function. 

Finally, it is important to note that many studies continue to rely on 
their own development datasets, which are often highly selective (ideal 
lighting, no obscuration of objects, perfect camera settings, clean anat-
omy, etc.) in nature. As a result, the performance results reported are 
likely to be disproportionately optimistic. To prevent this, studies should 
ideally have to be tested on a fully independent dataset. 

4.6. Recommendations for the future 

It is important to underline that the studies we have reviewed were 
primarily conducted within a preclinical environment, frequently 
focused on a single type of surgical procedure (e.g. suturing). Conse-
quently, future investigations should evaluate the application of these 
CV models in the clinical setting to ascertain their applicability, efficacy 
and reliability. In this context, we strongly advocate for the use of open- 
source, as it is indispensable for improvement in software development 
and implementation (Senders et al., 2018c). 

As data acquisition and lack of annotated data are often a bottleneck 
in the development of qualitative CV models, initiatives should be un-
dertaken to develop open databases (Rodrigues et al., 2022). Addition-
ally, standardization of taxonomy of adverse events, surgical tasks and 
operations should be implemented to ensure cross-site applicability of 
diverse sources of neurosurgical data and facilitate comparability of 
model outputs. Such measures will enable benchmarking of model 
performances and ultimately leading to the external validation of 
models. In this regard, we emphasize the crucial importance of a unified 
annotation framework to guarantee consistent data quality (Pangal 
et al., 2021b; Meireles et al., 2021). 

This, in turn, raises the issue of standardization of outcome results, 
which is paramount for the validation, comparison and implementation 
of CV models. Prior to developing these models, it is crucial to address 
the specific purpose they serve (classification, detection, segmentation), 
as this dictates the appropriate performance metrics to be employed. 
However, metrics are often interchanged (e.g. precision and accuracy) 
even though they refer to different model characteristics. This raises 
concerns regarding the interpretability of the reported outcomes. 

Furthermore, it is crucial to observe that the meaningful comparison 
of metrics takes place exclusively when carried out at equivalent levels 
of their corresponding metric (for instance, precision and recall). Similar 
to sensitivity and specificity, adjustments to the threshold of one value 
will cause the other to change in an inverse relationship. Hence, for 
instance, presenting precisions in isolation or comparing performances 
in absence of identical recall scores lacks significance. To facilitate 
straightforward intercomparisons, the use of metrics such as Area Under 
the operator Curve (AUC) could prove to be of value since they offer the 
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possibility to distill outcomes into singular numerical values. 
In response to this challenge, a multi-stage Delphi process on metrics 

was conducted by an international consortium, which issued a series of 
recommendations regarding the use of metrics for reporting results of 
CV models (Maier-Hein et al., 2022). A summary of their proposed 
metrics can be found in Table 1. 

All these factors collectively contribute to the advancement of the 
performance of CV and its integration in our practice, a progress that can 
further be enhanced through incorporation of these elements in open 
challenges focusing on neurosurgical image analysis, in which various 
algorithms proposed by the participating contenders are evaluated on 
the same dataset and using consistent performance evaluation. This will 
stimulate the exchange of expertise and ultimately promote technolog-
ical innovation within the field of neurosurgery. 

5. Conclusions 

To our knowledge, this is the first systematic review providing a 
comprehensive summary of the state-of-the-art methodologies in CV for 
neurosurgical instruments, anatomy and workflow analysis. Findings 
from our qualitative analysis provided a groundwork for a number of 
recommendations in regard to model development. 

In spite of the high technical and anatomical complexity of neuro-
surgical scene interpretation as opposed to robotic or laparoscopic in-
terventions, our result demonstrate that CV models can effectively 
detect and differentiate tools, phases and neuroanatomical structures 
with accuracies above 95%. Furthermore, automatic recognition of tools 
can contribute to the characterization and objective assessment of sur-
gical performance, which opens numerous prospects for neurosurgical 
training. CV models have also proven to be a valuable asset in increasing 
intra-operative safety through the detection of blood loss and quantifi-
cation of brain retraction induced by instrument interaction. 
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Appendix 

The exact search query that was applied in Pubmed was: ("Surgical 
scene"[Title/Abstract] OR "Tool"[Title/Abstract] OR "Instrument"[Title/ 
Abstract] OR "Workflow"[Title/Abstract] OR "Phase"[Title/Abstract] 
OR "Action"[Title/Abstract] OR "Skill"[Title/Abstract] OR "Perform-
ance"[Title/Abstract]) AND ("Neurosurgery"[All Fields] OR "Neuro-
surgical"[All Fields] OR "Neurosurgeon"[All Fields]) AND ("Surgery"[All 
Fields] OR "Procedure"[All Fields] OR "Intervention"[All Fields] OR 
"Operation"[All Fields]) AND ("Computer vision"[All Fields] OR "Ma-
chine vision"[All Fields] OR "Vision-based"[All Fields] OR "Machine 
learning"[All Fields] OR "Deep learning"[All Fields] OR "Image ana-
lysis"[Title/Abstract] OR "Video analysis"[Title/Abstract]) 
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