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Abstract: The large number of pixels to be processed and stored for digital holographic
techniques necessitates the development of effective lossless compression techniques. Use cases
for such techniques are archiving holograms, especially sensitive biomedical data, and improving
the data transmission capacity of bandwidth-limited data transport channels where quality loss
cannot be tolerated, like display interfaces. Only a few lossless compression techniques exist for
holography, and the search for an efficient technique well suited for processing the large amounts
of pixels typically encountered is ongoing. We demonstrate the suitability of autoregressive
modeling for compressing signals with limited spatial bandwidth content, like holographic
images. The applicability of such schemes for any such bandlimited signal is motivated by
a mathematical insight that is novel to our knowledge. The devised compression scheme is
lossless and enables decoding architecture that essentially has only two steps. It is also highly
scalable, with smaller model sizes providing an effective, low-complexity mechanism to transmit
holographic data, while larger models obtain significantly higher compression ratios when
compared to state-of-the-art lossless image compression solutions, for a wide selection of both
computer-generated and optically-acquired holograms. We also provide a detailed analysis of
the various methods that can be used for determining the autoregressive model in the context of
compression.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Digital holographic techniques spatially sample a 2D interference pattern produced by coherent
light waves reflected or transmitted from the different objects in the 3D scene, from which the
scene can be recreated at a later desired stage. The 2D pattern is to be sampled at an interval
with a similar order of magnitude as the wavelength of coherent illumination. As the sampling
rate increases, a larger field of view can be made visible without aliasing, as dictated by the
grating equation [1]. This results in holograms that are relatively data-dense. To provide an
example of a high-end use case, recording/displaying the blue spectrum on a 1.0 cm2 patch
without aliasing/loss of FOV requires close to 2 terapixels. For many applications like video
displays [2], holographic microscopy, and tomography [3], this could mean several terabytes
of data or more that must be processed and ultimately stored or transmitted. Data processing
and transmission/storage of digital holograms (DH) are among its most pressing challenges,
preventing widespread adoption in many applications where available computational power and
transmission bandwidth is limited [2,4,5]. Compression techniques digitally represent the data
using fewer bits and can help mitigate this bottleneck. With lossless techniques, the data can be
decoded without any errors and is the primary focus of this work.

Lossless compression can be used in the archival of holograms for posterity. While allowing
for errors can significantly increase the compressibility of many signals, lossless compression is
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applicable when data fidelity is paramount. For many sensitive applications, lossy compression
may introduce inherent risks that are unacceptable in the data processing pipeline. In biomedical
imaging use cases, lossy techniques may smooth over small structures present in tissue samples,
which oftentimes is the target of measurement. Due to the proliferation of high-resolution
displays, compression techniques are also being deployed on data transport channels used in
display interfaces [6]. Here they can effectively increase the resolution and/or bit-depth than what
is possible without it, all while consuming less power. However, there should not be any visible
quality loss which can only be guaranteed with lossless compression. Lossless compression also
attracts interest as a technique to increase the data transfer capabilities between processing units
in bandwidth-heavy applications [7,8]. Over the past decades, the raw compute performance of
CPUs/GPUs, etc., has improved much faster than the data bandwidth available to them [9,10].
For example, when comparing the flagship NVIDIA GPUs between 2014-2022, single-precision
floating-point operations that could be performed per second improved by a factor of 6.9×, while
the memory bandwidth of its RAM (random access memory) only improved by a factor of 1.8×
[11,12]. In this context, a lightweight compression scheme can be beneficial, increasing the
available bandwidth while adding (local) operations between two points. Such schemes can
be applicable at different memory hierarchy levels, where voluminous data transfer can take
place [8]. Due to these reasons, designing efficient lossless compression algorithms for digital
holography can improve its viability as a more accessible technique across application modalities.

Now we give a brief overview of what lossless compression for multimedia content typically
entails. Given a signal expressed as a random variable, the mathematical lower bound of the
achievable compression rate (entropy) is related to its probability distribution [13] - a signal that
can be predicted with high certainty will have low entropy and be efficiently coded with entropy
coding techniques like arithmetic coding [14,15] and Huffman coding [16]. The most efficient
lossless compression mechanisms, as seen for various types of multimedia, utilize a two-step
approach [17]. In the first step, the data to be compressed is initially decorrelated in some manner
into a low entropy representation. The second step involves applying entropy coding techniques
on the decorrelated data.

For decorrelation, two approaches are in use. The first is transform-based coding - in which,
for encoding, the input data is transformed into a domain where most of the signal energy is
contained in a few coefficients. Transform coding is particularly effective for lossy compression,
as many of the low energy coefficients can be simply skipped without affecting the perceptual
fidelity of the data. For compressing holographic content, applying an STFT (short-time Fourier
transform) followed by quantization with an adaptive bit-depth and range was shown to bring
significant gains over any known lossy compression solution [18,19].

In the case of lossless coding of natural imagery, transform-based coding offers noticeable
gains when compared to just zero-order entropy coding and has been used for defining the
lossless parts of popular image codecs. For example, JPEG 2000 utilizes a reversible Le Gall 5/3
wavelet transform with the Embedded Block Coding and Optimized Truncation (EBCOT) scheme
being driven by a context-adaptive binary MQ-coder for lossless compression [20]. Integer
Fresnel transforms, which are reversible propagation operators that can be implemented using
Fast Fourier Transforms (FFTs), were also proposed for the lossless compression of holograms
[21]. Here, the hologram is initially propagated to an object plane such that most of its energy is
contained in a few spatial regions. Then, it is losslessly compressed with JPEG 2000 using a R/I
representation, improving the bitrate noticeably. A quincunx embedded zero-tree wavelet coder
was proposed in [22] for the lossless compression of inline digital holograms with support for
progressive transmission.

Local neighborhood (context) based predictors represent the other category of decorrelators
and can be geared towards lightweight compression solutions. In such mechanisms, the image is
en/decoded in a pixel-by-pixel manner, such that context information available from the previous
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pixels is utilized and only the non-redundant information of the current pixel (i.e., the pixel
being coded)is stored. To keep the computational load low, only a few neighboring pixels of
the current pixel are explicitly used for compression. In JPEG-LS, the current pixel is predicted
as one of its neighbours using a median edge style filter. The residuals are subject to context
modeling with either Golomb-rice or run-length coding [23]. Some compression solutions, like
HEVC Intra mode used for compressing still images, utilize transforms for lossy compression
but forgo them for lossless compression [24]. Instead, HEVC Intra solely utilizes prediction
modes leveraging information from similar-looking regions in the same image, where it can
even orient regions angularly. The prediction residual is afterwards subject to the CABAC
(context-adaptive binary arithmetic coding procedure) procedure. JPEG XL [25], the latest
image compression standard from JPEG, also proposes using context-based lossless compression.
It utilizes multiple predictors, each designed to be efficient for commonly encountered image
structures. In the case of lossless compression, a weighted average of these predictors is obtained
as the final prediction. For losslessly compressing binary holographic data, [26] proposed to use a
quad-tree decomposition to split the data into stationary regions and then use a Markovian context
model-based arithmetic coder. Markovian models generally permit a wide class of stationary
signals. However, as the signal becomes more multi-valued, i.e. as its bit precision increases,
Markovian models become not only unfeasibly large to store in memory but also will exhibit
poor compression performance due to a slow convergence speed.

To compress such multi-valued holographic signals, we propose to use an alternative context-
based compression strategy called linear predictive coding that constrains the context model to
be linear. Here, the prediction is obtained as a weighted sum of the context elements, i.e. as an
autoregressive prediction. Linear predictive coding was first proposed in [27] for compressing
1D audio signals and is still used. The state-of-the-art FLAC lossless audio codec utilizes
autoregressive prediction with up to 32 pre-determined weights. These weights can be either
constant, i.e., a general set of weights applicable for any audio signal, or statically defined. The
motivation here is many types of sounds, like vocals, can be described as impulses passing
through a linear filter and hence be efficiently decorrelated by such models. For losslessly
compressing holograms, 1D linear predictive coding based on the directionality of interference
patterns of a hologram was proposed in [28]. They decompose a hologram into smaller blocks
and determine the best-fit direction for the fringes present in each block from 8 preset directions
(-60◦, -45◦ , -30◦, 0◦, 30◦, 60◦ and 90◦) based on an entropy minimization criterion. After
determining the best direction and from it the corresponding predictive 1D model, the prediction
residuals are compressed by applying Huffman coding. A key limitation in [28] is the 1D model
cannot perform decorrelation orthogonally to the chosen direction. Improved compression can
be obtained by utilizing 2D autoregressive models, as they can decorrelate both directions jointly,
as proposed in this work.

Additionally, the methods used to determine the model weights do not necessarily transfer
from 1D to 2D. For example, the weight determination method used in [28] and the publicly
available encoder of FLAC available from Xiph.com utilize the Levinson-Durbin recursion,
which is not applicable for 2D models.

For linear predictive coding with a causal 2D autoregressive model, one is interested in a
non-symmetric half-plane (NSHP) support [29], which does not place any restriction on the
neighbour positions. Most of the 2D autoregressive models proposed in the context of image
processing, particularly texture analysis and synthesis [30], are based on Gaussian-Markov
random field models [31]. These models cannot be NSHP as their construction requires the
use of a symmetrical neighbour set. For lossless [32] and lossy compression [33] of medical
images, parametric 2D NSHP autoregressive models have also been proposed. Here, they assume
the autoregressive polynomial equation to be from a specific parametric class from which two
templates are generated - one having six neighbours and three free parameters, while the other has
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11 neighbours and four free parameters. The parameter estimates are obtained by the recursive
least squares (RLS) algorithm, updated by scanning through the image on a pixel-by-pixel. One
advantage of the construction is that the autoregressive polynomial is stable. This is beneficial
when lossy compression is applied on the residuals but not necessary for lossless compression.
On the other hand, being constrained to a subset of all possible weights may exclude solutions
that would have performed better.

Instead, we propose more generalized approaches applicable to determine the weights of any
given 2D neighbour positions. With the weight estimation strategies proposed in this work,
we show that in the case of holograms, it is possible to attain nearly the same compression
performance as the weights that produce predictions with the minimal least square error (L2
error) but with significantly less computation. Moreover, the compression framework discussed
in section 3 has been designed and parameterized from the ground up for holographic content.
It features a simple decoding procedure that is essentially comprised of only two stages. The
first stage utilizes an autoregressive model to predict the signal, while the second step performs
zero-order entropy coding using arithmetic coding on the residual data. An ablation study of the
framework is conducted in section 4.1. Compression benchmarks with respect to conventional
image codecs are conducted on a wide corpus of holograms in section 4.2.

Our compression framework based on 2D autoregressive modeling obtained the highest
compression performance of any known solution for all tested non-binary holograms. Moreover,
we also provide a motivation about the applicability of autoregressive modeling for holograms as
well as any bandlimited signal in the frequency domain, based on a novel mathematical insight,
in the next section.

2. Motivation - band limitation and autoregression

The motivation for autoregressive modeling to be used in hologram compression is predicated
on two propositions. The first proposition elaborates on how holograms can be viewed as
bandlimited signals. The second proposition posits that efficient decorrelation can be achieved
with small-sized autoregressive models for bandlimited signals.

Consider a 2D surface with a line representing a discrete 1D hologram h of length N. The
hologram at position x, hx, can be represented using the inverse DFT as shown by (1), where Hk
is the 1D-DFT at position k calculated on h.

hx =

N−1∑︂
k=0

Hk · e
j2πkx

N (1)

Note that the Fourier transform has a physical interpretation in that each of the basis functions
e

j2πkx
N , maps to the component of light received in the sub-hologram corresponding to a wave

traveling in the direction represented by (sin−1( k
N ), cos−1( k

N )). A typical hologram (chosen at an
appropriate scale) is composed of only K dominant plane waves given by K, depending on the
geometrical position of the sub-hologram with respect to the objects emitting light in the scene;
see Fig. 1 for visualization and examples. Therefore, the hologram can be then written as:

hx = H · P(x) =
∑︂
k∈K

Hk · e
j2πkx

N (2)

Using (2) we can write K equations, as shown by (3).

hobs = V · He · P(x) (3)
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where hobs is a vector containing the past observations, V is a Vandermonde matrix and He is a
diagonal matrix as given in (4).

hobs =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hx−1

hx−2
...

hx−K

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, V =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 · · · 1

e
−j2πk1

N e
−j2πk2

N · · · e
−j2πkK

N

...

e
−j2πk1K

N e
−j2πk2K

N · · · e
−j2πkK K

N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, He = diag

[︂
Hk1e

−j2πk1
N Hk2e

−j2πk2
N · · ·HkK e

−j2πkK
N

]︂
(4)

Fig. 1. Visual aid on the left side shows that depending on scene geometry, only a few
dominant plane waves clustered around ka and kb are received by a sub-hologram (shown in
red) chosen at an appropriate scale. The normalized DFT spectrum from randomly selected
lines of size 1024 from representative holograms is shown on the right side, indicating
bandlimited behavior.

Using (2) and (4), we can write the current observation hx as

hx = H · He−1 · V−1 · hobs

= w · hobs where w =
[︂
e

j2πk1
N e

j2πk2
N · · · e

j2πkK
N

]︂
· V−1.

(5)

Only if e
−j2πka

N = e
−j2πkb

N for a ≠ b, the Vandermonde matrix is not invertible, which will not
be the case for DFT basis functions. Thus any current instance of any periodic signal with K
non-zero DFT coefficients can be written as a linear sum of K previous instances multiplied by
some weighting factor, i.e., it can be written as an autoregression with zero error.

More remarkably, the result in (5) is constructive and implies that for the same frequency
positions, the weights are independent of the value of DFT at these positions and can be calculated
directly from the DFT positions as w =

[︂
e

j2πk1
N e

j2πk2
N · · · e

j2πkK
N

]︂
· V−1. The same was also

validated in our testing, where (5) was observed to hold independent of the statistical distribution
of the DFT values at the activated frequencies and the weight estimation method used. Now
we come to the second part of the motivation, where we utilize (5) to contrast two cases, (a)
one when the frequency coordinates are uniformly and randomly distributed versus (b) when
they are clustered in contiguous positions, i.e., bandlimited signals. The weights obtained for
signals with K = 200 non-zero DFT positions for these two different classes are shown in Fig. 2.
When the signal belongs to the first class where the activated coordinates are random, the weight
coefficients tend to have the same magnitude across positions.

In contrast, for the bandlimited case, it can be seen that the regressors that are close to the
current pixel have significantly larger magnitudes, where the regressor values taper away with
distance. We compare the prediction (perfect decorrelation) between this linear model of size
K for the bandlimited case with another one that shares the same weights, except the furthest
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(a)

(b)

Fig. 2. Absolute values of auto-regressive weight (Y-axis) obtained by (5) as a function of
regressor distance (X-axis) for two classes of 1D signals both having size N = 1024 and K
= 200 non-zero N point DFT coefficients (a) Uniformly and randomly selected non-zero
DFT positions, where Random #A, Random #B and Random #C are three instantiations of
these K positions. (b) Bandlimited signals where the non-zero DFT positions are chosen
as clusters of contiguous positions. In 1 cluster, 2 clusters and 4 clusters, the positions of
the N-point DFT were chosen were {800:999}, {500:599, 900:999} and {500:549, 600:649,
700:749, 900:949} respectively. It can be seen that significant valued weights are distributed
among the closest regressors in the bandlimited cases.

regressors are set to zero and posit that their predictions are close. This is because the prediction
difference arises from the multiplicative sum involving regressor values with smaller absolute
values. Alternatively formulated, by utilizing an autoregressive model with only a few close
neighbors, we can decorrelate a bandlimited signal efficiently. See Fig. 3 for the Monte-Carlo
investigation of this claim, where the SNR of the prediction error is obtained as a function of
regression length for these two cases. For this experiment, the real and imaginary components of
the non-zero DFT coefficients were selected from independent and identical zero-mean Gaussian
distributions with unit variance. This selection is shown because typical holograms tend to have
a Gaussian distribution profile for their DFT coefficients.

It can be seen that the L2 prediction error for the randomly distributed cases vanishes to zero
only when the number of regressors is approximately K, while for the bandlimited cases, it
vanishes at point ≪ K. While we have shown the predictive performance for Gaussian-distributed
coefficients, it was also observed to hold true for other distributions like uniform, Laplacian, etc.
This is to be expected since (5) holds independent of the value of the coefficients.

Note that this discussion does not straightforwardly extend to the 2D domain. When solving
the weights in the 2D domain, it can be shown that if they exist, they are also independent of
the value of the non-zero DFT positions. However, in this case, the Vandermonde matrix is
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(a)

(b)

Fig. 3. Monte-Carlo validation of proposition that bandimited signals are efficiently
decorrelated by autoregressive models. The L2 prediction error measured by SNR (Y-axis)
is shown as a function of the model size (X-axis) for the 2 classes of signal in Fig. 2(a)
Random #A, Random #B and Random #C with uniformly and randomly selected non-zero
DFT positions (b) Bandlimited signals with 1 cluster, 2 clusters and 4 clusters of contiguous
non-zero DFT positions. The real and imaginary values of the DFT coefficients were selected
from independent and identical zero-mean Gaussian distributions with unit variance. The
figures show the average SNR of 50 runs. Observe that for the random case, SNR transitions
to low prediction error (decorrelation) only with model size ≈ 200, while SNR transitions
for lengths ≪ 200 in the bandlimited case.

not necessarily invertible. Consider a simple counter-example for a signal with two activated
2D-DFT coordinates {{k1, k2}, {k3, k4}} for a 2D signal of size N × N. We use a causal template
with two immediate neighbors along each axis and attempt to solve (3) for the 2D case in (6).
The 2×2 square matrix is not invertible if k1 + k4 = k2 + k3.⎡⎢⎢⎢⎢⎣

hy−1,x

hy,x−1

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣
Hk1,k2e−

j2πk1
N Hk3,k4e−

j2πk3
N

Hk1,k2e−
j2πk2

N Hk3,k4e−
j2πk4

N

⎤⎥⎥⎥⎥⎦ ·
⎡⎢⎢⎢⎢⎣
e

j2π(k1x+k2y)
N

e
j2π(k3x+k4y)

N

⎤⎥⎥⎥⎥⎦ (6)

Nevertheless, 2D compression frameworks are more powerful as they enable us to decorrelate
the hologram across both dimensions jointly, which leads to demonstrably higher compression
performance. The hologram compression framework used in this work is now presented.

3. Autoregressive lossless hologram compression

We start with a given hologram of N1 × N2 pixels divided into tiles where a tile has a size of
T1 × T2 pixels as shown by the left side of Fig. 4. Each of these tiles can be encoded and decoded
independently. The encoding and decoding steps performed for a 2D hologram tile h of size
T1 × T2 are now described. A pixel belonging to row y and column x is denoted as hy,x = hx.
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Fig. 4. Data organization of a hologram with N1 × N2 pixels into tiles of size T1 × T2
pixels. Each tile is assigned its own causal autoregressive model of size M, which is
stored after quantization (side information). Residuals obtained after subtracting each of the
T1 × T2 pixels in the tile from their corresponding model prediction are stored after applying
arithmetic coding (payload).

Each tile is assigned its own 2D causal autoregressive model represented by weights w of
size M. For predicting any given pixel with the autoregressive model, we use as regressors
(previous instances) all pixel neighbours whose row and column positions are both within a D
pixel distance to the row and column positions of the current pixel. The row and position offset o
of all these neighbours with respect to the current pixel is contained in O, also known as the 2D
template of the model, as given below.

O =
{︄
{oy, ox} | oy ∈ {0 : D}, ox ∈

⎧⎪⎪⎨⎪⎪⎩
{−D : D} , ifoy>0

{0 : D} , ifoy = 0

⎫⎪⎪⎬⎪⎪⎭
}︄

(7)

The model size, i.e. the number of regressors M is related to the distance D as M = 2D · (D+1).
By taking the multiplicative sum of the weights of the autoregressive model and the neighbouring
pixel values, the encoder obtains the prediction of each of the pixels hy,x belonging to a tile, as
also shown in Fig. 5. Since neighbouring pixels that have already been decoded are exclusively
utilized in this prediction, the decoder can make the same prediction for hy,x if it has access to
the same model weights. Thus, for losslessly transmitting the pixel hy,x to the decoder, only the
residual obtained after subtracting the pixel from its corresponding prediction has to be stored
after applying adaptive arithmetic coding. If the model successfully decorrelates the hologram,
then the entropy of the residuals is lower than that of the original hologram pixels, resulting in
effective compression. The finally stored entities for each tile, as shown by the right side of Fig. 4
are

• Side information - The M weights of the autoregressive model after undergoing quantiza-
tion.

• Payload - The T1 × T2 prediction residuals of each pixel belonging to the tile after
undergoing adaptive arithmetic coding.

This compression system is primarily parameterized by the model size M, the tile size T1 × T2
and the quantization parameters used for the model weights. Large model sizes can potentially
provide better decorrelation but will induce a bitrate penalty by increasing the number of the
weights that must be stored. For fixed parametric models like ours, the template’s appropriate
size is matched to the stochastic complexity [34] of the data and the length of the sequence being
compressed. It can be shown that the lower bound of the penalty of incrementing the model size
is approximately logN

N [34], where N is the length of the sequence for any given fixed parametric
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model. Thus, the reduction in entropy due to the larger model must be larger than the penalty
to justify the increase in complexity and needs to be adapted to obtain the best compression
performance possible. A detailed analysis of the influence of tile size, model size and weight
quantization bitdepth on compression performance is given in section 4.1.

Fig. 5. Visualization of the autoregressive prediction obtained for a pixel hy,x by using
the 2D template in (7). The prediction is obtained as the multiplicative sum of the model
weights with the neighbouring pixels in the 2D template.

The compression steps for the encoder and decoder are now elucidated. The sequence of steps
to be performed at the encoder as shown in Fig. 6(a) are:

E.1 weight determination using some specified causal template;

E.2 weight quantization using the MRQ (mid-rise quantizer);

E.3 prediction of each pixel from neighbors using the causal autoregressive model with the
dequantized weights;

E.4 fixed-point arithmetic encoding of the prediction residual.

The quantized weights and the bitstream from the arithmetic coder constitute the codestream.
The decoder shown in Fig. 6(b), performs the following steps in sequence:

D.1 dequantizing the quantized weights stored in the codestream to obtain the same model as
the encoder;

D.2 fixed-point arithmetic decoding of the bitstream in the file to recover the prediction residual
of the current pixel;

D.3 recovering the current pixel as the additive sum of the residual and the prediction obtained
from the previous pixels using the autoregressive model.

Step E.1 is discussed in section 3.1. Steps E.2 & D.1 are discussed in section 3.2, while steps
E.3 & D.3 and steps E.4 & D.2 are in sections 3.3 and 3.4 respectively.

3.1. Weight determination

The most suitable weights for a given predictive model (neighbor positions) are determined in
this step. Various methods exist that obtain weights with different levels of prediction accuracy
and associated tradeoffs in computational complexity. Note that the weights must be determined
before the subsequent prediction and residual encoding steps can occur. Now we look at some
techniques that may be used to estimate the weights.
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(a) Encoder (overview)

(b) Decoder (overview)

Fig. 6. Overview of the autoregressive model-based compression framework proposed in
this work.

(a) bitrate without weight transmission (b) bitrate with weight transmission

Fig. 7. Relationship between model size (X-axis), tile size, and quantization on bitrate
(Y-axis). The figure on the left shows bitrates for different tile sizes without accounting
for weight quantization and assumes weights are known at the receiver. The figure on the
right shows bitrates for a tile size of 512 × 512 for different levels of quantization precision
and weight transmission. For a given color (quantization precision), the dashed line shows
the bitrate contribution of the payload, while the solid line shows the total bitrate. The gap
between these lines represents the bitrate contribution of the weights.
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3.1.1. Ordinary least squares (OLS)

In this method [35], available instances of the observation (current pixel) and its corresponding
regressor observations (previous pixels) are expressed as shown below.

hobs = hreg · w⊺ + r

⎡⎢⎢⎢⎢⎢⎢⎢⎣
...

hx
...

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣
...

hx−o1 · · · hx−om · · · hx−oM

...

⎤⎥⎥⎥⎥⎥⎥⎥⎦
·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

wo1

...

wom

...

woM

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎣
...

rx
...

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(8)

The weights w that minimize the L2 norm of the residuals r as given in (9) are found. If the
residuals are Gaussian distributed, then the OLS estimator is the same as the MLE(maximum
likelihood estimator).

w = argminw

∑︂
x

|︁|︁rx
|︁|︁2 = argminw

∑︂
x

|︁|︁hx −
M∑︂

m=1
wm · hx−om

|︁|︁2 (9)

The unique solution(or one of the non-unique solutions) will be given by w⊺ = (hreg)+hobs,
where (.)+ is the pseudoinverse operator [36]. The Appendix also describes a simple proof for the
claim that the OLS is one of the minimizing solutions. In our work, the ordinary least squares
solution is found as w = mldivide(hreg, hobs) with MATLAB.

If we were to use all the available information in the hologram tile to find the weights, this
would result in an observation matrix hobs of size T1T2 × 1 and a regressor matrix hreg of size
T1T2 × M. Solving the pseudoinverse would then have a computational complexity of around
O(T2

2 · T2
1 · M), making computation impractical for reasonably sized tiles. Thus, only S × 1

randomly selected rows from observations hobs and their corresponding S × M regressor values
hreg are used. S is expressed in the form of a percentage called sampling rate (%), which is
defined as

Sampling rate =
S × 100

T1T2
(10)

Only a small percentage of the total available equations are used for weight determination.
Furthermore, we exclude pixels near the edge of the tile whose regressors are outside the tile.

3.1.2. Yule Walker equations

The Yule-Walker equations [37] are an alternative formulation for determining the weights by
obtaining the autocorrelation function of the hologram. Assuming a zero-mean wide-sense
statistically stationary signal, the autocorrelation of a signal measures its statistical correlation
with itself at different lags o and is defined in terms of its mathematical expectation as

τo = E(h∗x · hx+o) (11)

The Yule-Walker equations shown in (12) relate the autocorrelation function and the autore-
gressive weights by assuming the current observation is obtained as an additive sum of previous
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LTI-filtered observations of size M and uncorrelated process noise.

τ = η · w⊺⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

τo1

...

τom

...

τoM

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

τo1−o1 · · · τo1−om · · · τo1−oM

...

τom−o1 · · · τom−om · · · τom−oM

...

τoM−o1 · · · τoM−om · · · τoM−oM

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

wo1

...

wom

...

woM

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(12)

In general, the Yule-Walker equations do not necessarily lead to optimal solutions. However,
they are widely used in practice because they enable lower complexity, especially in those cases
where OLS obtains only a marginally smaller L2 error and does not offer any practically significant
advantage, like improved compression performance. Given the autocorrelation function, one can
then obtain the weights using (12) as w⊺ = (σ)−1τ, where (.)−1 is the matrix inverse operator.
In this work, the weights are obtained using w⊺ = mldivide(σ, τ) in MATLAB, which has
complexity O(M3). Alternatively, had we used a 1D template, σ is a Toeplitz matrix and can be
inverted using the Levinson recursion [38] with complexity O(M2). However, this procedure is
not used in this work as it is numerically more sensitive to errors and not applicable to the 2D
case.

There are myriad ways in which one could obtain the autocorrelation function [39]. Firstly, the
autocorrelation at an offset o could be obtained by directly using (11) on measurements with
known regressors as

τo =
∑̄︂

h∗x · hx+o where
∑̄︂

(.) returns the arithmetic mean (13)

This requires a complexity of O(T1T2M2), and is an efficient way to compute the autocorrelation
function when M is low. Here, the values of hx+oh∗x where hx+o lies outside the given hologram tile
is skipped in the computation, which makes the estimate unbiased. However, this usually results
in poorer estimates in the mean squared error sense. One solution would be to use all available
measurements and set hx+o as zero (zero-padding) if they are outside the tile. Alternatively, the
Wiener-Kinchine theorem [40], stating that a signal’s power spectral density is obtained as the
Fourier transform of its autocorrelation function, can also be utilized as shown in (14).

τ = IDFT(|H |2) whereH = DFT(h) (14)

In the DFT domain (any dimensional), it can be shown that the autocorrelation function
calculated in (14) is equivalent to the autocorrelation function calculated in (13) with periodic
padding, i.e., circular convolution. Estimating the autocorrelation function in this manner
has complexity O(T1T2 log(T1T2)). When M is large, it may be computationally beneficial to
compute the autocorrelation function via this route than the previously mentioned unbiased and
zero-padded estimates.

Furthermore, more advanced spectral estimation methods for the periodogram can be used. We
note that the Welch [41] method of computing the periodogram (spectral estimate) is particularly
effective. In this method, the signal is initially grouped into overlapping regions. Then each such
region is multiplied by a window that is zero outside the region, and its periodogram is taken.
The final periodogram is obtained as the average of the individual periodograms calculated for
each region. We use a Hann window G(L1, L2), defined for a 2D rectangle of size L1 × L2 as

Gl1,l2 (L1, L2) = 0.25 ·
(︁
1 − cos(2πl1/L1)

)︁
·
(︁
1 − cos(2πl2/L2)

)︁
(15)
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3.2. Weight quantization

The chosen weights must be transmitted as side information so the decoder can access the same
predictive model. This represents the overhead of utilizing the autoregressive model. Transmitting
the determined model weights at an arbitrarily high precision could cause a substantial overhead
when the payload size is small. Choosing to quantize the representation can reduce the overhead.
However, predictive models using such a quantized representation can be sensitive to errors, so
care must be taken to ensure that the predictive model is not affected [42]. Put another way, the
bitrate savings from the quantization must not exceed the increase arising from the incorrect
quantized model. Detailed breakdowns of the influence of the quantization procedure on both
the payload and side-information bitrate are provided in section 4.1.

We shall use a simple uniform mid-rise quantizer for this purpose. In our case, the mid-rise
quantizer and dequantizer are parameterized by its bit-depth b ∈ Z+, and quantization ranges
Xmax ∈ C and quantization offset Xoff ∈ C. Applying the quantization procedure on an input
x ∈ C is given by

QC(x, b, Xmax, Xoff) = Q(Re(x − Xoff), b, Re(Xmax)) + j · Q(Im(x − Xoff), b, Im(Xmax)) where

Q(x, b, X) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−2b−1 , ifx<−X

⌊ 2b−1x
X ⌋ , if−X ≤ x ≤ X

2b−1 − 1 , otherwise

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
.

(16)
Applying dequantization on a quantized output q using its corresponding uniform mid-rise

dequantizer (MRDQ) yields

DQC(q, b, Xmax, Xoff) = DQ(Re(q), b, Re(Xmax)) + DQ(Im(q), b, Im(Xmax)) + Xoff

where DQ(q, b, X) = (q + 0.5)
X

2b−1 .
(17)

The bit-depth b is kept constant for all weight coefficients, while the quantizer parameters are
found as

Xoff =
(︂

max
m∈{1:M }

wom + min
m∈{1:M }

wom

)︂
/2 and Xoff =

(︂
max

m∈{1:M }
wom − min

m∈{1:M }
wom

)︂
/2 (18)

For real-valued holograms like off-axis measurements, the complex channel is omitted.

3.3. Autoregressive prediction

The autoregressive model’s core prediction step is executed at both the encoder and decoder.
The prediction is based on a rounded, weighted sum of the preceding pixel values followed by a
clipping procedure. The clipping is performed such that the prediction has the same input range
as the original signal. This guarantees that the range of the prediction residual shall be not more
than or equal to twice the range of the input signal, which can be used to bind the operating
parameters of the arithmetic coder. The prediction is obtained as

ḣx =

⎧⎪⎪⎨⎪⎪⎩
round(

∑︁M
i=1 hx−oiwoi ) , ifx ∈ regular pixels

0 , ifx ∈ border pixels

⎫⎪⎪⎬⎪⎪⎭ . (19)

Predictions are impaired when regressors (border pixels) are unavailable and set to zero,
offering little to no discernable compression improvements. Thus for simplicity, we have utilized
autoregressive prediction only when all the regressors are available, which shall be termed
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“regular pixels”. Alternatively, smaller, appropriately shaped templates can deal with the special
case of border pixels.

Since this is one of the two core steps to be done at the decoder, the accuracy of the
computation performed will have implications for the hardware and power consumption for
practical applications. The prediction step must also be identical at both the decoder and encoder,
i.e., the same numerical precision must be maintained. We use a 32-bit IEEE 754 floating point
representation.

3.4. Residual compression using entropy coding

The prediction residual is given by
rx = hx − ḣx (20)

They are to be compressed using entropy coding. Since the real and imaginary components of
the residual are identically distributed, we propose to encode them as a single interleaved stream.
We use fixed-point arithmetic coding [43], which en/decodes a stream of integer-valued symbols
into a binary bitstream and utilizes a real-time adaptive zero-order model.

For encoding a stream of integers belonging to the set S, both the encoder and decoder
use a histogram vector C of the same size as S. Each element in the vector corresponds to
the occurrence of some integer in S encountered in the stream till that time. At the start of
encoding/decoding a code block, all values in the vectors are set to one. After encoding/decoding
the current integer s ∈ S, its count is incremented as shown in (21).

Cs = Cs + 1 (21)

This implies that the probability assigned to the occurrence of some integer s shall be Cs∑︁
s∈S Cs

,
and if it had occurred incurs a bitrate of ≈ − log2(

Cs∑︁
s∈S Cs

) bits. For unknown prior knowledge
of the probability distribution of the integers, it can be shown that initializing the counts to 1
minimizes the expected rate of the arithmetic coder. It is also a consistent estimator, i.e., as
more of the stream is coded, the estimated probability converges to the actual probability. When
the predictive power of the autoregressive model is high, it produces a low entropy zero-order
distribution with most symbols clustered around zero, thereby leading to efficient compression.
When the linear autoregressive model cannot fully “decorrelate” the hologram, there may still
exist a spatial correlation between the pixels and/or cross correlation between the real and
imaginary components in the residuals. In this case, adaptive context-based entropy coding [44]
and vector quantization [45] may bring further reductions. However, the added complexity may
not be proportional to the bitrate reductions such strategies may bring about.

The only contextualization we perform on the residual is based on its position at the border.
This is achieved by creating two histogram vectors Cregular and Cborder respectively. Depending
on the residual status, only the corresponding histogram vector is used and updated for arithmetic
coding.

The motivation stems from the fact that the entropy of any distribution is concave to its
probability mass function. For any two dissimilar probability distributions pa and pb, the entropy
H(λpa + (1 − λ)pb) when considering them together as a single distribution in any proportion
will be greater than the entropy λH(pa) + (1 − λ)H(pb) when they are considered separately.

4. Results

This section will analyze the compression performance using the autoregressive modeling
framework described in this work. In section 4.1, we will analyze the influence of various
stages of the compression pipeline. The compression performance is then benchmarked with
state-of-the-art image codecs on a wide selection of optically acquired and computer-generated
holograms in section 4.2.
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Benchmarking compression performance for the different lossless methods can be done by
comparing the size of the bitstreams produced by the respective methods. The primary metric
used is the bits required to encode a R/I hologram pixel which is given by (22), also referred to as
the bitrate in short.

bitrate =
bits in bitstream
number of pixels

=
bits in payload + bits in side-information

number of pixels (22)

4.1. Ablation study

In this section, we will investigate the design choices possible within the autoregressive framework.
Initially, we look at a few weight estimation methods that the encoder may use. Afterward, we
look at the influence of the quantitative parameters of the compression framework - the model
size, the tile size and the quantization precision for the weights.

4.1.1. Weight determination method

Determining the autoregressive weights at the encoder is the most computationally expensive step
in our compression framework. In section 3.1, we discussed two approaches: the Ordinary Least
Squares (OLS) and the Yule-Walker equations that may be used for the weight determination
problem. OLS finds the weights that minimize the L2 error of the residuals but is computationally
expensive, which is mitigated by random sampling.

The Yule-Walker equations lead to a more compact weight determination problem in the form
of the autocorrelation function of the hologram, as given by (12). The computational complexity
here is dominated by the determination of the autocorrelation function, which can be done using
a variety of methods as discussed in section 3.1.

Table 1 gives the bitrates achieved by these different weight estimation methods on a selection
of sub-holograms. Overall, OLS obtains the best compression performance. As the sampling rate
increases, the bitrate converges, indicating diminishing returns for the higher sampling rates. For
example, when using a sampling rate of 0.5% versus 20%, the bitrate increases by less than 2%,
but the number of floating point multiplications performed is reduced by a factor of around 1600.

Table 1. Bitrates obtained by the different weight estimation methods for the proposed
compression pipeline on complex-valued sub-holograms of size 512 × 512 with 16 bits

of information per pixel split equally among the R/I channels.a

Hologram

Ordinary Least Squares
(Sampling rate)

Yule-Walker
(Autocorrelation determination method)

0.5% 2% 10% 20% Unbiased Zero
padded

Circular
convolution

Welch

Venus 3.27 3.25 3.20 3.20 4.41 4.20 4.20 3.21

Deep chess 6.24 6.21 6.19 6.19 7.01 6.86 6.88 6.19

Cornellbox 3 5.16 5.12 5.11 5.11 6.18 5.97 5.98 5.12

Squirrel 7.86 7.82 7.81 7.80 8.15 8.14 8.14 7.80

aThe model size M was 60, and the weight quantization bit-depth was 14 bits. For the Welch method, the
Hann window G(256, 256) was used with a 50% overlap.

In the case of the Yule-Walker equations, the worst performance was when using the unbiased
estimator for the autocorrelation function. The performance improves by utilizing either zero-
padding or circular padding (computed via the DFT and IDFT) in the autocorrelation function
estimation but still is noticeably behind densely sampled OLS. However, when computing the
autocorrelation via the Welch periodogram, the performance is substantially improved, with only
negligible differences over densely sampled OLS. These trends hold across different tile sizes,
model sizes and holograms.
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For the remainder of this work, we shall use OLS with a 5% sampling rate as our weight
determination method.

4.1.2. Parameterization - tile and model size

The influence of adjusting various quantitative parameters for the codec is discussed in this
section in detail.

First, we investigate the relation between tile size and model size on compression performance,
assuming that the model weights are known at the decoder without applying quantization. As
the model size increases, the obtained compression performance is shown in Fig. 7(a) for
different tile sizes on the Venus hologram. When the model size is small, a substantial reduction
in bitrate can be obtained by increasing it. However, after a certain point, the gains offered
by increasing the model size do not translate into improving the compression performance.
This is because the larger model size will necessarily increase the proportion of border pixels,
which cannot be properly predicted, increasing the total payload size. The penalty of having
a larger-than-necessary model is the greatest for the smallest tiles. On the other hand, for the
same model size, the smallest tile sizes tend to have the lowest bitrate cost per predicted (regular)
pixel. As tile size increases, the signal’s sparsity in the frequency domain decreases due to
the collection of planar waves traveling in different directions (see Fig. 1), which reduces the
efficacy of the autoregressive model. When compared to smaller ones, very large tile sizes may
require much larger model sizes to provide the same compression performance or obtain worse
compression for the same model size, and should be avoided as well.

4.1.3. Parameterization - weight transmission and quantization bit-depth

We will now consider weight transmission and motivate the need for quantization. The bitrates
achieved by increasing model size are shown in Fig. 7(b) for a tile size of 512 × 512 at different
quantization precisions. On the one hand, as the quantization precision increases, the payload
size decreases due to better prediction but only to an extent. Increasing the quantization bit-depth
beyond 12 bit does not appreciably decrease the payload size(shown by dotted lines) when
compared to floating point representation. On the other hand, the bit number required to represent
the quantized weight rises by ( M

T1 ·T2
) bits per quantization bit precision.

It can be observed that the total bitrate required for the floating-point representation of the
weights exceeds what is possible with fixed-point quantized versions.

Furthermore, comparing compression performance with and without weight transmission,
it can be seen that by a judicious selection of parameters, the added bitrate cost of weight
transmission is only marginally larger than the best possible bitrate without transmission. This
means that decoding architectures, like ours, do not require adaptive determination of the weights.

4.2. Benchmarks

In this section, we compare the performance obtained by best-performing (global minima) codec
parameters with weight quantization and transmission against the performance of conventional
image compression tools. The search space for the codec parameters is as follows - the tile size
can be a maximum of 2048 × 2048, while the model size is limited to be less than 500. The
quantization precision can be up to 14 bits. We utilize a wide selection of optically recorded and
computer-generated holograms. These holograms and bitrates obtained by the different methods
are given in Table 2.

As anchor codecs, JPEG XL, JPEG 2000 and JPEG LS —discussed in section 1.— were used.
HEVC and PNG were also tested for lossless compression, but they are not shown in Table 2
due to their poor compression performance. Among the anchor codecs, the best performer was
JPEG XL, with JPEG 2000 and JPEG LS requiring around 6.6% and 10.9% more bits on average,
respectively.
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Table 2. Bitrates of lossless codecs on optically recorded and computer-generated holograms.a

Hologram Compression solutions

Name Resolution
(pels)

Bit-depth Pixel pitch
(µm)

Wavelength
(nm)

JPEG XL JPEG 2000 JPEG LS
AR

framework

Bitrate (bpp) Parameters

Venus 4096×4096 2×8 1 633 8.53 10.07 11.18 3.14 1024, 120, INT14

CornellBox 3 [46] 16384×16384 2×8 2 633 11.02 11.43 12.28 4.15 1024, 364, INT14

Chess [47] 2048×16384 2×8 3.45 532 10.91 11.57 12.56 4.89 2048, 480, INT14

Deep Chess [47] 2048×16384 2×8 3.45 532 13.18 13.03 13.58 6.43 1024, 480, INT14

Deep Cornell Box
[46]

16384×16384 2×8 2 633 11.32 11.90 12.48 4.98 1024, 312, INT14

DeepDices2K [48] 2048×2048 2×8 4.8
640 12.25 12.29 12.70 9.78 128, 84, INT10

532 12.16 12.23 12.5 10.00 128, 84, INT8

473 12.37 12.42 12.74 10.46 128, 84, INT8

Dices4K [48] 4096×4096 2×8 0.4
640 11.04 11.76 12.05 5.57 512, 312, INT14

532 11.93 12.36 12.62 6.74 512, 220, INT14

473 12.53 12.76 13.14 7.56 512, 312, INT14

Piano8K [48] 8192×8192 2×8 0.4
640 10.31 11.33 12.01 4.16 1024, 420, INT14

532 11.21 12.06 12.69 4.90 1024, 480, INT14

473 11.85 12.42 13.02 5.15 512, 364, INT14

DiffuseCar8K [49] 8192×8192 2×8 0.4
640 10.59 11.30 12.18 5.54 1024, 364, INT14

532 12.15 12.70 13.25 6.74 512, 312, INT12

473 11.73 12.48 13.09 6.38 512, 264, INT12

SpecularCar8K [49] 8192×8192 2×8 0.4
640 9.29 10.36 11.21 4.41 512, 220, INT13

532 11.29 11.96 12.65 5.46 512, 220, INT12

473 11.15 11.90 12.51 5.47 512, 180, INT13

Ring8K [49] 8192×8192 2×8 0.4
640 11.64 12.10 12.75 7.01 1024, 312, INT14

532 12.86 13.09 13.47 8.33 1024, 264, INT14

473 13.37 13.52 13.77 9.04 1024, 220, INT13

Single Cell [50] 2048×2048 8 3.45 532 5.35 6.28 5.95 4.76 2048, 40, INT14

Microspheres [50] 2048×2048 8 3.45 532 6.27 6.71 6.88 5.88 2048, 60 INT 12

Ball_ roughness
[51]

1024×1024 8 - - 4.82 5.59 5.78 4.11 1024, 144, INT14

Neuron [51] 1024×1024 8 - - 4.16 4.58 4.47 3.72 512, 40, INT10

MDCK_ wild_053
[52]

1024×1024 8 6.45 660 4.41 5.02 5.16 3.53 256, 40, INT10

MDCK_
KRasV12_211
[52]

1024×1024 8 6.45 660 4.02 4.47 4.56 3.17 256, 40, INT8

Sphere [53,54] 2048×16384 2×8 3.45 532.8 11.45 12.31 12.65 7.72 2048,480, INT14

Mermaid [53,54] 2048×16384 2×8 3.45 532.8 12.49 13.05 13.38 7.85 2048,480, INT14

Squirrel [53,54] 1792×26880 2×8 3.45 632.8 11.38 12.04 12.98 7.38 1792,480, INT14

Astronaut [55] 2048×2048 2×8 2.2 632.8 10.20 10.98 11.04 9.72 112, 12, INT12

Lowiczanka Doll [54]2016×58464 2×8 3.45
637 10.53 11.42 12.11 6.34 2016, 480, INT14

532 10.47 11.28 11.87 6.65 2016, 480, INT14

457 10.58 11.19 11.69 6.85 2016, 480, INT14

Average percentual increase in bitrate over AR framework (%) +72.1.% +83.5% +92.1%

aThe listed parameters for the AR framework indicate the size of the side of one squared tile, model size and weight
quantization precision. File size of uncompressed hologram (bits) = Resolution × Bitdepth. File size of compressed
hologram (bits) = Resolution × Bitrate.

The autoregressive framework proposed in this work achieves the best compression performance
for all holograms. For computer-generated holograms, JPEG XL, JPEG 2000, and JPEG LS
required around 93.4%, 104.4% and 115.4% more times the bitrate of our framework, respectively.
For optically recorded content, the average percentual increases were 34.1%, 46.4%, and 50.5%.
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It can be seen that the compression gain of the framework for optically recorded content,
while significant, is still lower than the gain of computer-generated content. This is due to the
presence of measurement noise in the recorded content, which is fundamentally incompressible.
Among the computer-generated content, the smallest bitrates were observed for the Venus, which
was computed analytically from a point cloud. All other computed holograms tested utilize
some approximations that can be seen as an injection of noise. It can also be seen that the
best-performing model quantization precision of optical content is smaller than that of computed
content, suggesting — not surprisingly — that more accurate autoregressive models are less
effective in the presence of strong measurement noise.

The encoding/decoding times of all the compression solutions are given in Table 3. Note that
our software has not been optimized, and the numbers do not fully indicate the achievable speed.
Nevertheless, leveraging parallel processing across tiles improves the encoding/decoding times.

Table 3. The encoding and decoding times in µs for a single pixel when using lossless
compression software tested in section 4.2.a

JPEG LS JPEG 2000 JPEG XL AR Model

Hologram
resolution

Enc.
time

Dec.
time

Enc.
time

Dec.
time

Enc.
time

Dec.
time

Enc.
time

Dec.
time

Processors
utilized

1024 × 1024 0.32 0.33 0.34 0.36 1.88 0.44 2.67 1.81 1

2048 × 2048 0.17 0.19 0.09 0.09 1.06 0.14 1.29 0.81 4

4096 × 4096 0.14 0.13 0.03 0.03 0.96 0.08 0.84 0.48 16

aThe autoregressive framework was used with a model size of 144 and a tile size of 1024 × 1024. The tests were run
using an Intel Core i7 11800H@4GHZ equipped with DDR4-3200 RAM.

5. Conclusion

In this work, we have showcased the suitability of causal autoregressive modeling for the lossless
compression of digital holograms. When a typical hologram is analyzed locally in the Fourier
domain, only a few clusters of frequency coefficients are activated depending on the position of
the objects illuminating the scene. As discussed in section 2, a given pixel from such a sequence
can be stochastically predicted as a weighted sum of only a few previously decoded neighboring
pixels, i.e.using a causal autoregressive model. The compression framework brings significant
compression gain over standard image compression tools, especially for computer-generated
content. Moreover, the decoder depicts only linear complexity with respect to the data volume
and is highly scalable, i.e., its operating parameters can be adapted to deal with different types of
holograms and desired computational footprint. Different approaches were used at the encoder
to determine the autoregressive model from the given hologram. Here, we demonstrated that
it is possible to attain nearly the same compression performance as the autoregressive model
minimizing the L2-norm, but with less computation. We also evaluated the implications of
varying the tile size, model size, and weight quantization precision on the achieved compression
performance.
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6. Appendix: OLS minimizes L2 error

This appendix gives a proof for the claim that w = (hreg)+hobs satisfies (9). w is expressed as a
column vector for ease of notation. Consider x ≠ w and let | | (.) | |2 represent L2 error. Then

| |hregx − hobs | |2 = | |hregw − hobs + hregx − hregw | |2

= (hregw − hobs + hreg(x − w))∗(hregw − hobs + hreg(x − w))
= | |hregw − hobs | |2 +| |hreg(x − w) | |2 +2 Re((x − w)∗(hreg)∗(hregw − hobs)

(23)
Here

(hreg)∗(hregw − hobs) = (hreg)∗hreg(hreg)+hobs − (hreg)∗hobs = 0
as (A)∗A(A)+=(A)∗for any A

(24)

Therefore
| |hregx − hobs | |2 = | |hregw − hobs | |2 +| |hreg(x − w) | |2

≥ | | hregw − hobs | |2
(25)
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