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Abstract: The dark-field signal provided by X-ray grating interferometry is an invaluable tool
for providing structural information beyond the direct spatial resolution and their variations
on a macroscopic scale. However, when using a polychromatic source, the beam-hardening
effect in the dark-field signal makes the quantitative sub-resolution structural information
inaccessible. Especially, the beam-hardening effect in dual-phase grating interferometry varies
with spatial location, inter-grating distance, and diffraction order. In this work, we propose a
beam-hardening correction algorithm, taking into account all these factors. The accuracy and
robustness of the algorithm are then validated by experimental results. This work contributes
a necessary step toward accessing small-angle scattering structural information in dual-phase
grating interferometry.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

X-ray Talbot grating interferometry (XT-GI) has made great progress in the past 20 years and has
proven its huge potential in both medical imaging and material science [1–10]. XT-GI is capable
of providing additional complementary information, notably differential phase contrast and
dark-field signal, in addition to the attenuation contrast that can be obtained through conventional
X-ray radiography. Furthermore, XT-GI is able to provide a large field of view and maintain a
compact set-up, while remaining compatible with broadband laboratory sources. The principle
of XT-GI is based on the Talbot effect [11] to generate a periodic interference pattern. By
quantitatively analyzing how the interference pattern is changed by a sample, three complementary
signals of the sample can be retrieved. In traditional Talbot grating interferometry, a phase
grating is used to diffract the incoming beam and an interference pattern is formed downstream
at the fractional Talbot distances [1,3]. Normally, since the period of the interference pattern is
generally too small to be directly resolved by a detector, an absorption (or analyzer) grating with
the same period and orientation as the interference pattern is placed immediately in front of the
detector. Then, a phase-stepping approach is implemented [3]. By scanning one of the gratings
along the transverse direction, the intensity oscillation of the interference pattern is recorded
by each pixel as a phase stepping curve, so that the detector resolution is decoupled from the
fringe period. For the X-rays sources without enough transverse spatial coherence to generate a
high-contrast interference pattern, a source mask is placed close to the X-ray source to fulfill the
coherence requirement [4].
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The phase stepping curve in XT-GI can be approximated by the Fourier series up to the first
order [3,6]:

ITalbot(xg) = a0 + a1 · cos
(︃
2π

xg

pg
+ ϕ1

)︃
, (1)

where xg and pg are the transverse position and pitch size of the stepped grating respectively,
a0 is the averaged intensity, a1 and ϕ1 are the corresponding amplitude and phase for the 1st
harmonics, respectively. With a sample placed in the beam, the phase stepping curve is altered
since the sample’s structural information is imprinted onto the wavefront. The reduction of a0 is
related to the line integral of the attenuation coefficient based on the Beer-Lambert law. The
shift of ϕ1 is related to the transverse gradient of the projected phase shift [1,3]. Both retrieved
absorption and differential phase contrast result from the smooth features of the sample within
the resolution of the system. Meanwhile, the unresolvable features cause a reduction of visibility
and generate the so-called dark-field signal, where visibility is defined as the ratio between the
amplitude and the averaged intensity: V = a1/a0[6].

Since this visibility decaying follows the same exponential relation with the sample thickness
as in the attenuation modality [12,13], in analogy to the attenuation coefficient, the dark-field
extinction coefficient ud is used to quantify this visibility decrease. The specific expression for
ud has been derived from both wave calculations [14,15] and scattering theory [16,17]. Here,
we adopted the formula derived by Strobl [16], as it clearly indicates the relation between the
dark-field extinction coefficient and quantitative small-angle scattering (SAS) information:

ud = Σ(1 − G(ξ)), (2)

where Σ represents the macroscopic scattering cross section and the correlation function G(ξ) is
the projection of the auto-correlation function of unresolvable features at the correlation length
ξ[14–16,18]. The correlation length is a characteristic length that is a function of the geometry
of the set-up, sample position, and x-ray wavelength. Given the fact that the correlation function
is related to the projected scattering function on the transverse axis by a cosine Fourier transform
[16,19], quantitative sub-resolution structural information is then accessible from the relation
between dark-field signal and correlation length. This means that dark-field imaging has the
unique ability to simultaneously combine macroscopic spatial resolution and SAS structural
information by scanning the correlation length.

However, XT-GI still has some disadvantages. Firstly, since the analyzer grating absorbs nearly
half of the information-carrying photons behind the sample, this significantly reduces the dose
efficiency. Secondly, it is still a challenge to fabricate absorption gratings with high aspect ratios
and large areas [20]. Furthermore, tuning the correlation length in XT-GI is normally related to
changes in the sample’s magnification when a cone beam geometry is considered [15–17,21–23].
This hinders accessing sub-resolution structural information for each pixel from the dark-field
signal. Although another alternative to change the correlation length is by adjusting the photon
energy [24], this is far from trivial when using a polychromatic source. In order to solve these
problems, dual-phase grating interferometry (DPGI) has recently been proposed [25,26]. Unlike
XT-GI forming a periodic pattern based on the Talbot effect, in DPGI a Moiré fringe generated
by two phase gratings with slightly different magnifications can be directly resolved [27,28].
Therefore, using an analyzer grating is not necessary. Moreover, tuning the correlation length in
DPGI can be achieved by adjusting the inter-grating distance Rg (see Fig. 1) without influencing
the sample’s magnification [26,29]. Similar to XT-GI, a source mask is added in DPGI to fulfil
the generalized Lau condition when the X-ray sources cannot provide enough spatial coherence
[30–32].

In principle, both XT-GI and DPGI can provide three independent contrasts. However, when a
polychromatic source is used, these contrasts begin to couple with each other. Since photon energy
affects both the phase-shift values of gratings and wave propagation, the resulting interference
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Fig. 1. Schematic of dual-phase grating interferometry. The X-rays are generated by a
micro-focus tube, propagate through two adjacent phase gratings, and are recorded by an
integrating detector. A typical interference pattern on the x-axis is plotted behind the detector,
indicating that the fringe is closely related to the divergence angle. The grating shape is
inspired by Fig. 7, to represent the deviations from a perfect rectangular shape. The position
of the sample is represented by a blue solid line, attached to the exit window of the X-ray
tube.

pattern changes with photon energy, leading to a spectral dependence in its visibility [33,34].
Meanwhile, the fringes detected by an integrating detector are the result of the incoherent
summation of the interference pattern formed by each photon energy, with the weights of each
energy given by the spectrum [35]. Due to the unequal attenuation for each photon energy as
it passes through the sample, the spectrum behind the sample is reshaped. Consequently, the
attenuation affects the extracted visibility and phase information obtained from the polychromatic
interference pattern, resulting in the so-called beam-hardening effects in differential phase contrast
[33,36–39] and dark-field signal [40–43]. The beam-hardening effect will introduce an extra
dark-field signal besides the small-angle scattering. However, this effect behaves differently
between XT-GI and DPGI when scanning the correlation length. In XT-GI, since the correlation
length is normally tuned by moving the sample along the beam axis without changing the
geometry of the set-up, the spectral properties of the set-up are kept the same, therefore, the
dark-field signal attributed to the attenuation is constant among all correlation lengths. Conversely,
in DPGI, the correlation length is adjusted by changing the inter-grating distance, which impacts
the spectral properties [27,34,43,44]. This leads to a varying effect on the attenuation-based
dark-field signal in response to the correlation length, making it impossible to quantitatively
analyze the sub-resolution structural information.

Pandeshwar et al. proposed an analytical model based on wave propagation theory to address
the issue of beam-hardening effect in DPGI [43]. Their model quantitatively analyzes the impact
of varying beam-hardening effects on the dark-field signal across different correlation lengths
and provides a solution to retrieve the dark-field signal only related to the small-angle scattering.
However, this model has several limitations based on our recent findings [44]. Firstly, given the
fact that the phase gratings used have large aspect ratios, the transmission profile of the grating
changes rapidly with the incident angle in a cone beam geometry. As a result, the interference
patterns in DPGI are strongly influenced by the divergence angle α. As depicted in Fig. 1,
the amplitude of the interference pattern changes with the divergence angle, and intermediate
peaks are presented in the middle of the pattern. The variations in the transmission profile
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also imply a spatially-varying spectral property, which consequently causes a beam-hardening
effect in the dark-field signal that is also dependent on the divergence angle. Nevertheless, the
analytical model solely accounts for the scenario of a normal incident. The second limitation
of the analytical model is that it assumes the grating bars to be rectangular and to only contain
phase modulation, neglecting any absorption effects. To be more precise, the real grating bars
exhibit deviations from the perfect rectangular shape and are not completely devoid of absorption
properties. Thirdly, the analytical model only considers the first diffraction order, while the higher
diffraction orders are not negligible in DPGI [28]. As illustrated in Fig. 1, the second-order
diffraction pattern is represented by the smaller secondary peaks. Therefore, in this work, we set
out to develop a beam-hardening correction algorithm that accounts for the spatially-dependent
spectral properties, as well as a realistic grating shape and higher diffraction orders. Moreover,
the accuracy and robustness of the algorithm are validated by applying the beam-hardening
correction to a variety of samples.

2. Method

Before presenting the algorithm for beam-hardening correction, a brief background of the set-up
is described. As shown in Fig. 1, Rs is source-to-G1 distance, Rd is G2-to-detector distance, and
Rg is inter-grating distance, where Rg ≪ Rs ≈ Rd. Two gratings are assumed to be identical with
period pg which is much smaller than the pixel size of the detector. To fine-tune the correlation
length, the inter-grating distance Rg is adjusted by moving G2 a distance on the same order of
magnitude as Rg along the z-axis, while keeping G1 fixed. Although the detector can directly
resolve the fringes, the phase stepping approach is used to record the local intensity profiles in
each pixel, by stepping G1 for one period along the x-axis.

According to the derivations given by Yan et al. [27,28] and Miao et al. [25], the interference
patterns produced in DPGI are achromatic, meanwhile, the higher harmonic signals are not
negligible. Moreover, the interference patterns are also influenced by the spatial location and
inter-grating distance [44]. Firstly, we consider a monochromatic situation in which a wavefront
with an intensity of I0 uniformly illuminates G1. Incorporating all these factors, we formulate the
phase stepping curve (reference scan) as:

I(i,j,Rg)

ref (xg, E) =
I0
M

[︄
a(i)0 (E) +

∞∑︂
l=1

a(i,Rg)

l (E) · cos
(︃
2πl

(︃ xg

pg
+ ϕ(i,Rg)

)︃)︃]︄
. (3)

The pixel indices, i and j, account for the spatial location, and Rg is the inter-grating distance.
The phase stepping curve is a function of the transverse position xg of the stepped grating (G1)
and photon energy E. To account for the cone beam geometry, the incident intensity I0 is reduced
according to a magnification factor: M = Rs

Rs+Rg+Rd
. The intensity oscillation is described by a

summation of different harmonics, with the diffraction order represented by l. As both gratings
are aligned along the y-axis, the mean value a0, the amplitude al and the reference phase ϕ are
uniform along the y-axis, meaning they are independent of the index j. The mean value a0 is
related to the attenuation of two gratings, and it will be shown later that a0 can be considered
as constant among the inter-grating distances. Moreover, the amplitude al is related to the
transmission function of the gratings, the degree of coherence of the source, the geometry of the
set-up, and the response function of the detector [27]. Therefore, both a0 and al are dependent on
the photon energy. Similar to the definition of the visibility in XT-GI, the visibility coefficient in
DPGI is defined as Vl(E) = al(E)

a0(E) . Using this definition, we can rewrite Eq. (3) as:

I(i,j,Rg)

ref (xg, E) =
I0
M

[︄
a(i)0 (E) +

∞∑︂
l=1

a(i)0 (E) · V (i,Rg)

l (E) · cos
(︃
2πl

(︃ xg

pg
+ ϕ(i,Rg)

)︃)︃]︄
. (4)
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When a sample is introduced to a beam, the intensity of the fringes as well as the visibility
coefficient decreases. The degree of reduction is determined by the line integral of the attenuation
coefficient and the dark-field extinction coefficient, respectively. At this point, the differential
phase contrast resulting from the sample has not been taken into account. However, its effect will
be discussed in Section 4. Therefore, the phase stepping curve with a sample is given as:

I(i,j,Rg)
s (xg, E) =

I0
M

· T (i,j)(E)·[︄
a(i)0 (E) +

∞∑︂
l=1

a(i)0 (E) · V (i,Rg)

l (E) · D(i,j,Rg)

l (E) · cos
(︃
2πl

(︃ xg

pg
+ ϕ(i,Rg)

)︃)︃]︄
,

(5)

with
T (i,j)(E) = exp

[︃
−

∫
µ(i,j)(E, z)dz

]︃
, (6)

D(i,j,Rg)

l (E) = exp
[︃
−

∫
µ
(i,j,Rg,l)
d (E, z)dz

]︃
. (7)

The attenuation function T(E), as presented in Eq. (6), follows the Beer-Lambert law, describing
the relationship between the attenuation of intensity and the attenuation coefficient µ. Similarly,
the reduction function of the visibility coefficient Dl(E) in Eq. (7) follows the same exponential
relation to the dark-field extinction coefficient µd. Based on Eq. (2), the dark-field extinction
coefficient µd is related to the macroscopic scattering function and correlation length. When the
sample is located upstream of G1, the correlation length is defined as [29]:

ξDPGI = −l
λLs
pg

·
Rg

Rs + Rg + Rd
, (8)

where λ represents the wavelength and Ls is the source-sample distance. Eq. (8) demonstrates how
the correlation length is adjusted by Rg, and indicates that the correlation length is dependent on
the photon energy E and the diffraction order l. Given that the macroscopic scattering function is
also energy-dependent, therefore, the dark-field extinction coefficient varies with the inter-grating
distance, the diffraction order, and the photon energy.

When a polychromatic source is used, due to linearity, one may formulate the detected phase
stepping curve as a summation of the phase stepping curve for each photon energy, with the
weights determined by the spectral distribution S0(E), given by:

Î(xg) =
∑︂

E
S0(E)I(E), (9)

where the hat is used to represent the quantities estimated in the model for the polychromatic
source. The effective intensity spectrum S0(E) comprises the source spectrum, the quantum
efficiency, and the dose deposition of the detector. Then, the effective spectrum is further
modified by several absorbers in the beam, which uniformly attenuates the wavefront without
significant diffraction or refraction effects, such as air and grating substrate. Combining Eq. (4)
and (9), the phase stepping curve of the reference scan is expressed in the polychromatic forms as:

Î(i,j,Rg)

ref (xg) = â(i,j)0,ref +

∞∑︂
l=1

â(i,j)l,ref · cos
(︃
2πl

(︃ xg

pg
+ ϕ(i,Rg)

)︃)︃
, (10)

with
â(i,j)0,ref =

I0
M

∑︂
E

S0(E) · a(i)0 (E), (11)
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â(i,j)l,ref =
I0
M

∑︂
E

S0(E) · a(i)0 (E) · V (i,Rg)

l (E). (12)

Similarly, the sample scan is formulated as:

Î(i,j,Rg)
s (xg) = â(i,j)0,s +

∞∑︂
l=1

â(i,j)l,s · cos
(︃
2πl

(︃ xg

pg
+ ϕ(i,Rg)

)︃)︃
. (13)

with
â(i,j)0,s =

I0
M

∑︂
E

S0(E) · a(i)0 (E) · T (i,j)(E), (14)

â(i,j)l,s =
I0
M

∑︂
E

S0(E) · a(i)0 (E) · V (i,Rg)

l (E) · T (i,j)(E) · D(i,j,Rg)

l (E). (15)

By applying the Fourier transform on the phase stepping curves for the polychromatic situation,
the pixel-wise mean intensity â(i,j)0 and amplitude â(i,j,Rg)

l are retrieved from the corresponding
Fourier coefficients for both reference and sample scans. Consequently, the visibility coefficient

for the polychromatic source is calculated as V̂ (i,j,Rg)

l =
â(i,j,Rg)

l

â(i,j)0
. The spectral-averaged attenuation

contrast is retrieved from the ratio of the mean intensity between the sample and the reference:

T̂ (i,j) =
â(i,j)0,s

â(i,j)0,ref

=

∑︁
E S0 · a(i)0 · T (i,j)∑︁

E S0 · a(i)0

.

(16)

For the sake of simplicity, the energy dependencies for S0, a(i)0 , and T (i,j) are not explicitly stated.
The extracted attenuation contrast in DPGI is identical to the results measured in conventional
radiography, except that the effective spectrum is hardened by two gratings with a factor a(i)0 (E).
In other words, the retrieved attenuation contrast is the weighted average of the attenuation
function T (i,j)(E), as given in Eq. (6), with the weights related to S0(E) · a(i)0 (E). Similarly, the
ratio of the visibility coefficient between the sample and the reference in the polychromatic source
is formulated as:

D̂(i,j,Rg)

l =
V̂ (i,j,Rg)

l,s

V̂ (i,j,Rg)

l,ref

=

∑︁
E S0 · a(i)0 · V (i,Rg)

l · T (i,j) · D(i,j,Rg)

l∑︁
E S0 · a(i)0 · T (i,j)

·

∑︁
E ·S0 · a(i)0∑︁

E ·S0 · a(i)0 · V (i,Rg)

l

.

(17)

Here, we adopt a similar idea as presented in [41,43], which involves separating the change of
the visibility coefficient into two components: SAS and attenuation, respectively. By introducing
a factor

∑︁
E S0 · a(i)0 · V (i,Rg)

l · T (i,j) into Eq. (17), the change of the visibility coefficient can be
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formulated as:
D̂(i,j,Rg)

l = D̂(i,j,Rg)

l,SAS · D̂(i,j,Rg)

l,att , (18)

with

D̂(i,j,Rg)

l,SAS =

∑︁
E S0 · a(i)0 · V (i,Rg)

l · T (i,j) · D(i,j,Rg)

l∑︁
E S0 · a(i)0 · V (i,Rg)

l · T (i,j)
, (19)

D̂(i,j,Rg)

l,att =

∑︁
E S0 · a(i)0 · V (i,Rg)

l · T (i,j)∑︁
E ·S0 · a(i)0 · V (i,Rg)

l

·

∑︁
E ·S0 · a(i)0∑︁

E S0 · a(i)0 · T (i,j)
. (20)

In analogy to Eq. (16), the scattering-based visibility coefficient reduction D̂(i,j,Rg)

l,SAS is the
weighted average of D(i,j,Rg)

l (E), as given in Eq. (7), with the weights determined by S0(E) ·a(i)0 (E) ·
V (i,Rg)

l (E) · T (i,j)(E). Thus, this part of visibility coefficient reduction is solely attributed to the
SAS signals, while the other part, D̂(i,j,Rg)

l,att , results from attenuation. In the case of a broadband
spectrum, the attenuation function T (i,j)(E) cannot be treated as a constant. When the attenuation
is not negligible, D̂(i,j,Rg)

l,att could deviate from 1, and this deviation causes an additional impact on
the visibility reduction beyond SAS. This leads to the beam-hardening effect in the dark-field
signal. Moreover, the magnitude of the beam-hardening effect varies with the spatial position,
inter-grating distance, and diffraction order. As a result, quantitative sub-resolution structural
information is not accessible from the relation between the dark-field signal and correlation length.
Nevertheless, based on the explicit expression of D̂(i,j,Rg)

l,att , we can eliminate the beam-hardening
effect and relate dark-field signal only to the SAS signals. This can be achieved provided that
the spectral properties of the setup, which include S0(E), a(i)0 (E), and V (i,Rg)

l (E), as well as the
attenuation function T (i,j)(E), are accurately estimated.

3. Experiment and results

To validate the beam-hardening correction algorithm, firstly, we implemented the phase scanning
technique to extract the pixel-wise visibility coefficients at a number of inter-grating distances
as the reference scans. Then, under the same geometrical settings, we conducted multiple
measurements by introducing different samples one at a time into the beam. The samples were
chosen to act as filters that only uniformly attenuate the wavefront and produce negligible small-
angle scattering signals. This was intentional to make the visibility coefficient change originate
only from the beam-hardening effect (attenuation rather than SAS). Finally, we implemented the
previously described algorithm to correct the experimental results and evaluated the success of
the beam-hardening removal in the dark-field signal.

3.1. Experimental settings

The experiments were conducted by using a transmission-type microfocus X-ray tube (FXT-160.51,
FEINFOCUS GmbH, Germany), using a 1 µm tungsten-coated CVD diamond transmission
anode. The tube was operated in microfocus mode at 40 kV and 200 µA. The JIMA pattern
measurement indicated that the full width at half maximum (FWHM) of the source size was
around 5 µm. The fringes were resolved by an sCMOS camera (Gsense, PHOTONIC SCIENCE,
UK) coupled to a 100 µm CsI:TI scintillator. The detector featured an active input area of
67 × 67mm2 and an effective pixel size of 16.4 × 16.4um2. Two identical phase gratings were
etched in 250 µ thick silicon substrates at the same depth (28 µ), as previously reported [34].
The grating pattern has been realized by displacement Talbot lithography with a period of 1 µ
and a duty cycle of 0.5, the etching depth of 28 µ was designed to introduce a π phase shift at the
X-ray energy of 22 keV. The deep reactive ion etching [20] of the two phase gratings has been



Research Article Vol. 31, No. 24 / 20 Nov 2023 / Optics Express 40457

performed in two consecutive runs to guarantee the same plasma conditions for the best replica
of the structural features in the two identical gratings. The total length of the set-up between the
source and detector was kept at 1003 mm, and G1 was placed 503 mm away from the X-ray tube.
The second phase grating, G2, was positioned downstream of G1, and its position was adjusted
by a linear stage (CLS-5282-L, SmarAct GmbH, Germany) to tune the inter-grating distance
from 2.13 mm to 11.13 mm in increments of 1 mm. During the phase stepping process, G1 was
stepped in the transverse direction for a total of 8 times over one period, controlled by a linear
positioner (CLS-5252-L, SmarAct GmbH, Germany). For each step, the interference pattern was
recorded with an exposure time of 15 s. The samples (or filters) were attached to the exit window
of the X-ray tube (see Fig. 1), to minimize the impact of Compton scattering on visibility [42].
This is not the sample position in typical DPGI measurements, yet we are only interested in the
photon absorption of the filters, which is not influenced by the position

3.2. Spectral properties modelling

One necessary step to implement our beam-hardening correction algorithm is to accurately
estimate the spectral properties of the set-up. This involves modeling the source spectrum by
using a Monte Carlo simulator [45] and then attenuating it by several uniform absorbers, including
air (1000 mm), a carbon fibre input window of the detector (1 mm), silicon substrates of two
gratings (2 × 0.222mm), and a diamond window at the exit surface of X-ray tube (0.26 mm).
After accounting for the quantum efficiency and the dose deposition of the scintillator, we obtain
the effective spectrum S0(E), which is plotted in Fig. 2.

Fig. 2. Effective spectrum modeled in the simulation for tungsten target at 40 kV. The
energy range is from 8 keV to 40 keV, with a sampling rate of 4 keV−1.

Our next objective is to characterize how the mean-value spectrum a0(E) and visibility
coefficient spectrum Vl(E) change with respect to the transverse pixel index i and inter-grating
distance Rg. To incorporate complicated features into the model such as spatially dependent
transmission profiles of the gratings, a realistic shape of grating bars, as well as the measured
detector response function (unsharpness), we implement a simulator based on the Fresnel wave
propagation to extract the pixel-wise spectral properties. The algorithm of the simulator has been
illustrated and validated in [44]. For a brief overview, the process involves propagating a wave
field from a monochromatic extended source through two gratings and arriving at the detector
plane. Then, the resulting interference pattern is simulated by including a realistic detector
response function. The phase stepping process is also simulated by transversely moving G1 a
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total of 8 steps over one period. Finally, by applying Fourier transform on the phase stepping
curve, the mean value a0 and visibility coefficient Vl are retrieved from the Fourier coefficients
for each pixel. By iterating through the energy range of the spectrum, the spectral properties
are modeled. The simulator’s settings have been maintained consistent with our corresponding
experiment. More details of the simulation are illustrated in Section 6.

The spectral properties are compared in Fig. 3 for the two different inter-grating distances,
shown in the left and right columns, respectively. Without losing generality, the results only
for the first diffraction order are presented. Both Fig. 3 (a) and (b) show the spatial and energy
dependencies of the 1st-order visibility coefficient V1, where the x-axis is the divergence angle, the
y-axis is the photon energy and the grey value represents the magnitude of the visibility coefficient.
For a more intuitive illustration, the pixel index i is converted into the divergence angle based
on the set-up geometry (see Fig. 1). The range of divergence angles between −1.09° and 1.09°
corresponds to a field of view of 38 mm along the x-axis. It is clearly indicated that the visibility
coefficient spectrum V1(E), along the axis of photon energy, undergoes a significant change as
the divergence angle varies. Additionally, the symmetry around zero degrees is also observed
in V1(E). As previously discussed, this spatial dependence is a result of the angular-dependent
transmission profile of the gratings. Moreover, there is a noticeable impact on the visibility
coefficient when the inter-grating distance is changed, as can be observed by comparing Fig. 3
(a) and (b). Compared to the visibility coefficient spectrum, the mean value spectrum a0(E),
shown in Fig. 3 (c) and (d), exhibit greater consistency with changes in divergence angle and
inter-grating distance. According to the modeling results, one important implication is that
the shape of the visibility spectrum V1(E) is strongly influenced by the divergence angle and
inter-grating distance, which will significantly affect the behavior of the beam-hardening effect,
as predicted by Eq. (20).

Fig. 3. Spectral properties modeled in the simulation for two inter-grating distances Rg.
The left and right columns show the results for the inter-grating distances of 2.13 mm and
9.13 mm, respectively. (a) and (b) illustrate the spatial and energy dependencies of the
1st-order visibility coefficient. The energy dependencies of the visibility coefficient, along
the axis of photon energy, change significantly with the divergence angle and the inter-grating
distance. (c) and (d) show the results for the mean value a0. The energy dependencies of the
mean value are nearly insensitive to changes in the divergence angle and the inter-grating
distance.
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3.3. Attenuation function determination

Besides the spectral properties of the set-up, knowledge of the pixel-wise attenuation function
T (i,j)(E) is required as well to estimate the attenuation-based visibility change D̂(i,j,Rg)

l,att . As only
the spectral-averaged attenuation can be obtained from the set-up, we utilize Eq. (16) to retrieve
the attenuation function. In this work, we impose a similar criterion on our samples as given in
[39], where the energy dependence of the attenuation is assumed to be uniform and known across
all pixels. This criterion is valid for all our single-material samples. Estimating the attenuation
function for inhomogeneous samples will be discussed in Section 4.

Based on our criterion and Eq. (16), the expected attenuation contrast is formulated as:

T̂ (i,j) =

∑︁
E S0(E) · a(i)0 (E) · exp

[︂
−

µ
ρ (E) · ρ · d(i,j)

]︂
∑︁

E S0(E) · a(i)0 (E)
, (21)

with µ
ρ (E) the mass attenuation coefficient including total attenuation with coherent scattering, ρ

the density, and d the projected thickness of the sample. With the attenuation contrast retrieved
from the measurement, denoted as T (i,j), the pixel-wise sample thickness can be obtained by
minimizing the absolute difference between the measured attenuation T (i,j) and the expected
attenuation T̂ (i,j), given by:

d(i,j) = arg min|T (i,j)
− T̂ (i,j) |. (22)

Once the sample thickness for each pixel is obtained, the attenuation function can be determined
accordingly:

T (i,j)(E) = exp
[︃
−
µ

ρ
(E) · ρ · d(i,j)

]︃
. (23)

Six samples with uniform thicknesses were measured, and their material and designed
thicknesses are listed in Table 1. Then, based on Eq. (22), the corresponding pixel-wise
thicknesses are retrieved through the minimization process, covering a total of 2322 × 500 pixels.
Specifically, we choose to use the Nelder–Mead method with a tolerance of 10−6. The mass
attenuation coefficients µ

ρ (E) are obtained from NIST [46], and the densities ρ are provided by
the manufacturers. The retrieved thicknesses display a Gaussian distribution among all pixels
and their corresponding mean value and standard deviation are presented in Table 1.

Table 1. The table presents information on the thicknesses of six samples, including the
designed thicknesses provided by the manufacturers and the thicknesses retrieved from the
optimization procedures. Overall, thicknesses for 2322 × 500 pixels were retrieved, and their

corresponding mean values and standard deviations are listed.

Material Aluminum Aluminum Aluminum Molybdenum PMMA PVC

Designed (µm) 450 750 1000 25 3200 920

Retrieved (µm) 472(±12) 798(±18) 1038(±22) 24(±0.4) 3318(±151) 998(±23)

Although the deviations between the designed and retrieved thicknesses are within acceptable
limits, the discrepancies suggest that our model’s spectral properties, as represented by S0(E)·a0(E),
do not fully match the experimental conditions. As seen from Table 1, the retrieved thicknesses
of aluminum, PMMA, and PVC are all overestimated. Given that the attenuation coefficients for
these three materials monotonically decrease with the photon energy within our energy range,
the overestimation of the thicknesses indicates that the simulated average energy of S0(E) · a0(E)
is lower than the actual value. In contrast, an opposite error was found for molybdenum. This
can be consistent with the lower simulated energy due to the presence of the K-edge at 20 keV.
With the knowledge of pixel-wise thicknesses, the attenuation functions are constructed based on
Eq. (23).
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3.4. Beam hardening correction for dark-field signal

The definition of the dark-field signal in this study is based on the logarithmic change of the
visibility coefficient. Thus, the dark-field signal produced by a sample is determined by the
measured visibility coefficient change D(i,j,Rg)

l , given as:

DF(i,j,Rg)

l = − ln D(i,j,Rg)

l . (24)

In DPGI, the change in visibility coefficient is linked to distinct diffraction orders (l), leading
to the definition of the dark-field signal in accordance with the relevant diffraction order. If the
concept of the dark-field signal is restricted to describing solely the SAS signals of the sample,
all the samples presented in Table 1 should not generate any dark-field signal, since they mainly
attenuate the beam with negligible small-angle scattering. However, the beam-hardening effect
causes not only the generation of the non-zero dark-field signal by these samples, but also a
substantial variation in the dark-field signal with changes in the divergence angle and inter-grating
distance. Figure 4 displays a representative example, where the red lines correspond to the
dark-field signal (1st diffraction order) obtained from the aluminum foil of 750 µm thickness,
at 10 different inter-grating distances. The dark-field signal is averaged along the y-axis across
500 pixels to increase the statistics. As we can see, the magnitudes of the attenuation-based
dark-field signal can be significant, and their values can be either positive or negative. Moreover,
the experimental results are consistent with the predictions of the modeled spectral properties
(see Fig. 3), as the dark-field signal induced by beam hardening also exhibits symmetry around
the normal incident angle and is closely related to the divergence angle. Furthermore, with the
inter-grating distance Rg adjusted, both the magnitudes and spatial dependencies change greatly.
For example, at the inter-grating distance of 2.13 mm , the beam-hardening effect is significant,
at wide divergence angles. Moreover, the magnitude of the beam-hardening effect changes fast
with the divergence angle. However, when the inter-grating distance is changed to 11.13 mm ,
the magnitude of beam-hardening induced dark-field signal is lower and more constant. Figure 4
clearly indicates that without removing the beam-hardening effect, it is almost impossible to
quantitatively analyze the sub-resolution structural information of samples.

Combining the modeled spectral properties (in Section 3.2) and the retrieved attenuation
function (in Section 3.3), the attenuation-based visibility change D̂(i,j,Rg)

l,att can be fully described
according to Eq. (20). Thereby, based on Eq. (18), the dark-field signal can be calculated after
performing the beam-hardening correction as follows:

DF(i,j,Rg)

l,corr = − ln
⎡⎢⎢⎢⎢⎣
D(i,j,Rg)

l

D̂(i,j,Rg)

l,att

⎤⎥⎥⎥⎥⎦ . (25)

The corresponding corrected results are shown by the blue lines in Figure 4. The correction
algorithm is generally effective in eliminating the beam-hardening effect and isolating the
dark-field signal that is specifically associated with the small-angle scattering, resulting in
close to zero values for the dark-field signal across all divergence angles and inter-grating
distances. Although the corrected dark-field signal is not precisely zero, we can attribute these
deviations to the inaccuracies in modeling the spectral properties. For instance, the differences
between the designed and retrieved thicknesses (as shown in Table 1) indicate that the modeled
spectral properties, S0(E) · a0(E), are not entirely consistent with the actual energy dependencies.
Moreover, the spatial dependency of the visibility coefficient spectrum V (i,Rg)

l (E) is closely related
to the precise shape of the grating. Despite attempts to closely approximate the grating’s shape
(as detailed in Section 6), duplicating the exact shape in simulation remains a challenging or
infeasible task.
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Fig. 4. Comparisons of the 1st-order dark-field signal measured from a 750 µm thick
aluminum foil with and without beam-hardening correction. The red lines represent the
retrieved dark-field signal averaged along the y-axis for 500 pixels before the correction
is applied. The beam-hardening effect varies greatly with the divergence angle and the
inter-grating distance Rg. The blue lines are the corrected results. The correction algorithm
can effectively eliminate the beam-hardening effect, resulting in the dark-field signal that is
close to zero with limited biases.

Besides the aluminum sample with a thickness of 750 µm, the correction results for all six
samples are plotted in Fig. 5. Instead of repeating Fig. 4 six times, we choose three representative
divergence angles, 0.81, 0.53, and 0.25 degrees, each distinguished by distinct colors, and plot the
dark-field signal (1st diffraction order) as a function of the inter-grating distance. The dark-field
signal is averaged along the y-axis for 500 pixels, and the corresponding standard deviations are
plotted as error bars. The solid lines represent the results without correction, while the non-solid
lines present the corresponding corrected dark-field signal. The successful correction of the
beam-hardening effect for all samples in Fig. 5 validates the accuracy and robustness of the
correction algorithm. While there are small biases in the corrected dark-field signal that deviate
from zero, they remain constant across inter-grating distances for a given sample. Moreover, the
beam-hardening effect for the molybdenum filter exhibits a different trend compared to the other
samples. Due to the presence of a K-edge in its attenuation function, the beam-hardening effect
increases with the inter-grating distance rather than decreases.

As shown in the appendix (Fig. 9), the visibility coefficient for the 2nd diffraction order is not
negligible when the divergence angle is around zero. In analogy to Fig. 5, Fig. 6 illustrates the
beam-hardening correction results for the 2nd diffraction order, when the divergence angle is
zero. It is clear that the correction algorithm effectively operates for the first five inter-grating
distances, for all samples. However, beyond that point, the corrected dark-field signal is not
constant around zero. This is expected since the magnitudes of the 2nd-order visibility coefficient
become extremely low when the inter-grating distance exceeds 6.13 mm (see Fig. 9). As a
result, the dark-field signal cannot be accurately retrieved. This is reflected by the fast-increasing
standard deviations for longer inter-grating distance, as shown in Fig. 6.
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Fig. 5. The figure presents the 1st-order dark-field signal for all six samples, with and without
beam-hardening correction. The dark-field signal is plotted as a function of inter-grating
distance for three representative divergence angles: 0.81 degrees in black, 0.53 degrees in
red, and 0.25 degrees in blue. The solid lines represent the measurement results before
correction, while the non-solid lines represent the corrected results. The dark-field signal is
averaged along the y-axis and the standard deviations are plotted as error bars. The success of
the beam-hardening removal for all samples has been presented, leading to the close-to-zero
dark-field signal.

Fig. 6. The figure displays a comparison of the 2nd-order dark-field signal for all six
samples, with and without beam-hardening correction, at a divergence angle of zero degrees.
The dark-field signal is averaged along the y-axis and the standard deviations are plotted
as error bars. The success of the beam-hardening removal for the first five inter-grating
distances has been presented, leading to the close-to-zero dark-field signal.
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4. Discussion

As previously discussed, compared to XT-GI, DPGI offers several benefits, including improved
dose efficiency by removing the analyzer grating and the ability to adjust the correlation length
without altering the sample’s magnification. However, DPGI is particularly susceptible to the
beam-hardening effect in the dark-field signal. The red lines depicted in Figure 4 illustrate that,
even in the absence of small-angle scattering, a pure absorption sample (750 µm aluminum foil)
can yield substantial dark-field signal. Moreover, the magnitude of the dark-field signal is highly
dependent on the divergence angle and inter-grating distance. If the beam-hardening effect is
not corrected, it is not possible to extract accurate small-angle scattering structural information
from the relationship between dark-field signal and inter-grating distance. This work introduces a
novel beam-hardening correction algorithm, accounting for all the impacts from divergence angle,
inter-grating distance, and diffraction order. The effectiveness of the algorithm was verified by
the experimental results obtained from six distinct pure absorption samples (see Fig. 4–Fig. 6).

The proposed beam-hardening correction algorithm is based on a simulation model that
provides prior knowledge of the spectral properties of the set-up. This feature allows the
algorithm to be easily adapted to other measurement settings and set-up geometries, thereby
enhancing its versatility and applicability. Nevertheless, the dependence on prior knowledge
implies that any discrepancies between the modeled and the actual spectral properties will
introduce biases in the corrected results. As shown in Fig. 4, 5 and 6, the corrected dark-field
signal is not strictly zero. Although a more accurate estimation of the effective energy and grating
shape would enhance the performance of the beam-hardening correction algorithm, our study
demonstrates that the algorithm can still effectively and robustly remove the beam-hardening
effect even under conditions of some uncertainty. The results presented in this work show the
correction to materials that should not generate any scattering-based dark-field signal. Beam
hardening correction of different scattering objects has been satisfactorily performed with this
algorithm and a manuscript about these results is under peer review. The beam-hardening
correction makes it possible to relate some micro-structural information to the dark-field signal.

Two limitations of the current algorithm should be mentioned. Firstly, the energy dependency
of the attenuation function in this work is assumed to be uniform across the entire field of view
and has been tabulated. However, when samples exhibit non-uniform energy dependency, the
optimization process, given by Eq. (22), to find the pixel-wise attenuation function is not valid.
To handle these situations, the energy dependencies can be parameterized instead of using a
tabulated function, as described in [39,43]. Then, the parameters are determined by fitting the
attenuation function to the measured absorption results obtained under different spectra. The
second limitation of the current beam-hardening correction algorithm arises in samples that
exhibit differential phase contrast, which can further reduce the visibility coefficient due to
dispersion in a polychromatic spectrum [41,42]. According to the analytical model derived by
De Marco et al. [42] and combining the spectral properties modeled in this work, the visibility
reduction due to dispersion can be estimated once the energy-dependent phase shift has been
determined. As we know, a number of investigations have been made to extract the energy
dependency of phase shift from the samples [33,36,38,39]. Therefore, it is possible to extend the
current correction algorithm to eliminate this dispersion effect in the dark-field signal as well.

5. Conclusion

The beam-hardening effect in the dark-field signal makes quantitative sub-resolution structural
information inaccessible, and this effect in DPGI varies with the divergence angle, inter-grating
distance, and diffraction order. To address this issue, this paper presents a correction algorithm
that can effectively remove the beam-hardening effect. The accuracy and robustness of the
algorithm are validated by the experimental results for six samples with distinct attenuation
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functions. This algorithm paves the way for quantitatively accessing the small-angle scattering
structural information from the relationship between the dark-field signal and the correlation
length.

Appendix

In this section, we present the grating shape and unsharpness of the detector used in the simulation.
Additionally, we will provide a comparison between the visibility coefficients obtained from the
simulation and those obtained experimentally.

Fig. 7(a) shows a cross-sectional image of one grating, obtained from a scanning electron
microscope (SEM) with low magnification. The cross section was realized by cleaving the (100)
oriented silicon wafer since the lines were patterned along the (110) crystallographic axis. The
grating profile suffers from typical etching defects: the tapering of the silicon lamellas is due
to the etching of high aspect ratio trenches (56:1), while the scallops in the top part are the
typical defects of Bosch process used in deep reactive ion etching. The strengthening of new
etching methods will provide in the future sharper silicon profiles at even higher aspect ratio [47].

Fig. 7. (a) presents a full cross-sectional profile of the used gratings from a scanning
electron microscope (SEM) with low magnification. (b) and (c) show the detailed structural
information for the top and bottom parts, respectively, with high magnification. It can be
seen from (b) that the tips of the gratings are covered by some polymer residuals of Bosch
process used in deep reactive ion etching that are transparent for X-rays. Based on all
information from (a) to (c), a typical grating shape is constructed to closely resemble the
SEM images, as shown in (d).
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Fig. 8. (a) depicts the measured line spread function (LSF) at different source voltages. The
red dots in (b) represent the measured LSF at the source voltage 40 kV, and the black line is
the fitted results by a Laplace function.

Fig. 9. Comparisons between the experimental (solid) and simulated (dashed) visibility
coefficients at 10 different inter-grating distances. The red and blue colors represent 1st and
2nd diffraction orders, respectively.

Fig. 7(b) and (c) show high-magnification images of the top and bottom parts of one grating,
respectively, providing detailed views of their structures. Based on the structural information
obtained from SEM, the eventual cleaving artifacts have been averaged, and the typical grating
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shape is extracted, as shown in Fig. 7 (d). The white regions in the image represent silicon, while
the black regions represent air.

Since DPGI is a technique that directly resolves the interference patterns, the unsharpness from
the detector significantly influences the contrast of the fringes. The edge response of the detector
was measured by imaging a sharp edge of a 0.09 mm tantalum foil attached to the detector. The
resulting edge response was used to calculate the line spread function (LSF) by taking the first
derivative [44]. To investigate how photon energy influences the resolving power of the detector,
the LSF was extracted at different source voltages, ranging from 40 kV to 90 kV in increments of
10 kV, as plotted in Fig. 8 (a). Our results indicate that the source voltage has a limited effect on
the LSF, therefore, LSF can be considered constant across a range of photon energies. According
to the shape of the measured LSF, a Laplace distribution was used to fit the measurement results
at 40 kV, as depicted in Fig. 8 (b). Then the fitted distribution was used as LSF in the simulation.

Finally, Fig. 9 presents a quantitative comparison between the visibility coefficients obtained
from the measurement and the simulation, at 10 different inter-grating distances. The solid
lines represent the measured visibility coefficient, which is averaged along the y-axis for 500
pixels, while the corresponding simulated results are plotted as dashed lines. The 1st and 2nd
diffraction orders are shown in red and blue, respectively. As shown in Fig. 9, the simulation can
correctly model the visibility coefficients, both in terms of spatial dependencies and magnitudes,
with tolerable deviations. These deviations are expected due to the imperfect modeling of the
actual grating shape, line spread function (LSF), and effective spectrum. As shown in Fig. 9, the
visibility coefficients for the 1st diffraction order exhibit symmetric peaks at non-zero divergence
angles. Additionally, the visibility coefficients for the 2nd diffraction order are not negligible for
the short inter-grating distances.
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